xref: /linux/fs/xfs/xfs_bmap_util.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * Copyright (c) 2012 Red Hat, Inc.
5  * All Rights Reserved.
6  */
7 #include "xfs.h"
8 #include "xfs_fs.h"
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_bit.h"
14 #include "xfs_mount.h"
15 #include "xfs_defer.h"
16 #include "xfs_inode.h"
17 #include "xfs_btree.h"
18 #include "xfs_trans.h"
19 #include "xfs_alloc.h"
20 #include "xfs_bmap.h"
21 #include "xfs_bmap_util.h"
22 #include "xfs_bmap_btree.h"
23 #include "xfs_rtalloc.h"
24 #include "xfs_error.h"
25 #include "xfs_quota.h"
26 #include "xfs_trans_space.h"
27 #include "xfs_trace.h"
28 #include "xfs_icache.h"
29 #include "xfs_iomap.h"
30 #include "xfs_reflink.h"
31 #include "xfs_rtbitmap.h"
32 
33 /* Kernel only BMAP related definitions and functions */
34 
35 /*
36  * Convert the given file system block to a disk block.  We have to treat it
37  * differently based on whether the file is a real time file or not, because the
38  * bmap code does.
39  */
40 xfs_daddr_t
41 xfs_fsb_to_db(struct xfs_inode *ip, xfs_fsblock_t fsb)
42 {
43 	if (XFS_IS_REALTIME_INODE(ip))
44 		return XFS_FSB_TO_BB(ip->i_mount, fsb);
45 	return XFS_FSB_TO_DADDR(ip->i_mount, fsb);
46 }
47 
48 /*
49  * Routine to zero an extent on disk allocated to the specific inode.
50  *
51  * The VFS functions take a linearised filesystem block offset, so we have to
52  * convert the sparse xfs fsb to the right format first.
53  * VFS types are real funky, too.
54  */
55 int
56 xfs_zero_extent(
57 	struct xfs_inode	*ip,
58 	xfs_fsblock_t		start_fsb,
59 	xfs_off_t		count_fsb)
60 {
61 	struct xfs_mount	*mp = ip->i_mount;
62 	struct xfs_buftarg	*target = xfs_inode_buftarg(ip);
63 	xfs_daddr_t		sector = xfs_fsb_to_db(ip, start_fsb);
64 	sector_t		block = XFS_BB_TO_FSBT(mp, sector);
65 
66 	return blkdev_issue_zeroout(target->bt_bdev,
67 		block << (mp->m_super->s_blocksize_bits - 9),
68 		count_fsb << (mp->m_super->s_blocksize_bits - 9),
69 		GFP_KERNEL, 0);
70 }
71 
72 /*
73  * Extent tree block counting routines.
74  */
75 
76 /*
77  * Count leaf blocks given a range of extent records.  Delayed allocation
78  * extents are not counted towards the totals.
79  */
80 xfs_extnum_t
81 xfs_bmap_count_leaves(
82 	struct xfs_ifork	*ifp,
83 	xfs_filblks_t		*count)
84 {
85 	struct xfs_iext_cursor	icur;
86 	struct xfs_bmbt_irec	got;
87 	xfs_extnum_t		numrecs = 0;
88 
89 	for_each_xfs_iext(ifp, &icur, &got) {
90 		if (!isnullstartblock(got.br_startblock)) {
91 			*count += got.br_blockcount;
92 			numrecs++;
93 		}
94 	}
95 
96 	return numrecs;
97 }
98 
99 /*
100  * Count fsblocks of the given fork.  Delayed allocation extents are
101  * not counted towards the totals.
102  */
103 int
104 xfs_bmap_count_blocks(
105 	struct xfs_trans	*tp,
106 	struct xfs_inode	*ip,
107 	int			whichfork,
108 	xfs_extnum_t		*nextents,
109 	xfs_filblks_t		*count)
110 {
111 	struct xfs_mount	*mp = ip->i_mount;
112 	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, whichfork);
113 	struct xfs_btree_cur	*cur;
114 	xfs_extlen_t		btblocks = 0;
115 	int			error;
116 
117 	*nextents = 0;
118 	*count = 0;
119 
120 	if (!ifp)
121 		return 0;
122 
123 	switch (ifp->if_format) {
124 	case XFS_DINODE_FMT_BTREE:
125 		error = xfs_iread_extents(tp, ip, whichfork);
126 		if (error)
127 			return error;
128 
129 		cur = xfs_bmbt_init_cursor(mp, tp, ip, whichfork);
130 		error = xfs_btree_count_blocks(cur, &btblocks);
131 		xfs_btree_del_cursor(cur, error);
132 		if (error)
133 			return error;
134 
135 		/*
136 		 * xfs_btree_count_blocks includes the root block contained in
137 		 * the inode fork in @btblocks, so subtract one because we're
138 		 * only interested in allocated disk blocks.
139 		 */
140 		*count += btblocks - 1;
141 
142 		fallthrough;
143 	case XFS_DINODE_FMT_EXTENTS:
144 		*nextents = xfs_bmap_count_leaves(ifp, count);
145 		break;
146 	}
147 
148 	return 0;
149 }
150 
151 static int
152 xfs_getbmap_report_one(
153 	struct xfs_inode	*ip,
154 	struct getbmapx		*bmv,
155 	struct kgetbmap		*out,
156 	int64_t			bmv_end,
157 	struct xfs_bmbt_irec	*got)
158 {
159 	struct kgetbmap		*p = out + bmv->bmv_entries;
160 	bool			shared = false;
161 	int			error;
162 
163 	error = xfs_reflink_trim_around_shared(ip, got, &shared);
164 	if (error)
165 		return error;
166 
167 	if (isnullstartblock(got->br_startblock) ||
168 	    got->br_startblock == DELAYSTARTBLOCK) {
169 		/*
170 		 * Take the flush completion as being a point-in-time snapshot
171 		 * where there are no delalloc extents, and if any new ones
172 		 * have been created racily, just skip them as being 'after'
173 		 * the flush and so don't get reported.
174 		 */
175 		if (!(bmv->bmv_iflags & BMV_IF_DELALLOC))
176 			return 0;
177 
178 		p->bmv_oflags |= BMV_OF_DELALLOC;
179 		p->bmv_block = -2;
180 	} else {
181 		p->bmv_block = xfs_fsb_to_db(ip, got->br_startblock);
182 	}
183 
184 	if (got->br_state == XFS_EXT_UNWRITTEN &&
185 	    (bmv->bmv_iflags & BMV_IF_PREALLOC))
186 		p->bmv_oflags |= BMV_OF_PREALLOC;
187 
188 	if (shared)
189 		p->bmv_oflags |= BMV_OF_SHARED;
190 
191 	p->bmv_offset = XFS_FSB_TO_BB(ip->i_mount, got->br_startoff);
192 	p->bmv_length = XFS_FSB_TO_BB(ip->i_mount, got->br_blockcount);
193 
194 	bmv->bmv_offset = p->bmv_offset + p->bmv_length;
195 	bmv->bmv_length = max(0LL, bmv_end - bmv->bmv_offset);
196 	bmv->bmv_entries++;
197 	return 0;
198 }
199 
200 static void
201 xfs_getbmap_report_hole(
202 	struct xfs_inode	*ip,
203 	struct getbmapx		*bmv,
204 	struct kgetbmap		*out,
205 	int64_t			bmv_end,
206 	xfs_fileoff_t		bno,
207 	xfs_fileoff_t		end)
208 {
209 	struct kgetbmap		*p = out + bmv->bmv_entries;
210 
211 	if (bmv->bmv_iflags & BMV_IF_NO_HOLES)
212 		return;
213 
214 	p->bmv_block = -1;
215 	p->bmv_offset = XFS_FSB_TO_BB(ip->i_mount, bno);
216 	p->bmv_length = XFS_FSB_TO_BB(ip->i_mount, end - bno);
217 
218 	bmv->bmv_offset = p->bmv_offset + p->bmv_length;
219 	bmv->bmv_length = max(0LL, bmv_end - bmv->bmv_offset);
220 	bmv->bmv_entries++;
221 }
222 
223 static inline bool
224 xfs_getbmap_full(
225 	struct getbmapx		*bmv)
226 {
227 	return bmv->bmv_length == 0 || bmv->bmv_entries >= bmv->bmv_count - 1;
228 }
229 
230 static bool
231 xfs_getbmap_next_rec(
232 	struct xfs_bmbt_irec	*rec,
233 	xfs_fileoff_t		total_end)
234 {
235 	xfs_fileoff_t		end = rec->br_startoff + rec->br_blockcount;
236 
237 	if (end == total_end)
238 		return false;
239 
240 	rec->br_startoff += rec->br_blockcount;
241 	if (!isnullstartblock(rec->br_startblock) &&
242 	    rec->br_startblock != DELAYSTARTBLOCK)
243 		rec->br_startblock += rec->br_blockcount;
244 	rec->br_blockcount = total_end - end;
245 	return true;
246 }
247 
248 /*
249  * Get inode's extents as described in bmv, and format for output.
250  * Calls formatter to fill the user's buffer until all extents
251  * are mapped, until the passed-in bmv->bmv_count slots have
252  * been filled, or until the formatter short-circuits the loop,
253  * if it is tracking filled-in extents on its own.
254  */
255 int						/* error code */
256 xfs_getbmap(
257 	struct xfs_inode	*ip,
258 	struct getbmapx		*bmv,		/* user bmap structure */
259 	struct kgetbmap		*out)
260 {
261 	struct xfs_mount	*mp = ip->i_mount;
262 	int			iflags = bmv->bmv_iflags;
263 	int			whichfork, lock, error = 0;
264 	int64_t			bmv_end, max_len;
265 	xfs_fileoff_t		bno, first_bno;
266 	struct xfs_ifork	*ifp;
267 	struct xfs_bmbt_irec	got, rec;
268 	xfs_filblks_t		len;
269 	struct xfs_iext_cursor	icur;
270 
271 	if (bmv->bmv_iflags & ~BMV_IF_VALID)
272 		return -EINVAL;
273 #ifndef DEBUG
274 	/* Only allow CoW fork queries if we're debugging. */
275 	if (iflags & BMV_IF_COWFORK)
276 		return -EINVAL;
277 #endif
278 	if ((iflags & BMV_IF_ATTRFORK) && (iflags & BMV_IF_COWFORK))
279 		return -EINVAL;
280 
281 	if (bmv->bmv_length < -1)
282 		return -EINVAL;
283 	bmv->bmv_entries = 0;
284 	if (bmv->bmv_length == 0)
285 		return 0;
286 
287 	if (iflags & BMV_IF_ATTRFORK)
288 		whichfork = XFS_ATTR_FORK;
289 	else if (iflags & BMV_IF_COWFORK)
290 		whichfork = XFS_COW_FORK;
291 	else
292 		whichfork = XFS_DATA_FORK;
293 
294 	xfs_ilock(ip, XFS_IOLOCK_SHARED);
295 	switch (whichfork) {
296 	case XFS_ATTR_FORK:
297 		lock = xfs_ilock_attr_map_shared(ip);
298 		if (!xfs_inode_has_attr_fork(ip))
299 			goto out_unlock_ilock;
300 
301 		max_len = 1LL << 32;
302 		break;
303 	case XFS_COW_FORK:
304 		lock = XFS_ILOCK_SHARED;
305 		xfs_ilock(ip, lock);
306 
307 		/* No CoW fork? Just return */
308 		if (!xfs_ifork_ptr(ip, whichfork))
309 			goto out_unlock_ilock;
310 
311 		if (xfs_get_cowextsz_hint(ip))
312 			max_len = mp->m_super->s_maxbytes;
313 		else
314 			max_len = XFS_ISIZE(ip);
315 		break;
316 	case XFS_DATA_FORK:
317 		if (!(iflags & BMV_IF_DELALLOC) &&
318 		    (ip->i_delayed_blks || XFS_ISIZE(ip) > ip->i_disk_size)) {
319 			error = filemap_write_and_wait(VFS_I(ip)->i_mapping);
320 			if (error)
321 				goto out_unlock_iolock;
322 
323 			/*
324 			 * Even after flushing the inode, there can still be
325 			 * delalloc blocks on the inode beyond EOF due to
326 			 * speculative preallocation.  These are not removed
327 			 * until the release function is called or the inode
328 			 * is inactivated.  Hence we cannot assert here that
329 			 * ip->i_delayed_blks == 0.
330 			 */
331 		}
332 
333 		if (xfs_get_extsz_hint(ip) ||
334 		    (ip->i_diflags &
335 		     (XFS_DIFLAG_PREALLOC | XFS_DIFLAG_APPEND)))
336 			max_len = mp->m_super->s_maxbytes;
337 		else
338 			max_len = XFS_ISIZE(ip);
339 
340 		lock = xfs_ilock_data_map_shared(ip);
341 		break;
342 	}
343 
344 	ifp = xfs_ifork_ptr(ip, whichfork);
345 
346 	switch (ifp->if_format) {
347 	case XFS_DINODE_FMT_EXTENTS:
348 	case XFS_DINODE_FMT_BTREE:
349 		break;
350 	case XFS_DINODE_FMT_LOCAL:
351 		/* Local format inode forks report no extents. */
352 		goto out_unlock_ilock;
353 	default:
354 		error = -EINVAL;
355 		goto out_unlock_ilock;
356 	}
357 
358 	if (bmv->bmv_length == -1) {
359 		max_len = XFS_FSB_TO_BB(mp, XFS_B_TO_FSB(mp, max_len));
360 		bmv->bmv_length = max(0LL, max_len - bmv->bmv_offset);
361 	}
362 
363 	bmv_end = bmv->bmv_offset + bmv->bmv_length;
364 
365 	first_bno = bno = XFS_BB_TO_FSBT(mp, bmv->bmv_offset);
366 	len = XFS_BB_TO_FSB(mp, bmv->bmv_length);
367 
368 	error = xfs_iread_extents(NULL, ip, whichfork);
369 	if (error)
370 		goto out_unlock_ilock;
371 
372 	if (!xfs_iext_lookup_extent(ip, ifp, bno, &icur, &got)) {
373 		/*
374 		 * Report a whole-file hole if the delalloc flag is set to
375 		 * stay compatible with the old implementation.
376 		 */
377 		if (iflags & BMV_IF_DELALLOC)
378 			xfs_getbmap_report_hole(ip, bmv, out, bmv_end, bno,
379 					XFS_B_TO_FSB(mp, XFS_ISIZE(ip)));
380 		goto out_unlock_ilock;
381 	}
382 
383 	while (!xfs_getbmap_full(bmv)) {
384 		xfs_trim_extent(&got, first_bno, len);
385 
386 		/*
387 		 * Report an entry for a hole if this extent doesn't directly
388 		 * follow the previous one.
389 		 */
390 		if (got.br_startoff > bno) {
391 			xfs_getbmap_report_hole(ip, bmv, out, bmv_end, bno,
392 					got.br_startoff);
393 			if (xfs_getbmap_full(bmv))
394 				break;
395 		}
396 
397 		/*
398 		 * In order to report shared extents accurately, we report each
399 		 * distinct shared / unshared part of a single bmbt record with
400 		 * an individual getbmapx record.
401 		 */
402 		bno = got.br_startoff + got.br_blockcount;
403 		rec = got;
404 		do {
405 			error = xfs_getbmap_report_one(ip, bmv, out, bmv_end,
406 					&rec);
407 			if (error || xfs_getbmap_full(bmv))
408 				goto out_unlock_ilock;
409 		} while (xfs_getbmap_next_rec(&rec, bno));
410 
411 		if (!xfs_iext_next_extent(ifp, &icur, &got)) {
412 			xfs_fileoff_t	end = XFS_B_TO_FSB(mp, XFS_ISIZE(ip));
413 
414 			if (bmv->bmv_entries > 0)
415 				out[bmv->bmv_entries - 1].bmv_oflags |=
416 								BMV_OF_LAST;
417 
418 			if (whichfork != XFS_ATTR_FORK && bno < end &&
419 			    !xfs_getbmap_full(bmv)) {
420 				xfs_getbmap_report_hole(ip, bmv, out, bmv_end,
421 						bno, end);
422 			}
423 			break;
424 		}
425 
426 		if (bno >= first_bno + len)
427 			break;
428 	}
429 
430 out_unlock_ilock:
431 	xfs_iunlock(ip, lock);
432 out_unlock_iolock:
433 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
434 	return error;
435 }
436 
437 /*
438  * Dead simple method of punching delalyed allocation blocks from a range in
439  * the inode.  This will always punch out both the start and end blocks, even
440  * if the ranges only partially overlap them, so it is up to the caller to
441  * ensure that partial blocks are not passed in.
442  */
443 int
444 xfs_bmap_punch_delalloc_range(
445 	struct xfs_inode	*ip,
446 	xfs_off_t		start_byte,
447 	xfs_off_t		end_byte)
448 {
449 	struct xfs_mount	*mp = ip->i_mount;
450 	struct xfs_ifork	*ifp = &ip->i_df;
451 	xfs_fileoff_t		start_fsb = XFS_B_TO_FSBT(mp, start_byte);
452 	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, end_byte);
453 	struct xfs_bmbt_irec	got, del;
454 	struct xfs_iext_cursor	icur;
455 	int			error = 0;
456 
457 	ASSERT(!xfs_need_iread_extents(ifp));
458 
459 	xfs_ilock(ip, XFS_ILOCK_EXCL);
460 	if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
461 		goto out_unlock;
462 
463 	while (got.br_startoff + got.br_blockcount > start_fsb) {
464 		del = got;
465 		xfs_trim_extent(&del, start_fsb, end_fsb - start_fsb);
466 
467 		/*
468 		 * A delete can push the cursor forward. Step back to the
469 		 * previous extent on non-delalloc or extents outside the
470 		 * target range.
471 		 */
472 		if (!del.br_blockcount ||
473 		    !isnullstartblock(del.br_startblock)) {
474 			if (!xfs_iext_prev_extent(ifp, &icur, &got))
475 				break;
476 			continue;
477 		}
478 
479 		error = xfs_bmap_del_extent_delay(ip, XFS_DATA_FORK, &icur,
480 						  &got, &del);
481 		if (error || !xfs_iext_get_extent(ifp, &icur, &got))
482 			break;
483 	}
484 
485 out_unlock:
486 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
487 	return error;
488 }
489 
490 /*
491  * Test whether it is appropriate to check an inode for and free post EOF
492  * blocks. The 'force' parameter determines whether we should also consider
493  * regular files that are marked preallocated or append-only.
494  */
495 bool
496 xfs_can_free_eofblocks(
497 	struct xfs_inode	*ip,
498 	bool			force)
499 {
500 	struct xfs_bmbt_irec	imap;
501 	struct xfs_mount	*mp = ip->i_mount;
502 	xfs_fileoff_t		end_fsb;
503 	xfs_fileoff_t		last_fsb;
504 	int			nimaps = 1;
505 	int			error;
506 
507 	/*
508 	 * Caller must either hold the exclusive io lock; or be inactivating
509 	 * the inode, which guarantees there are no other users of the inode.
510 	 */
511 	if (!(VFS_I(ip)->i_state & I_FREEING))
512 		xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL);
513 
514 	/* prealloc/delalloc exists only on regular files */
515 	if (!S_ISREG(VFS_I(ip)->i_mode))
516 		return false;
517 
518 	/*
519 	 * Zero sized files with no cached pages and delalloc blocks will not
520 	 * have speculative prealloc/delalloc blocks to remove.
521 	 */
522 	if (VFS_I(ip)->i_size == 0 &&
523 	    VFS_I(ip)->i_mapping->nrpages == 0 &&
524 	    ip->i_delayed_blks == 0)
525 		return false;
526 
527 	/* If we haven't read in the extent list, then don't do it now. */
528 	if (xfs_need_iread_extents(&ip->i_df))
529 		return false;
530 
531 	/*
532 	 * Do not free real preallocated or append-only files unless the file
533 	 * has delalloc blocks and we are forced to remove them.
534 	 */
535 	if (ip->i_diflags & (XFS_DIFLAG_PREALLOC | XFS_DIFLAG_APPEND))
536 		if (!force || ip->i_delayed_blks == 0)
537 			return false;
538 
539 	/*
540 	 * Do not try to free post-EOF blocks if EOF is beyond the end of the
541 	 * range supported by the page cache, because the truncation will loop
542 	 * forever.
543 	 */
544 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_ISIZE(ip));
545 	if (XFS_IS_REALTIME_INODE(ip) && mp->m_sb.sb_rextsize > 1)
546 		end_fsb = xfs_rtb_roundup_rtx(mp, end_fsb);
547 	last_fsb = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
548 	if (last_fsb <= end_fsb)
549 		return false;
550 
551 	/*
552 	 * Look up the mapping for the first block past EOF.  If we can't find
553 	 * it, there's nothing to free.
554 	 */
555 	xfs_ilock(ip, XFS_ILOCK_SHARED);
556 	error = xfs_bmapi_read(ip, end_fsb, last_fsb - end_fsb, &imap, &nimaps,
557 			0);
558 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
559 	if (error || nimaps == 0)
560 		return false;
561 
562 	/*
563 	 * If there's a real mapping there or there are delayed allocation
564 	 * reservations, then we have post-EOF blocks to try to free.
565 	 */
566 	return imap.br_startblock != HOLESTARTBLOCK || ip->i_delayed_blks;
567 }
568 
569 /*
570  * This is called to free any blocks beyond eof. The caller must hold
571  * IOLOCK_EXCL unless we are in the inode reclaim path and have the only
572  * reference to the inode.
573  */
574 int
575 xfs_free_eofblocks(
576 	struct xfs_inode	*ip)
577 {
578 	struct xfs_trans	*tp;
579 	struct xfs_mount	*mp = ip->i_mount;
580 	int			error;
581 
582 	/* Attach the dquots to the inode up front. */
583 	error = xfs_qm_dqattach(ip);
584 	if (error)
585 		return error;
586 
587 	/* Wait on dio to ensure i_size has settled. */
588 	inode_dio_wait(VFS_I(ip));
589 
590 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
591 	if (error) {
592 		ASSERT(xfs_is_shutdown(mp));
593 		return error;
594 	}
595 
596 	xfs_ilock(ip, XFS_ILOCK_EXCL);
597 	xfs_trans_ijoin(tp, ip, 0);
598 
599 	/*
600 	 * Do not update the on-disk file size.  If we update the on-disk file
601 	 * size and then the system crashes before the contents of the file are
602 	 * flushed to disk then the files may be full of holes (ie NULL files
603 	 * bug).
604 	 */
605 	error = xfs_itruncate_extents_flags(&tp, ip, XFS_DATA_FORK,
606 				XFS_ISIZE(ip), XFS_BMAPI_NODISCARD);
607 	if (error)
608 		goto err_cancel;
609 
610 	error = xfs_trans_commit(tp);
611 	if (error)
612 		goto out_unlock;
613 
614 	xfs_inode_clear_eofblocks_tag(ip);
615 	goto out_unlock;
616 
617 err_cancel:
618 	/*
619 	 * If we get an error at this point we simply don't
620 	 * bother truncating the file.
621 	 */
622 	xfs_trans_cancel(tp);
623 out_unlock:
624 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
625 	return error;
626 }
627 
628 int
629 xfs_alloc_file_space(
630 	struct xfs_inode	*ip,
631 	xfs_off_t		offset,
632 	xfs_off_t		len)
633 {
634 	xfs_mount_t		*mp = ip->i_mount;
635 	xfs_off_t		count;
636 	xfs_filblks_t		allocatesize_fsb;
637 	xfs_extlen_t		extsz, temp;
638 	xfs_fileoff_t		startoffset_fsb;
639 	xfs_fileoff_t		endoffset_fsb;
640 	int			rt;
641 	xfs_trans_t		*tp;
642 	xfs_bmbt_irec_t		imaps[1], *imapp;
643 	int			error;
644 
645 	trace_xfs_alloc_file_space(ip);
646 
647 	if (xfs_is_shutdown(mp))
648 		return -EIO;
649 
650 	error = xfs_qm_dqattach(ip);
651 	if (error)
652 		return error;
653 
654 	if (len <= 0)
655 		return -EINVAL;
656 
657 	rt = XFS_IS_REALTIME_INODE(ip);
658 	extsz = xfs_get_extsz_hint(ip);
659 
660 	count = len;
661 	imapp = &imaps[0];
662 	startoffset_fsb	= XFS_B_TO_FSBT(mp, offset);
663 	endoffset_fsb = XFS_B_TO_FSB(mp, offset + count);
664 	allocatesize_fsb = endoffset_fsb - startoffset_fsb;
665 
666 	/*
667 	 * Allocate file space until done or until there is an error
668 	 */
669 	while (allocatesize_fsb && !error) {
670 		xfs_fileoff_t	s, e;
671 		unsigned int	dblocks, rblocks, resblks;
672 		int		nimaps = 1;
673 
674 		/*
675 		 * Determine space reservations for data/realtime.
676 		 */
677 		if (unlikely(extsz)) {
678 			s = startoffset_fsb;
679 			do_div(s, extsz);
680 			s *= extsz;
681 			e = startoffset_fsb + allocatesize_fsb;
682 			div_u64_rem(startoffset_fsb, extsz, &temp);
683 			if (temp)
684 				e += temp;
685 			div_u64_rem(e, extsz, &temp);
686 			if (temp)
687 				e += extsz - temp;
688 		} else {
689 			s = 0;
690 			e = allocatesize_fsb;
691 		}
692 
693 		/*
694 		 * The transaction reservation is limited to a 32-bit block
695 		 * count, hence we need to limit the number of blocks we are
696 		 * trying to reserve to avoid an overflow. We can't allocate
697 		 * more than @nimaps extents, and an extent is limited on disk
698 		 * to XFS_BMBT_MAX_EXTLEN (21 bits), so use that to enforce the
699 		 * limit.
700 		 */
701 		resblks = min_t(xfs_fileoff_t, (e - s),
702 				(XFS_MAX_BMBT_EXTLEN * nimaps));
703 		if (unlikely(rt)) {
704 			dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
705 			rblocks = resblks;
706 		} else {
707 			dblocks = XFS_DIOSTRAT_SPACE_RES(mp, resblks);
708 			rblocks = 0;
709 		}
710 
711 		error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write,
712 				dblocks, rblocks, false, &tp);
713 		if (error)
714 			break;
715 
716 		error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK,
717 				XFS_IEXT_ADD_NOSPLIT_CNT);
718 		if (error == -EFBIG)
719 			error = xfs_iext_count_upgrade(tp, ip,
720 					XFS_IEXT_ADD_NOSPLIT_CNT);
721 		if (error)
722 			goto error;
723 
724 		error = xfs_bmapi_write(tp, ip, startoffset_fsb,
725 				allocatesize_fsb, XFS_BMAPI_PREALLOC, 0, imapp,
726 				&nimaps);
727 		if (error)
728 			goto error;
729 
730 		ip->i_diflags |= XFS_DIFLAG_PREALLOC;
731 		xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
732 
733 		error = xfs_trans_commit(tp);
734 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
735 		if (error)
736 			break;
737 
738 		/*
739 		 * If the allocator cannot find a single free extent large
740 		 * enough to cover the start block of the requested range,
741 		 * xfs_bmapi_write will return 0 but leave *nimaps set to 0.
742 		 *
743 		 * In that case we simply need to keep looping with the same
744 		 * startoffset_fsb so that one of the following allocations
745 		 * will eventually reach the requested range.
746 		 */
747 		if (nimaps) {
748 			startoffset_fsb += imapp->br_blockcount;
749 			allocatesize_fsb -= imapp->br_blockcount;
750 		}
751 	}
752 
753 	return error;
754 
755 error:
756 	xfs_trans_cancel(tp);
757 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
758 	return error;
759 }
760 
761 static int
762 xfs_unmap_extent(
763 	struct xfs_inode	*ip,
764 	xfs_fileoff_t		startoffset_fsb,
765 	xfs_filblks_t		len_fsb,
766 	int			*done)
767 {
768 	struct xfs_mount	*mp = ip->i_mount;
769 	struct xfs_trans	*tp;
770 	uint			resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
771 	int			error;
772 
773 	error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, resblks, 0,
774 			false, &tp);
775 	if (error)
776 		return error;
777 
778 	error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK,
779 			XFS_IEXT_PUNCH_HOLE_CNT);
780 	if (error == -EFBIG)
781 		error = xfs_iext_count_upgrade(tp, ip, XFS_IEXT_PUNCH_HOLE_CNT);
782 	if (error)
783 		goto out_trans_cancel;
784 
785 	error = xfs_bunmapi(tp, ip, startoffset_fsb, len_fsb, 0, 2, done);
786 	if (error)
787 		goto out_trans_cancel;
788 
789 	error = xfs_trans_commit(tp);
790 out_unlock:
791 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
792 	return error;
793 
794 out_trans_cancel:
795 	xfs_trans_cancel(tp);
796 	goto out_unlock;
797 }
798 
799 /* Caller must first wait for the completion of any pending DIOs if required. */
800 int
801 xfs_flush_unmap_range(
802 	struct xfs_inode	*ip,
803 	xfs_off_t		offset,
804 	xfs_off_t		len)
805 {
806 	struct xfs_mount	*mp = ip->i_mount;
807 	struct inode		*inode = VFS_I(ip);
808 	xfs_off_t		rounding, start, end;
809 	int			error;
810 
811 	rounding = max_t(xfs_off_t, mp->m_sb.sb_blocksize, PAGE_SIZE);
812 	start = round_down(offset, rounding);
813 	end = round_up(offset + len, rounding) - 1;
814 
815 	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
816 	if (error)
817 		return error;
818 	truncate_pagecache_range(inode, start, end);
819 	return 0;
820 }
821 
822 int
823 xfs_free_file_space(
824 	struct xfs_inode	*ip,
825 	xfs_off_t		offset,
826 	xfs_off_t		len)
827 {
828 	struct xfs_mount	*mp = ip->i_mount;
829 	xfs_fileoff_t		startoffset_fsb;
830 	xfs_fileoff_t		endoffset_fsb;
831 	int			done = 0, error;
832 
833 	trace_xfs_free_file_space(ip);
834 
835 	error = xfs_qm_dqattach(ip);
836 	if (error)
837 		return error;
838 
839 	if (len <= 0)	/* if nothing being freed */
840 		return 0;
841 
842 	startoffset_fsb = XFS_B_TO_FSB(mp, offset);
843 	endoffset_fsb = XFS_B_TO_FSBT(mp, offset + len);
844 
845 	/* We can only free complete realtime extents. */
846 	if (XFS_IS_REALTIME_INODE(ip) && mp->m_sb.sb_rextsize > 1) {
847 		startoffset_fsb = xfs_rtb_roundup_rtx(mp, startoffset_fsb);
848 		endoffset_fsb = xfs_rtb_rounddown_rtx(mp, endoffset_fsb);
849 	}
850 
851 	/*
852 	 * Need to zero the stuff we're not freeing, on disk.
853 	 */
854 	if (endoffset_fsb > startoffset_fsb) {
855 		while (!done) {
856 			error = xfs_unmap_extent(ip, startoffset_fsb,
857 					endoffset_fsb - startoffset_fsb, &done);
858 			if (error)
859 				return error;
860 		}
861 	}
862 
863 	/*
864 	 * Now that we've unmap all full blocks we'll have to zero out any
865 	 * partial block at the beginning and/or end.  xfs_zero_range is smart
866 	 * enough to skip any holes, including those we just created, but we
867 	 * must take care not to zero beyond EOF and enlarge i_size.
868 	 */
869 	if (offset >= XFS_ISIZE(ip))
870 		return 0;
871 	if (offset + len > XFS_ISIZE(ip))
872 		len = XFS_ISIZE(ip) - offset;
873 	error = xfs_zero_range(ip, offset, len, NULL);
874 	if (error)
875 		return error;
876 
877 	/*
878 	 * If we zeroed right up to EOF and EOF straddles a page boundary we
879 	 * must make sure that the post-EOF area is also zeroed because the
880 	 * page could be mmap'd and xfs_zero_range doesn't do that for us.
881 	 * Writeback of the eof page will do this, albeit clumsily.
882 	 */
883 	if (offset + len >= XFS_ISIZE(ip) && offset_in_page(offset + len) > 0) {
884 		error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
885 				round_down(offset + len, PAGE_SIZE), LLONG_MAX);
886 	}
887 
888 	return error;
889 }
890 
891 static int
892 xfs_prepare_shift(
893 	struct xfs_inode	*ip,
894 	loff_t			offset)
895 {
896 	struct xfs_mount	*mp = ip->i_mount;
897 	int			error;
898 
899 	/*
900 	 * Trim eofblocks to avoid shifting uninitialized post-eof preallocation
901 	 * into the accessible region of the file.
902 	 */
903 	if (xfs_can_free_eofblocks(ip, true)) {
904 		error = xfs_free_eofblocks(ip);
905 		if (error)
906 			return error;
907 	}
908 
909 	/*
910 	 * Shift operations must stabilize the start block offset boundary along
911 	 * with the full range of the operation. If we don't, a COW writeback
912 	 * completion could race with an insert, front merge with the start
913 	 * extent (after split) during the shift and corrupt the file. Start
914 	 * with the block just prior to the start to stabilize the boundary.
915 	 */
916 	offset = round_down(offset, mp->m_sb.sb_blocksize);
917 	if (offset)
918 		offset -= mp->m_sb.sb_blocksize;
919 
920 	/*
921 	 * Writeback and invalidate cache for the remainder of the file as we're
922 	 * about to shift down every extent from offset to EOF.
923 	 */
924 	error = xfs_flush_unmap_range(ip, offset, XFS_ISIZE(ip));
925 	if (error)
926 		return error;
927 
928 	/*
929 	 * Clean out anything hanging around in the cow fork now that
930 	 * we've flushed all the dirty data out to disk to avoid having
931 	 * CoW extents at the wrong offsets.
932 	 */
933 	if (xfs_inode_has_cow_data(ip)) {
934 		error = xfs_reflink_cancel_cow_range(ip, offset, NULLFILEOFF,
935 				true);
936 		if (error)
937 			return error;
938 	}
939 
940 	return 0;
941 }
942 
943 /*
944  * xfs_collapse_file_space()
945  *	This routine frees disk space and shift extent for the given file.
946  *	The first thing we do is to free data blocks in the specified range
947  *	by calling xfs_free_file_space(). It would also sync dirty data
948  *	and invalidate page cache over the region on which collapse range
949  *	is working. And Shift extent records to the left to cover a hole.
950  * RETURNS:
951  *	0 on success
952  *	errno on error
953  *
954  */
955 int
956 xfs_collapse_file_space(
957 	struct xfs_inode	*ip,
958 	xfs_off_t		offset,
959 	xfs_off_t		len)
960 {
961 	struct xfs_mount	*mp = ip->i_mount;
962 	struct xfs_trans	*tp;
963 	int			error;
964 	xfs_fileoff_t		next_fsb = XFS_B_TO_FSB(mp, offset + len);
965 	xfs_fileoff_t		shift_fsb = XFS_B_TO_FSB(mp, len);
966 	bool			done = false;
967 
968 	xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL);
969 
970 	trace_xfs_collapse_file_space(ip);
971 
972 	error = xfs_free_file_space(ip, offset, len);
973 	if (error)
974 		return error;
975 
976 	error = xfs_prepare_shift(ip, offset);
977 	if (error)
978 		return error;
979 
980 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp);
981 	if (error)
982 		return error;
983 
984 	xfs_ilock(ip, XFS_ILOCK_EXCL);
985 	xfs_trans_ijoin(tp, ip, 0);
986 
987 	while (!done) {
988 		error = xfs_bmap_collapse_extents(tp, ip, &next_fsb, shift_fsb,
989 				&done);
990 		if (error)
991 			goto out_trans_cancel;
992 		if (done)
993 			break;
994 
995 		/* finish any deferred frees and roll the transaction */
996 		error = xfs_defer_finish(&tp);
997 		if (error)
998 			goto out_trans_cancel;
999 	}
1000 
1001 	error = xfs_trans_commit(tp);
1002 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1003 	return error;
1004 
1005 out_trans_cancel:
1006 	xfs_trans_cancel(tp);
1007 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1008 	return error;
1009 }
1010 
1011 /*
1012  * xfs_insert_file_space()
1013  *	This routine create hole space by shifting extents for the given file.
1014  *	The first thing we do is to sync dirty data and invalidate page cache
1015  *	over the region on which insert range is working. And split an extent
1016  *	to two extents at given offset by calling xfs_bmap_split_extent.
1017  *	And shift all extent records which are laying between [offset,
1018  *	last allocated extent] to the right to reserve hole range.
1019  * RETURNS:
1020  *	0 on success
1021  *	errno on error
1022  */
1023 int
1024 xfs_insert_file_space(
1025 	struct xfs_inode	*ip,
1026 	loff_t			offset,
1027 	loff_t			len)
1028 {
1029 	struct xfs_mount	*mp = ip->i_mount;
1030 	struct xfs_trans	*tp;
1031 	int			error;
1032 	xfs_fileoff_t		stop_fsb = XFS_B_TO_FSB(mp, offset);
1033 	xfs_fileoff_t		next_fsb = NULLFSBLOCK;
1034 	xfs_fileoff_t		shift_fsb = XFS_B_TO_FSB(mp, len);
1035 	bool			done = false;
1036 
1037 	xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL);
1038 
1039 	trace_xfs_insert_file_space(ip);
1040 
1041 	error = xfs_bmap_can_insert_extents(ip, stop_fsb, shift_fsb);
1042 	if (error)
1043 		return error;
1044 
1045 	error = xfs_prepare_shift(ip, offset);
1046 	if (error)
1047 		return error;
1048 
1049 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write,
1050 			XFS_DIOSTRAT_SPACE_RES(mp, 0), 0, 0, &tp);
1051 	if (error)
1052 		return error;
1053 
1054 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1055 	xfs_trans_ijoin(tp, ip, 0);
1056 
1057 	error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK,
1058 			XFS_IEXT_PUNCH_HOLE_CNT);
1059 	if (error == -EFBIG)
1060 		error = xfs_iext_count_upgrade(tp, ip, XFS_IEXT_PUNCH_HOLE_CNT);
1061 	if (error)
1062 		goto out_trans_cancel;
1063 
1064 	/*
1065 	 * The extent shifting code works on extent granularity. So, if stop_fsb
1066 	 * is not the starting block of extent, we need to split the extent at
1067 	 * stop_fsb.
1068 	 */
1069 	error = xfs_bmap_split_extent(tp, ip, stop_fsb);
1070 	if (error)
1071 		goto out_trans_cancel;
1072 
1073 	do {
1074 		error = xfs_defer_finish(&tp);
1075 		if (error)
1076 			goto out_trans_cancel;
1077 
1078 		error = xfs_bmap_insert_extents(tp, ip, &next_fsb, shift_fsb,
1079 				&done, stop_fsb);
1080 		if (error)
1081 			goto out_trans_cancel;
1082 	} while (!done);
1083 
1084 	error = xfs_trans_commit(tp);
1085 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1086 	return error;
1087 
1088 out_trans_cancel:
1089 	xfs_trans_cancel(tp);
1090 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1091 	return error;
1092 }
1093 
1094 /*
1095  * We need to check that the format of the data fork in the temporary inode is
1096  * valid for the target inode before doing the swap. This is not a problem with
1097  * attr1 because of the fixed fork offset, but attr2 has a dynamically sized
1098  * data fork depending on the space the attribute fork is taking so we can get
1099  * invalid formats on the target inode.
1100  *
1101  * E.g. target has space for 7 extents in extent format, temp inode only has
1102  * space for 6.  If we defragment down to 7 extents, then the tmp format is a
1103  * btree, but when swapped it needs to be in extent format. Hence we can't just
1104  * blindly swap data forks on attr2 filesystems.
1105  *
1106  * Note that we check the swap in both directions so that we don't end up with
1107  * a corrupt temporary inode, either.
1108  *
1109  * Note that fixing the way xfs_fsr sets up the attribute fork in the source
1110  * inode will prevent this situation from occurring, so all we do here is
1111  * reject and log the attempt. basically we are putting the responsibility on
1112  * userspace to get this right.
1113  */
1114 static int
1115 xfs_swap_extents_check_format(
1116 	struct xfs_inode	*ip,	/* target inode */
1117 	struct xfs_inode	*tip)	/* tmp inode */
1118 {
1119 	struct xfs_ifork	*ifp = &ip->i_df;
1120 	struct xfs_ifork	*tifp = &tip->i_df;
1121 
1122 	/* User/group/project quota ids must match if quotas are enforced. */
1123 	if (XFS_IS_QUOTA_ON(ip->i_mount) &&
1124 	    (!uid_eq(VFS_I(ip)->i_uid, VFS_I(tip)->i_uid) ||
1125 	     !gid_eq(VFS_I(ip)->i_gid, VFS_I(tip)->i_gid) ||
1126 	     ip->i_projid != tip->i_projid))
1127 		return -EINVAL;
1128 
1129 	/* Should never get a local format */
1130 	if (ifp->if_format == XFS_DINODE_FMT_LOCAL ||
1131 	    tifp->if_format == XFS_DINODE_FMT_LOCAL)
1132 		return -EINVAL;
1133 
1134 	/*
1135 	 * if the target inode has less extents that then temporary inode then
1136 	 * why did userspace call us?
1137 	 */
1138 	if (ifp->if_nextents < tifp->if_nextents)
1139 		return -EINVAL;
1140 
1141 	/*
1142 	 * If we have to use the (expensive) rmap swap method, we can
1143 	 * handle any number of extents and any format.
1144 	 */
1145 	if (xfs_has_rmapbt(ip->i_mount))
1146 		return 0;
1147 
1148 	/*
1149 	 * if the target inode is in extent form and the temp inode is in btree
1150 	 * form then we will end up with the target inode in the wrong format
1151 	 * as we already know there are less extents in the temp inode.
1152 	 */
1153 	if (ifp->if_format == XFS_DINODE_FMT_EXTENTS &&
1154 	    tifp->if_format == XFS_DINODE_FMT_BTREE)
1155 		return -EINVAL;
1156 
1157 	/* Check temp in extent form to max in target */
1158 	if (tifp->if_format == XFS_DINODE_FMT_EXTENTS &&
1159 	    tifp->if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK))
1160 		return -EINVAL;
1161 
1162 	/* Check target in extent form to max in temp */
1163 	if (ifp->if_format == XFS_DINODE_FMT_EXTENTS &&
1164 	    ifp->if_nextents > XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK))
1165 		return -EINVAL;
1166 
1167 	/*
1168 	 * If we are in a btree format, check that the temp root block will fit
1169 	 * in the target and that it has enough extents to be in btree format
1170 	 * in the target.
1171 	 *
1172 	 * Note that we have to be careful to allow btree->extent conversions
1173 	 * (a common defrag case) which will occur when the temp inode is in
1174 	 * extent format...
1175 	 */
1176 	if (tifp->if_format == XFS_DINODE_FMT_BTREE) {
1177 		if (xfs_inode_has_attr_fork(ip) &&
1178 		    XFS_BMAP_BMDR_SPACE(tifp->if_broot) > xfs_inode_fork_boff(ip))
1179 			return -EINVAL;
1180 		if (tifp->if_nextents <= XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK))
1181 			return -EINVAL;
1182 	}
1183 
1184 	/* Reciprocal target->temp btree format checks */
1185 	if (ifp->if_format == XFS_DINODE_FMT_BTREE) {
1186 		if (xfs_inode_has_attr_fork(tip) &&
1187 		    XFS_BMAP_BMDR_SPACE(ip->i_df.if_broot) > xfs_inode_fork_boff(tip))
1188 			return -EINVAL;
1189 		if (ifp->if_nextents <= XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK))
1190 			return -EINVAL;
1191 	}
1192 
1193 	return 0;
1194 }
1195 
1196 static int
1197 xfs_swap_extent_flush(
1198 	struct xfs_inode	*ip)
1199 {
1200 	int	error;
1201 
1202 	error = filemap_write_and_wait(VFS_I(ip)->i_mapping);
1203 	if (error)
1204 		return error;
1205 	truncate_pagecache_range(VFS_I(ip), 0, -1);
1206 
1207 	/* Verify O_DIRECT for ftmp */
1208 	if (VFS_I(ip)->i_mapping->nrpages)
1209 		return -EINVAL;
1210 	return 0;
1211 }
1212 
1213 /*
1214  * Move extents from one file to another, when rmap is enabled.
1215  */
1216 STATIC int
1217 xfs_swap_extent_rmap(
1218 	struct xfs_trans		**tpp,
1219 	struct xfs_inode		*ip,
1220 	struct xfs_inode		*tip)
1221 {
1222 	struct xfs_trans		*tp = *tpp;
1223 	struct xfs_bmbt_irec		irec;
1224 	struct xfs_bmbt_irec		uirec;
1225 	struct xfs_bmbt_irec		tirec;
1226 	xfs_fileoff_t			offset_fsb;
1227 	xfs_fileoff_t			end_fsb;
1228 	xfs_filblks_t			count_fsb;
1229 	int				error;
1230 	xfs_filblks_t			ilen;
1231 	xfs_filblks_t			rlen;
1232 	int				nimaps;
1233 	uint64_t			tip_flags2;
1234 
1235 	/*
1236 	 * If the source file has shared blocks, we must flag the donor
1237 	 * file as having shared blocks so that we get the shared-block
1238 	 * rmap functions when we go to fix up the rmaps.  The flags
1239 	 * will be switch for reals later.
1240 	 */
1241 	tip_flags2 = tip->i_diflags2;
1242 	if (ip->i_diflags2 & XFS_DIFLAG2_REFLINK)
1243 		tip->i_diflags2 |= XFS_DIFLAG2_REFLINK;
1244 
1245 	offset_fsb = 0;
1246 	end_fsb = XFS_B_TO_FSB(ip->i_mount, i_size_read(VFS_I(ip)));
1247 	count_fsb = (xfs_filblks_t)(end_fsb - offset_fsb);
1248 
1249 	while (count_fsb) {
1250 		/* Read extent from the donor file */
1251 		nimaps = 1;
1252 		error = xfs_bmapi_read(tip, offset_fsb, count_fsb, &tirec,
1253 				&nimaps, 0);
1254 		if (error)
1255 			goto out;
1256 		ASSERT(nimaps == 1);
1257 		ASSERT(tirec.br_startblock != DELAYSTARTBLOCK);
1258 
1259 		trace_xfs_swap_extent_rmap_remap(tip, &tirec);
1260 		ilen = tirec.br_blockcount;
1261 
1262 		/* Unmap the old blocks in the source file. */
1263 		while (tirec.br_blockcount) {
1264 			ASSERT(tp->t_highest_agno == NULLAGNUMBER);
1265 			trace_xfs_swap_extent_rmap_remap_piece(tip, &tirec);
1266 
1267 			/* Read extent from the source file */
1268 			nimaps = 1;
1269 			error = xfs_bmapi_read(ip, tirec.br_startoff,
1270 					tirec.br_blockcount, &irec,
1271 					&nimaps, 0);
1272 			if (error)
1273 				goto out;
1274 			ASSERT(nimaps == 1);
1275 			ASSERT(tirec.br_startoff == irec.br_startoff);
1276 			trace_xfs_swap_extent_rmap_remap_piece(ip, &irec);
1277 
1278 			/* Trim the extent. */
1279 			uirec = tirec;
1280 			uirec.br_blockcount = rlen = min_t(xfs_filblks_t,
1281 					tirec.br_blockcount,
1282 					irec.br_blockcount);
1283 			trace_xfs_swap_extent_rmap_remap_piece(tip, &uirec);
1284 
1285 			if (xfs_bmap_is_real_extent(&uirec)) {
1286 				error = xfs_iext_count_may_overflow(ip,
1287 						XFS_DATA_FORK,
1288 						XFS_IEXT_SWAP_RMAP_CNT);
1289 				if (error == -EFBIG)
1290 					error = xfs_iext_count_upgrade(tp, ip,
1291 							XFS_IEXT_SWAP_RMAP_CNT);
1292 				if (error)
1293 					goto out;
1294 			}
1295 
1296 			if (xfs_bmap_is_real_extent(&irec)) {
1297 				error = xfs_iext_count_may_overflow(tip,
1298 						XFS_DATA_FORK,
1299 						XFS_IEXT_SWAP_RMAP_CNT);
1300 				if (error == -EFBIG)
1301 					error = xfs_iext_count_upgrade(tp, ip,
1302 							XFS_IEXT_SWAP_RMAP_CNT);
1303 				if (error)
1304 					goto out;
1305 			}
1306 
1307 			/* Remove the mapping from the donor file. */
1308 			xfs_bmap_unmap_extent(tp, tip, XFS_DATA_FORK, &uirec);
1309 
1310 			/* Remove the mapping from the source file. */
1311 			xfs_bmap_unmap_extent(tp, ip, XFS_DATA_FORK, &irec);
1312 
1313 			/* Map the donor file's blocks into the source file. */
1314 			xfs_bmap_map_extent(tp, ip, XFS_DATA_FORK, &uirec);
1315 
1316 			/* Map the source file's blocks into the donor file. */
1317 			xfs_bmap_map_extent(tp, tip, XFS_DATA_FORK, &irec);
1318 
1319 			error = xfs_defer_finish(tpp);
1320 			tp = *tpp;
1321 			if (error)
1322 				goto out;
1323 
1324 			tirec.br_startoff += rlen;
1325 			if (tirec.br_startblock != HOLESTARTBLOCK &&
1326 			    tirec.br_startblock != DELAYSTARTBLOCK)
1327 				tirec.br_startblock += rlen;
1328 			tirec.br_blockcount -= rlen;
1329 		}
1330 
1331 		/* Roll on... */
1332 		count_fsb -= ilen;
1333 		offset_fsb += ilen;
1334 	}
1335 
1336 	tip->i_diflags2 = tip_flags2;
1337 	return 0;
1338 
1339 out:
1340 	trace_xfs_swap_extent_rmap_error(ip, error, _RET_IP_);
1341 	tip->i_diflags2 = tip_flags2;
1342 	return error;
1343 }
1344 
1345 /* Swap the extents of two files by swapping data forks. */
1346 STATIC int
1347 xfs_swap_extent_forks(
1348 	struct xfs_trans	*tp,
1349 	struct xfs_inode	*ip,
1350 	struct xfs_inode	*tip,
1351 	int			*src_log_flags,
1352 	int			*target_log_flags)
1353 {
1354 	xfs_filblks_t		aforkblks = 0;
1355 	xfs_filblks_t		taforkblks = 0;
1356 	xfs_extnum_t		junk;
1357 	uint64_t		tmp;
1358 	int			error;
1359 
1360 	/*
1361 	 * Count the number of extended attribute blocks
1362 	 */
1363 	if (xfs_inode_has_attr_fork(ip) && ip->i_af.if_nextents > 0 &&
1364 	    ip->i_af.if_format != XFS_DINODE_FMT_LOCAL) {
1365 		error = xfs_bmap_count_blocks(tp, ip, XFS_ATTR_FORK, &junk,
1366 				&aforkblks);
1367 		if (error)
1368 			return error;
1369 	}
1370 	if (xfs_inode_has_attr_fork(tip) && tip->i_af.if_nextents > 0 &&
1371 	    tip->i_af.if_format != XFS_DINODE_FMT_LOCAL) {
1372 		error = xfs_bmap_count_blocks(tp, tip, XFS_ATTR_FORK, &junk,
1373 				&taforkblks);
1374 		if (error)
1375 			return error;
1376 	}
1377 
1378 	/*
1379 	 * Btree format (v3) inodes have the inode number stamped in the bmbt
1380 	 * block headers. We can't start changing the bmbt blocks until the
1381 	 * inode owner change is logged so recovery does the right thing in the
1382 	 * event of a crash. Set the owner change log flags now and leave the
1383 	 * bmbt scan as the last step.
1384 	 */
1385 	if (xfs_has_v3inodes(ip->i_mount)) {
1386 		if (ip->i_df.if_format == XFS_DINODE_FMT_BTREE)
1387 			(*target_log_flags) |= XFS_ILOG_DOWNER;
1388 		if (tip->i_df.if_format == XFS_DINODE_FMT_BTREE)
1389 			(*src_log_flags) |= XFS_ILOG_DOWNER;
1390 	}
1391 
1392 	/*
1393 	 * Swap the data forks of the inodes
1394 	 */
1395 	swap(ip->i_df, tip->i_df);
1396 
1397 	/*
1398 	 * Fix the on-disk inode values
1399 	 */
1400 	tmp = (uint64_t)ip->i_nblocks;
1401 	ip->i_nblocks = tip->i_nblocks - taforkblks + aforkblks;
1402 	tip->i_nblocks = tmp + taforkblks - aforkblks;
1403 
1404 	/*
1405 	 * The extents in the source inode could still contain speculative
1406 	 * preallocation beyond EOF (e.g. the file is open but not modified
1407 	 * while defrag is in progress). In that case, we need to copy over the
1408 	 * number of delalloc blocks the data fork in the source inode is
1409 	 * tracking beyond EOF so that when the fork is truncated away when the
1410 	 * temporary inode is unlinked we don't underrun the i_delayed_blks
1411 	 * counter on that inode.
1412 	 */
1413 	ASSERT(tip->i_delayed_blks == 0);
1414 	tip->i_delayed_blks = ip->i_delayed_blks;
1415 	ip->i_delayed_blks = 0;
1416 
1417 	switch (ip->i_df.if_format) {
1418 	case XFS_DINODE_FMT_EXTENTS:
1419 		(*src_log_flags) |= XFS_ILOG_DEXT;
1420 		break;
1421 	case XFS_DINODE_FMT_BTREE:
1422 		ASSERT(!xfs_has_v3inodes(ip->i_mount) ||
1423 		       (*src_log_flags & XFS_ILOG_DOWNER));
1424 		(*src_log_flags) |= XFS_ILOG_DBROOT;
1425 		break;
1426 	}
1427 
1428 	switch (tip->i_df.if_format) {
1429 	case XFS_DINODE_FMT_EXTENTS:
1430 		(*target_log_flags) |= XFS_ILOG_DEXT;
1431 		break;
1432 	case XFS_DINODE_FMT_BTREE:
1433 		(*target_log_flags) |= XFS_ILOG_DBROOT;
1434 		ASSERT(!xfs_has_v3inodes(ip->i_mount) ||
1435 		       (*target_log_flags & XFS_ILOG_DOWNER));
1436 		break;
1437 	}
1438 
1439 	return 0;
1440 }
1441 
1442 /*
1443  * Fix up the owners of the bmbt blocks to refer to the current inode. The
1444  * change owner scan attempts to order all modified buffers in the current
1445  * transaction. In the event of ordered buffer failure, the offending buffer is
1446  * physically logged as a fallback and the scan returns -EAGAIN. We must roll
1447  * the transaction in this case to replenish the fallback log reservation and
1448  * restart the scan. This process repeats until the scan completes.
1449  */
1450 static int
1451 xfs_swap_change_owner(
1452 	struct xfs_trans	**tpp,
1453 	struct xfs_inode	*ip,
1454 	struct xfs_inode	*tmpip)
1455 {
1456 	int			error;
1457 	struct xfs_trans	*tp = *tpp;
1458 
1459 	do {
1460 		error = xfs_bmbt_change_owner(tp, ip, XFS_DATA_FORK, ip->i_ino,
1461 					      NULL);
1462 		/* success or fatal error */
1463 		if (error != -EAGAIN)
1464 			break;
1465 
1466 		error = xfs_trans_roll(tpp);
1467 		if (error)
1468 			break;
1469 		tp = *tpp;
1470 
1471 		/*
1472 		 * Redirty both inodes so they can relog and keep the log tail
1473 		 * moving forward.
1474 		 */
1475 		xfs_trans_ijoin(tp, ip, 0);
1476 		xfs_trans_ijoin(tp, tmpip, 0);
1477 		xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1478 		xfs_trans_log_inode(tp, tmpip, XFS_ILOG_CORE);
1479 	} while (true);
1480 
1481 	return error;
1482 }
1483 
1484 int
1485 xfs_swap_extents(
1486 	struct xfs_inode	*ip,	/* target inode */
1487 	struct xfs_inode	*tip,	/* tmp inode */
1488 	struct xfs_swapext	*sxp)
1489 {
1490 	struct xfs_mount	*mp = ip->i_mount;
1491 	struct xfs_trans	*tp;
1492 	struct xfs_bstat	*sbp = &sxp->sx_stat;
1493 	int			src_log_flags, target_log_flags;
1494 	int			error = 0;
1495 	uint64_t		f;
1496 	int			resblks = 0;
1497 	unsigned int		flags = 0;
1498 	struct timespec64	ctime, mtime;
1499 
1500 	/*
1501 	 * Lock the inodes against other IO, page faults and truncate to
1502 	 * begin with.  Then we can ensure the inodes are flushed and have no
1503 	 * page cache safely. Once we have done this we can take the ilocks and
1504 	 * do the rest of the checks.
1505 	 */
1506 	lock_two_nondirectories(VFS_I(ip), VFS_I(tip));
1507 	filemap_invalidate_lock_two(VFS_I(ip)->i_mapping,
1508 				    VFS_I(tip)->i_mapping);
1509 
1510 	/* Verify that both files have the same format */
1511 	if ((VFS_I(ip)->i_mode & S_IFMT) != (VFS_I(tip)->i_mode & S_IFMT)) {
1512 		error = -EINVAL;
1513 		goto out_unlock;
1514 	}
1515 
1516 	/* Verify both files are either real-time or non-realtime */
1517 	if (XFS_IS_REALTIME_INODE(ip) != XFS_IS_REALTIME_INODE(tip)) {
1518 		error = -EINVAL;
1519 		goto out_unlock;
1520 	}
1521 
1522 	error = xfs_qm_dqattach(ip);
1523 	if (error)
1524 		goto out_unlock;
1525 
1526 	error = xfs_qm_dqattach(tip);
1527 	if (error)
1528 		goto out_unlock;
1529 
1530 	error = xfs_swap_extent_flush(ip);
1531 	if (error)
1532 		goto out_unlock;
1533 	error = xfs_swap_extent_flush(tip);
1534 	if (error)
1535 		goto out_unlock;
1536 
1537 	if (xfs_inode_has_cow_data(tip)) {
1538 		error = xfs_reflink_cancel_cow_range(tip, 0, NULLFILEOFF, true);
1539 		if (error)
1540 			goto out_unlock;
1541 	}
1542 
1543 	/*
1544 	 * Extent "swapping" with rmap requires a permanent reservation and
1545 	 * a block reservation because it's really just a remap operation
1546 	 * performed with log redo items!
1547 	 */
1548 	if (xfs_has_rmapbt(mp)) {
1549 		int		w = XFS_DATA_FORK;
1550 		uint32_t	ipnext = ip->i_df.if_nextents;
1551 		uint32_t	tipnext	= tip->i_df.if_nextents;
1552 
1553 		/*
1554 		 * Conceptually this shouldn't affect the shape of either bmbt,
1555 		 * but since we atomically move extents one by one, we reserve
1556 		 * enough space to rebuild both trees.
1557 		 */
1558 		resblks = XFS_SWAP_RMAP_SPACE_RES(mp, ipnext, w);
1559 		resblks +=  XFS_SWAP_RMAP_SPACE_RES(mp, tipnext, w);
1560 
1561 		/*
1562 		 * If either inode straddles a bmapbt block allocation boundary,
1563 		 * the rmapbt algorithm triggers repeated allocs and frees as
1564 		 * extents are remapped. This can exhaust the block reservation
1565 		 * prematurely and cause shutdown. Return freed blocks to the
1566 		 * transaction reservation to counter this behavior.
1567 		 */
1568 		flags |= XFS_TRANS_RES_FDBLKS;
1569 	}
1570 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, flags,
1571 				&tp);
1572 	if (error)
1573 		goto out_unlock;
1574 
1575 	/*
1576 	 * Lock and join the inodes to the tansaction so that transaction commit
1577 	 * or cancel will unlock the inodes from this point onwards.
1578 	 */
1579 	xfs_lock_two_inodes(ip, XFS_ILOCK_EXCL, tip, XFS_ILOCK_EXCL);
1580 	xfs_trans_ijoin(tp, ip, 0);
1581 	xfs_trans_ijoin(tp, tip, 0);
1582 
1583 
1584 	/* Verify all data are being swapped */
1585 	if (sxp->sx_offset != 0 ||
1586 	    sxp->sx_length != ip->i_disk_size ||
1587 	    sxp->sx_length != tip->i_disk_size) {
1588 		error = -EFAULT;
1589 		goto out_trans_cancel;
1590 	}
1591 
1592 	trace_xfs_swap_extent_before(ip, 0);
1593 	trace_xfs_swap_extent_before(tip, 1);
1594 
1595 	/* check inode formats now that data is flushed */
1596 	error = xfs_swap_extents_check_format(ip, tip);
1597 	if (error) {
1598 		xfs_notice(mp,
1599 		    "%s: inode 0x%llx format is incompatible for exchanging.",
1600 				__func__, ip->i_ino);
1601 		goto out_trans_cancel;
1602 	}
1603 
1604 	/*
1605 	 * Compare the current change & modify times with that
1606 	 * passed in.  If they differ, we abort this swap.
1607 	 * This is the mechanism used to ensure the calling
1608 	 * process that the file was not changed out from
1609 	 * under it.
1610 	 */
1611 	ctime = inode_get_ctime(VFS_I(ip));
1612 	mtime = inode_get_mtime(VFS_I(ip));
1613 	if ((sbp->bs_ctime.tv_sec != ctime.tv_sec) ||
1614 	    (sbp->bs_ctime.tv_nsec != ctime.tv_nsec) ||
1615 	    (sbp->bs_mtime.tv_sec != mtime.tv_sec) ||
1616 	    (sbp->bs_mtime.tv_nsec != mtime.tv_nsec)) {
1617 		error = -EBUSY;
1618 		goto out_trans_cancel;
1619 	}
1620 
1621 	/*
1622 	 * Note the trickiness in setting the log flags - we set the owner log
1623 	 * flag on the opposite inode (i.e. the inode we are setting the new
1624 	 * owner to be) because once we swap the forks and log that, log
1625 	 * recovery is going to see the fork as owned by the swapped inode,
1626 	 * not the pre-swapped inodes.
1627 	 */
1628 	src_log_flags = XFS_ILOG_CORE;
1629 	target_log_flags = XFS_ILOG_CORE;
1630 
1631 	if (xfs_has_rmapbt(mp))
1632 		error = xfs_swap_extent_rmap(&tp, ip, tip);
1633 	else
1634 		error = xfs_swap_extent_forks(tp, ip, tip, &src_log_flags,
1635 				&target_log_flags);
1636 	if (error)
1637 		goto out_trans_cancel;
1638 
1639 	/* Do we have to swap reflink flags? */
1640 	if ((ip->i_diflags2 & XFS_DIFLAG2_REFLINK) ^
1641 	    (tip->i_diflags2 & XFS_DIFLAG2_REFLINK)) {
1642 		f = ip->i_diflags2 & XFS_DIFLAG2_REFLINK;
1643 		ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
1644 		ip->i_diflags2 |= tip->i_diflags2 & XFS_DIFLAG2_REFLINK;
1645 		tip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
1646 		tip->i_diflags2 |= f & XFS_DIFLAG2_REFLINK;
1647 	}
1648 
1649 	/* Swap the cow forks. */
1650 	if (xfs_has_reflink(mp)) {
1651 		ASSERT(!ip->i_cowfp ||
1652 		       ip->i_cowfp->if_format == XFS_DINODE_FMT_EXTENTS);
1653 		ASSERT(!tip->i_cowfp ||
1654 		       tip->i_cowfp->if_format == XFS_DINODE_FMT_EXTENTS);
1655 
1656 		swap(ip->i_cowfp, tip->i_cowfp);
1657 
1658 		if (ip->i_cowfp && ip->i_cowfp->if_bytes)
1659 			xfs_inode_set_cowblocks_tag(ip);
1660 		else
1661 			xfs_inode_clear_cowblocks_tag(ip);
1662 		if (tip->i_cowfp && tip->i_cowfp->if_bytes)
1663 			xfs_inode_set_cowblocks_tag(tip);
1664 		else
1665 			xfs_inode_clear_cowblocks_tag(tip);
1666 	}
1667 
1668 	xfs_trans_log_inode(tp, ip,  src_log_flags);
1669 	xfs_trans_log_inode(tp, tip, target_log_flags);
1670 
1671 	/*
1672 	 * The extent forks have been swapped, but crc=1,rmapbt=0 filesystems
1673 	 * have inode number owner values in the bmbt blocks that still refer to
1674 	 * the old inode. Scan each bmbt to fix up the owner values with the
1675 	 * inode number of the current inode.
1676 	 */
1677 	if (src_log_flags & XFS_ILOG_DOWNER) {
1678 		error = xfs_swap_change_owner(&tp, ip, tip);
1679 		if (error)
1680 			goto out_trans_cancel;
1681 	}
1682 	if (target_log_flags & XFS_ILOG_DOWNER) {
1683 		error = xfs_swap_change_owner(&tp, tip, ip);
1684 		if (error)
1685 			goto out_trans_cancel;
1686 	}
1687 
1688 	/*
1689 	 * If this is a synchronous mount, make sure that the
1690 	 * transaction goes to disk before returning to the user.
1691 	 */
1692 	if (xfs_has_wsync(mp))
1693 		xfs_trans_set_sync(tp);
1694 
1695 	error = xfs_trans_commit(tp);
1696 
1697 	trace_xfs_swap_extent_after(ip, 0);
1698 	trace_xfs_swap_extent_after(tip, 1);
1699 
1700 out_unlock_ilock:
1701 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1702 	xfs_iunlock(tip, XFS_ILOCK_EXCL);
1703 out_unlock:
1704 	filemap_invalidate_unlock_two(VFS_I(ip)->i_mapping,
1705 				      VFS_I(tip)->i_mapping);
1706 	unlock_two_nondirectories(VFS_I(ip), VFS_I(tip));
1707 	return error;
1708 
1709 out_trans_cancel:
1710 	xfs_trans_cancel(tp);
1711 	goto out_unlock_ilock;
1712 }
1713