1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * Copyright (c) 2012 Red Hat, Inc. 4 * All Rights Reserved. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as 8 * published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it would be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 */ 19 #include "xfs.h" 20 #include "xfs_fs.h" 21 #include "xfs_shared.h" 22 #include "xfs_format.h" 23 #include "xfs_log_format.h" 24 #include "xfs_trans_resv.h" 25 #include "xfs_bit.h" 26 #include "xfs_mount.h" 27 #include "xfs_da_format.h" 28 #include "xfs_defer.h" 29 #include "xfs_inode.h" 30 #include "xfs_btree.h" 31 #include "xfs_trans.h" 32 #include "xfs_extfree_item.h" 33 #include "xfs_alloc.h" 34 #include "xfs_bmap.h" 35 #include "xfs_bmap_util.h" 36 #include "xfs_bmap_btree.h" 37 #include "xfs_rtalloc.h" 38 #include "xfs_error.h" 39 #include "xfs_quota.h" 40 #include "xfs_trans_space.h" 41 #include "xfs_trace.h" 42 #include "xfs_icache.h" 43 #include "xfs_log.h" 44 #include "xfs_rmap_btree.h" 45 #include "xfs_iomap.h" 46 #include "xfs_reflink.h" 47 #include "xfs_refcount.h" 48 49 /* Kernel only BMAP related definitions and functions */ 50 51 /* 52 * Convert the given file system block to a disk block. We have to treat it 53 * differently based on whether the file is a real time file or not, because the 54 * bmap code does. 55 */ 56 xfs_daddr_t 57 xfs_fsb_to_db(struct xfs_inode *ip, xfs_fsblock_t fsb) 58 { 59 return (XFS_IS_REALTIME_INODE(ip) ? \ 60 (xfs_daddr_t)XFS_FSB_TO_BB((ip)->i_mount, (fsb)) : \ 61 XFS_FSB_TO_DADDR((ip)->i_mount, (fsb))); 62 } 63 64 /* 65 * Routine to zero an extent on disk allocated to the specific inode. 66 * 67 * The VFS functions take a linearised filesystem block offset, so we have to 68 * convert the sparse xfs fsb to the right format first. 69 * VFS types are real funky, too. 70 */ 71 int 72 xfs_zero_extent( 73 struct xfs_inode *ip, 74 xfs_fsblock_t start_fsb, 75 xfs_off_t count_fsb) 76 { 77 struct xfs_mount *mp = ip->i_mount; 78 xfs_daddr_t sector = xfs_fsb_to_db(ip, start_fsb); 79 sector_t block = XFS_BB_TO_FSBT(mp, sector); 80 81 return blkdev_issue_zeroout(xfs_find_bdev_for_inode(VFS_I(ip)), 82 block << (mp->m_super->s_blocksize_bits - 9), 83 count_fsb << (mp->m_super->s_blocksize_bits - 9), 84 GFP_NOFS, true); 85 } 86 87 int 88 xfs_bmap_rtalloc( 89 struct xfs_bmalloca *ap) /* bmap alloc argument struct */ 90 { 91 int error; /* error return value */ 92 xfs_mount_t *mp; /* mount point structure */ 93 xfs_extlen_t prod = 0; /* product factor for allocators */ 94 xfs_extlen_t ralen = 0; /* realtime allocation length */ 95 xfs_extlen_t align; /* minimum allocation alignment */ 96 xfs_rtblock_t rtb; 97 98 mp = ap->ip->i_mount; 99 align = xfs_get_extsz_hint(ap->ip); 100 prod = align / mp->m_sb.sb_rextsize; 101 error = xfs_bmap_extsize_align(mp, &ap->got, &ap->prev, 102 align, 1, ap->eof, 0, 103 ap->conv, &ap->offset, &ap->length); 104 if (error) 105 return error; 106 ASSERT(ap->length); 107 ASSERT(ap->length % mp->m_sb.sb_rextsize == 0); 108 109 /* 110 * If the offset & length are not perfectly aligned 111 * then kill prod, it will just get us in trouble. 112 */ 113 if (do_mod(ap->offset, align) || ap->length % align) 114 prod = 1; 115 /* 116 * Set ralen to be the actual requested length in rtextents. 117 */ 118 ralen = ap->length / mp->m_sb.sb_rextsize; 119 /* 120 * If the old value was close enough to MAXEXTLEN that 121 * we rounded up to it, cut it back so it's valid again. 122 * Note that if it's a really large request (bigger than 123 * MAXEXTLEN), we don't hear about that number, and can't 124 * adjust the starting point to match it. 125 */ 126 if (ralen * mp->m_sb.sb_rextsize >= MAXEXTLEN) 127 ralen = MAXEXTLEN / mp->m_sb.sb_rextsize; 128 129 /* 130 * Lock out modifications to both the RT bitmap and summary inodes 131 */ 132 xfs_ilock(mp->m_rbmip, XFS_ILOCK_EXCL|XFS_ILOCK_RTBITMAP); 133 xfs_trans_ijoin(ap->tp, mp->m_rbmip, XFS_ILOCK_EXCL); 134 xfs_ilock(mp->m_rsumip, XFS_ILOCK_EXCL|XFS_ILOCK_RTSUM); 135 xfs_trans_ijoin(ap->tp, mp->m_rsumip, XFS_ILOCK_EXCL); 136 137 /* 138 * If it's an allocation to an empty file at offset 0, 139 * pick an extent that will space things out in the rt area. 140 */ 141 if (ap->eof && ap->offset == 0) { 142 xfs_rtblock_t uninitialized_var(rtx); /* realtime extent no */ 143 144 error = xfs_rtpick_extent(mp, ap->tp, ralen, &rtx); 145 if (error) 146 return error; 147 ap->blkno = rtx * mp->m_sb.sb_rextsize; 148 } else { 149 ap->blkno = 0; 150 } 151 152 xfs_bmap_adjacent(ap); 153 154 /* 155 * Realtime allocation, done through xfs_rtallocate_extent. 156 */ 157 do_div(ap->blkno, mp->m_sb.sb_rextsize); 158 rtb = ap->blkno; 159 ap->length = ralen; 160 error = xfs_rtallocate_extent(ap->tp, ap->blkno, 1, ap->length, 161 &ralen, ap->wasdel, prod, &rtb); 162 if (error) 163 return error; 164 165 ap->blkno = rtb; 166 if (ap->blkno != NULLFSBLOCK) { 167 ap->blkno *= mp->m_sb.sb_rextsize; 168 ralen *= mp->m_sb.sb_rextsize; 169 ap->length = ralen; 170 ap->ip->i_d.di_nblocks += ralen; 171 xfs_trans_log_inode(ap->tp, ap->ip, XFS_ILOG_CORE); 172 if (ap->wasdel) 173 ap->ip->i_delayed_blks -= ralen; 174 /* 175 * Adjust the disk quota also. This was reserved 176 * earlier. 177 */ 178 xfs_trans_mod_dquot_byino(ap->tp, ap->ip, 179 ap->wasdel ? XFS_TRANS_DQ_DELRTBCOUNT : 180 XFS_TRANS_DQ_RTBCOUNT, (long) ralen); 181 182 /* Zero the extent if we were asked to do so */ 183 if (ap->datatype & XFS_ALLOC_USERDATA_ZERO) { 184 error = xfs_zero_extent(ap->ip, ap->blkno, ap->length); 185 if (error) 186 return error; 187 } 188 } else { 189 ap->length = 0; 190 } 191 return 0; 192 } 193 194 /* 195 * Check if the endoff is outside the last extent. If so the caller will grow 196 * the allocation to a stripe unit boundary. All offsets are considered outside 197 * the end of file for an empty fork, so 1 is returned in *eof in that case. 198 */ 199 int 200 xfs_bmap_eof( 201 struct xfs_inode *ip, 202 xfs_fileoff_t endoff, 203 int whichfork, 204 int *eof) 205 { 206 struct xfs_bmbt_irec rec; 207 int error; 208 209 error = xfs_bmap_last_extent(NULL, ip, whichfork, &rec, eof); 210 if (error || *eof) 211 return error; 212 213 *eof = endoff >= rec.br_startoff + rec.br_blockcount; 214 return 0; 215 } 216 217 /* 218 * Extent tree block counting routines. 219 */ 220 221 /* 222 * Count leaf blocks given a range of extent records. 223 */ 224 STATIC void 225 xfs_bmap_count_leaves( 226 xfs_ifork_t *ifp, 227 xfs_extnum_t idx, 228 int numrecs, 229 int *count) 230 { 231 int b; 232 233 for (b = 0; b < numrecs; b++) { 234 xfs_bmbt_rec_host_t *frp = xfs_iext_get_ext(ifp, idx + b); 235 *count += xfs_bmbt_get_blockcount(frp); 236 } 237 } 238 239 /* 240 * Count leaf blocks given a range of extent records originally 241 * in btree format. 242 */ 243 STATIC void 244 xfs_bmap_disk_count_leaves( 245 struct xfs_mount *mp, 246 struct xfs_btree_block *block, 247 int numrecs, 248 int *count) 249 { 250 int b; 251 xfs_bmbt_rec_t *frp; 252 253 for (b = 1; b <= numrecs; b++) { 254 frp = XFS_BMBT_REC_ADDR(mp, block, b); 255 *count += xfs_bmbt_disk_get_blockcount(frp); 256 } 257 } 258 259 /* 260 * Recursively walks each level of a btree 261 * to count total fsblocks in use. 262 */ 263 STATIC int /* error */ 264 xfs_bmap_count_tree( 265 xfs_mount_t *mp, /* file system mount point */ 266 xfs_trans_t *tp, /* transaction pointer */ 267 xfs_ifork_t *ifp, /* inode fork pointer */ 268 xfs_fsblock_t blockno, /* file system block number */ 269 int levelin, /* level in btree */ 270 int *count) /* Count of blocks */ 271 { 272 int error; 273 xfs_buf_t *bp, *nbp; 274 int level = levelin; 275 __be64 *pp; 276 xfs_fsblock_t bno = blockno; 277 xfs_fsblock_t nextbno; 278 struct xfs_btree_block *block, *nextblock; 279 int numrecs; 280 281 error = xfs_btree_read_bufl(mp, tp, bno, 0, &bp, XFS_BMAP_BTREE_REF, 282 &xfs_bmbt_buf_ops); 283 if (error) 284 return error; 285 *count += 1; 286 block = XFS_BUF_TO_BLOCK(bp); 287 288 if (--level) { 289 /* Not at node above leaves, count this level of nodes */ 290 nextbno = be64_to_cpu(block->bb_u.l.bb_rightsib); 291 while (nextbno != NULLFSBLOCK) { 292 error = xfs_btree_read_bufl(mp, tp, nextbno, 0, &nbp, 293 XFS_BMAP_BTREE_REF, 294 &xfs_bmbt_buf_ops); 295 if (error) 296 return error; 297 *count += 1; 298 nextblock = XFS_BUF_TO_BLOCK(nbp); 299 nextbno = be64_to_cpu(nextblock->bb_u.l.bb_rightsib); 300 xfs_trans_brelse(tp, nbp); 301 } 302 303 /* Dive to the next level */ 304 pp = XFS_BMBT_PTR_ADDR(mp, block, 1, mp->m_bmap_dmxr[1]); 305 bno = be64_to_cpu(*pp); 306 if (unlikely((error = 307 xfs_bmap_count_tree(mp, tp, ifp, bno, level, count)) < 0)) { 308 xfs_trans_brelse(tp, bp); 309 XFS_ERROR_REPORT("xfs_bmap_count_tree(1)", 310 XFS_ERRLEVEL_LOW, mp); 311 return -EFSCORRUPTED; 312 } 313 xfs_trans_brelse(tp, bp); 314 } else { 315 /* count all level 1 nodes and their leaves */ 316 for (;;) { 317 nextbno = be64_to_cpu(block->bb_u.l.bb_rightsib); 318 numrecs = be16_to_cpu(block->bb_numrecs); 319 xfs_bmap_disk_count_leaves(mp, block, numrecs, count); 320 xfs_trans_brelse(tp, bp); 321 if (nextbno == NULLFSBLOCK) 322 break; 323 bno = nextbno; 324 error = xfs_btree_read_bufl(mp, tp, bno, 0, &bp, 325 XFS_BMAP_BTREE_REF, 326 &xfs_bmbt_buf_ops); 327 if (error) 328 return error; 329 *count += 1; 330 block = XFS_BUF_TO_BLOCK(bp); 331 } 332 } 333 return 0; 334 } 335 336 /* 337 * Count fsblocks of the given fork. 338 */ 339 static int /* error */ 340 xfs_bmap_count_blocks( 341 xfs_trans_t *tp, /* transaction pointer */ 342 xfs_inode_t *ip, /* incore inode */ 343 int whichfork, /* data or attr fork */ 344 int *count) /* out: count of blocks */ 345 { 346 struct xfs_btree_block *block; /* current btree block */ 347 xfs_fsblock_t bno; /* block # of "block" */ 348 xfs_ifork_t *ifp; /* fork structure */ 349 int level; /* btree level, for checking */ 350 xfs_mount_t *mp; /* file system mount structure */ 351 __be64 *pp; /* pointer to block address */ 352 353 bno = NULLFSBLOCK; 354 mp = ip->i_mount; 355 ifp = XFS_IFORK_PTR(ip, whichfork); 356 if ( XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_EXTENTS ) { 357 xfs_bmap_count_leaves(ifp, 0, xfs_iext_count(ifp), count); 358 return 0; 359 } 360 361 /* 362 * Root level must use BMAP_BROOT_PTR_ADDR macro to get ptr out. 363 */ 364 block = ifp->if_broot; 365 level = be16_to_cpu(block->bb_level); 366 ASSERT(level > 0); 367 pp = XFS_BMAP_BROOT_PTR_ADDR(mp, block, 1, ifp->if_broot_bytes); 368 bno = be64_to_cpu(*pp); 369 ASSERT(bno != NULLFSBLOCK); 370 ASSERT(XFS_FSB_TO_AGNO(mp, bno) < mp->m_sb.sb_agcount); 371 ASSERT(XFS_FSB_TO_AGBNO(mp, bno) < mp->m_sb.sb_agblocks); 372 373 if (unlikely(xfs_bmap_count_tree(mp, tp, ifp, bno, level, count) < 0)) { 374 XFS_ERROR_REPORT("xfs_bmap_count_blocks(2)", XFS_ERRLEVEL_LOW, 375 mp); 376 return -EFSCORRUPTED; 377 } 378 379 return 0; 380 } 381 382 /* 383 * returns 1 for success, 0 if we failed to map the extent. 384 */ 385 STATIC int 386 xfs_getbmapx_fix_eof_hole( 387 xfs_inode_t *ip, /* xfs incore inode pointer */ 388 int whichfork, 389 struct getbmapx *out, /* output structure */ 390 int prealloced, /* this is a file with 391 * preallocated data space */ 392 __int64_t end, /* last block requested */ 393 xfs_fsblock_t startblock, 394 bool moretocome) 395 { 396 __int64_t fixlen; 397 xfs_mount_t *mp; /* file system mount point */ 398 xfs_ifork_t *ifp; /* inode fork pointer */ 399 xfs_extnum_t lastx; /* last extent pointer */ 400 xfs_fileoff_t fileblock; 401 402 if (startblock == HOLESTARTBLOCK) { 403 mp = ip->i_mount; 404 out->bmv_block = -1; 405 fixlen = XFS_FSB_TO_BB(mp, XFS_B_TO_FSB(mp, XFS_ISIZE(ip))); 406 fixlen -= out->bmv_offset; 407 if (prealloced && out->bmv_offset + out->bmv_length == end) { 408 /* Came to hole at EOF. Trim it. */ 409 if (fixlen <= 0) 410 return 0; 411 out->bmv_length = fixlen; 412 } 413 } else { 414 if (startblock == DELAYSTARTBLOCK) 415 out->bmv_block = -2; 416 else 417 out->bmv_block = xfs_fsb_to_db(ip, startblock); 418 fileblock = XFS_BB_TO_FSB(ip->i_mount, out->bmv_offset); 419 ifp = XFS_IFORK_PTR(ip, whichfork); 420 if (!moretocome && 421 xfs_iext_bno_to_ext(ifp, fileblock, &lastx) && 422 (lastx == xfs_iext_count(ifp) - 1)) 423 out->bmv_oflags |= BMV_OF_LAST; 424 } 425 426 return 1; 427 } 428 429 /* Adjust the reported bmap around shared/unshared extent transitions. */ 430 STATIC int 431 xfs_getbmap_adjust_shared( 432 struct xfs_inode *ip, 433 int whichfork, 434 struct xfs_bmbt_irec *map, 435 struct getbmapx *out, 436 struct xfs_bmbt_irec *next_map) 437 { 438 struct xfs_mount *mp = ip->i_mount; 439 xfs_agnumber_t agno; 440 xfs_agblock_t agbno; 441 xfs_agblock_t ebno; 442 xfs_extlen_t elen; 443 xfs_extlen_t nlen; 444 int error; 445 446 next_map->br_startblock = NULLFSBLOCK; 447 next_map->br_startoff = NULLFILEOFF; 448 next_map->br_blockcount = 0; 449 450 /* Only written data blocks can be shared. */ 451 if (!xfs_is_reflink_inode(ip) || whichfork != XFS_DATA_FORK || 452 map->br_startblock == DELAYSTARTBLOCK || 453 map->br_startblock == HOLESTARTBLOCK || 454 ISUNWRITTEN(map)) 455 return 0; 456 457 agno = XFS_FSB_TO_AGNO(mp, map->br_startblock); 458 agbno = XFS_FSB_TO_AGBNO(mp, map->br_startblock); 459 error = xfs_reflink_find_shared(mp, agno, agbno, map->br_blockcount, 460 &ebno, &elen, true); 461 if (error) 462 return error; 463 464 if (ebno == NULLAGBLOCK) { 465 /* No shared blocks at all. */ 466 return 0; 467 } else if (agbno == ebno) { 468 /* 469 * Shared extent at (agbno, elen). Shrink the reported 470 * extent length and prepare to move the start of map[i] 471 * to agbno+elen, with the aim of (re)formatting the new 472 * map[i] the next time through the inner loop. 473 */ 474 out->bmv_length = XFS_FSB_TO_BB(mp, elen); 475 out->bmv_oflags |= BMV_OF_SHARED; 476 if (elen != map->br_blockcount) { 477 *next_map = *map; 478 next_map->br_startblock += elen; 479 next_map->br_startoff += elen; 480 next_map->br_blockcount -= elen; 481 } 482 map->br_blockcount -= elen; 483 } else { 484 /* 485 * There's an unshared extent (agbno, ebno - agbno) 486 * followed by shared extent at (ebno, elen). Shrink 487 * the reported extent length to cover only the unshared 488 * extent and prepare to move up the start of map[i] to 489 * ebno, with the aim of (re)formatting the new map[i] 490 * the next time through the inner loop. 491 */ 492 *next_map = *map; 493 nlen = ebno - agbno; 494 out->bmv_length = XFS_FSB_TO_BB(mp, nlen); 495 next_map->br_startblock += nlen; 496 next_map->br_startoff += nlen; 497 next_map->br_blockcount -= nlen; 498 map->br_blockcount -= nlen; 499 } 500 501 return 0; 502 } 503 504 /* 505 * Get inode's extents as described in bmv, and format for output. 506 * Calls formatter to fill the user's buffer until all extents 507 * are mapped, until the passed-in bmv->bmv_count slots have 508 * been filled, or until the formatter short-circuits the loop, 509 * if it is tracking filled-in extents on its own. 510 */ 511 int /* error code */ 512 xfs_getbmap( 513 xfs_inode_t *ip, 514 struct getbmapx *bmv, /* user bmap structure */ 515 xfs_bmap_format_t formatter, /* format to user */ 516 void *arg) /* formatter arg */ 517 { 518 __int64_t bmvend; /* last block requested */ 519 int error = 0; /* return value */ 520 __int64_t fixlen; /* length for -1 case */ 521 int i; /* extent number */ 522 int lock; /* lock state */ 523 xfs_bmbt_irec_t *map; /* buffer for user's data */ 524 xfs_mount_t *mp; /* file system mount point */ 525 int nex; /* # of user extents can do */ 526 int subnex; /* # of bmapi's can do */ 527 int nmap; /* number of map entries */ 528 struct getbmapx *out; /* output structure */ 529 int whichfork; /* data or attr fork */ 530 int prealloced; /* this is a file with 531 * preallocated data space */ 532 int iflags; /* interface flags */ 533 int bmapi_flags; /* flags for xfs_bmapi */ 534 int cur_ext = 0; 535 struct xfs_bmbt_irec inject_map; 536 537 mp = ip->i_mount; 538 iflags = bmv->bmv_iflags; 539 540 #ifndef DEBUG 541 /* Only allow CoW fork queries if we're debugging. */ 542 if (iflags & BMV_IF_COWFORK) 543 return -EINVAL; 544 #endif 545 if ((iflags & BMV_IF_ATTRFORK) && (iflags & BMV_IF_COWFORK)) 546 return -EINVAL; 547 548 if (iflags & BMV_IF_ATTRFORK) 549 whichfork = XFS_ATTR_FORK; 550 else if (iflags & BMV_IF_COWFORK) 551 whichfork = XFS_COW_FORK; 552 else 553 whichfork = XFS_DATA_FORK; 554 555 switch (whichfork) { 556 case XFS_ATTR_FORK: 557 if (XFS_IFORK_Q(ip)) { 558 if (ip->i_d.di_aformat != XFS_DINODE_FMT_EXTENTS && 559 ip->i_d.di_aformat != XFS_DINODE_FMT_BTREE && 560 ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL) 561 return -EINVAL; 562 } else if (unlikely( 563 ip->i_d.di_aformat != 0 && 564 ip->i_d.di_aformat != XFS_DINODE_FMT_EXTENTS)) { 565 XFS_ERROR_REPORT("xfs_getbmap", XFS_ERRLEVEL_LOW, 566 ip->i_mount); 567 return -EFSCORRUPTED; 568 } 569 570 prealloced = 0; 571 fixlen = 1LL << 32; 572 break; 573 case XFS_COW_FORK: 574 if (ip->i_cformat != XFS_DINODE_FMT_EXTENTS) 575 return -EINVAL; 576 577 if (xfs_get_cowextsz_hint(ip)) { 578 prealloced = 1; 579 fixlen = mp->m_super->s_maxbytes; 580 } else { 581 prealloced = 0; 582 fixlen = XFS_ISIZE(ip); 583 } 584 break; 585 default: 586 if (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS && 587 ip->i_d.di_format != XFS_DINODE_FMT_BTREE && 588 ip->i_d.di_format != XFS_DINODE_FMT_LOCAL) 589 return -EINVAL; 590 591 if (xfs_get_extsz_hint(ip) || 592 ip->i_d.di_flags & (XFS_DIFLAG_PREALLOC|XFS_DIFLAG_APPEND)){ 593 prealloced = 1; 594 fixlen = mp->m_super->s_maxbytes; 595 } else { 596 prealloced = 0; 597 fixlen = XFS_ISIZE(ip); 598 } 599 break; 600 } 601 602 if (bmv->bmv_length == -1) { 603 fixlen = XFS_FSB_TO_BB(mp, XFS_B_TO_FSB(mp, fixlen)); 604 bmv->bmv_length = 605 max_t(__int64_t, fixlen - bmv->bmv_offset, 0); 606 } else if (bmv->bmv_length == 0) { 607 bmv->bmv_entries = 0; 608 return 0; 609 } else if (bmv->bmv_length < 0) { 610 return -EINVAL; 611 } 612 613 nex = bmv->bmv_count - 1; 614 if (nex <= 0) 615 return -EINVAL; 616 bmvend = bmv->bmv_offset + bmv->bmv_length; 617 618 619 if (bmv->bmv_count > ULONG_MAX / sizeof(struct getbmapx)) 620 return -ENOMEM; 621 out = kmem_zalloc_large(bmv->bmv_count * sizeof(struct getbmapx), 0); 622 if (!out) 623 return -ENOMEM; 624 625 xfs_ilock(ip, XFS_IOLOCK_SHARED); 626 switch (whichfork) { 627 case XFS_DATA_FORK: 628 if (!(iflags & BMV_IF_DELALLOC) && 629 (ip->i_delayed_blks || XFS_ISIZE(ip) > ip->i_d.di_size)) { 630 error = filemap_write_and_wait(VFS_I(ip)->i_mapping); 631 if (error) 632 goto out_unlock_iolock; 633 634 /* 635 * Even after flushing the inode, there can still be 636 * delalloc blocks on the inode beyond EOF due to 637 * speculative preallocation. These are not removed 638 * until the release function is called or the inode 639 * is inactivated. Hence we cannot assert here that 640 * ip->i_delayed_blks == 0. 641 */ 642 } 643 644 lock = xfs_ilock_data_map_shared(ip); 645 break; 646 case XFS_COW_FORK: 647 lock = XFS_ILOCK_SHARED; 648 xfs_ilock(ip, lock); 649 break; 650 case XFS_ATTR_FORK: 651 lock = xfs_ilock_attr_map_shared(ip); 652 break; 653 } 654 655 /* 656 * Don't let nex be bigger than the number of extents 657 * we can have assuming alternating holes and real extents. 658 */ 659 if (nex > XFS_IFORK_NEXTENTS(ip, whichfork) * 2 + 1) 660 nex = XFS_IFORK_NEXTENTS(ip, whichfork) * 2 + 1; 661 662 bmapi_flags = xfs_bmapi_aflag(whichfork); 663 if (!(iflags & BMV_IF_PREALLOC)) 664 bmapi_flags |= XFS_BMAPI_IGSTATE; 665 666 /* 667 * Allocate enough space to handle "subnex" maps at a time. 668 */ 669 error = -ENOMEM; 670 subnex = 16; 671 map = kmem_alloc(subnex * sizeof(*map), KM_MAYFAIL | KM_NOFS); 672 if (!map) 673 goto out_unlock_ilock; 674 675 bmv->bmv_entries = 0; 676 677 if (XFS_IFORK_NEXTENTS(ip, whichfork) == 0 && 678 (whichfork == XFS_ATTR_FORK || !(iflags & BMV_IF_DELALLOC))) { 679 error = 0; 680 goto out_free_map; 681 } 682 683 do { 684 nmap = (nex> subnex) ? subnex : nex; 685 error = xfs_bmapi_read(ip, XFS_BB_TO_FSBT(mp, bmv->bmv_offset), 686 XFS_BB_TO_FSB(mp, bmv->bmv_length), 687 map, &nmap, bmapi_flags); 688 if (error) 689 goto out_free_map; 690 ASSERT(nmap <= subnex); 691 692 for (i = 0; i < nmap && bmv->bmv_length && 693 cur_ext < bmv->bmv_count - 1; i++) { 694 out[cur_ext].bmv_oflags = 0; 695 if (map[i].br_state == XFS_EXT_UNWRITTEN) 696 out[cur_ext].bmv_oflags |= BMV_OF_PREALLOC; 697 else if (map[i].br_startblock == DELAYSTARTBLOCK) 698 out[cur_ext].bmv_oflags |= BMV_OF_DELALLOC; 699 out[cur_ext].bmv_offset = 700 XFS_FSB_TO_BB(mp, map[i].br_startoff); 701 out[cur_ext].bmv_length = 702 XFS_FSB_TO_BB(mp, map[i].br_blockcount); 703 out[cur_ext].bmv_unused1 = 0; 704 out[cur_ext].bmv_unused2 = 0; 705 706 /* 707 * delayed allocation extents that start beyond EOF can 708 * occur due to speculative EOF allocation when the 709 * delalloc extent is larger than the largest freespace 710 * extent at conversion time. These extents cannot be 711 * converted by data writeback, so can exist here even 712 * if we are not supposed to be finding delalloc 713 * extents. 714 */ 715 if (map[i].br_startblock == DELAYSTARTBLOCK && 716 map[i].br_startoff <= XFS_B_TO_FSB(mp, XFS_ISIZE(ip))) 717 ASSERT((iflags & BMV_IF_DELALLOC) != 0); 718 719 if (map[i].br_startblock == HOLESTARTBLOCK && 720 whichfork == XFS_ATTR_FORK) { 721 /* came to the end of attribute fork */ 722 out[cur_ext].bmv_oflags |= BMV_OF_LAST; 723 goto out_free_map; 724 } 725 726 /* Is this a shared block? */ 727 error = xfs_getbmap_adjust_shared(ip, whichfork, 728 &map[i], &out[cur_ext], &inject_map); 729 if (error) 730 goto out_free_map; 731 732 if (!xfs_getbmapx_fix_eof_hole(ip, whichfork, 733 &out[cur_ext], prealloced, bmvend, 734 map[i].br_startblock, 735 inject_map.br_startblock != NULLFSBLOCK)) 736 goto out_free_map; 737 738 bmv->bmv_offset = 739 out[cur_ext].bmv_offset + 740 out[cur_ext].bmv_length; 741 bmv->bmv_length = 742 max_t(__int64_t, 0, bmvend - bmv->bmv_offset); 743 744 /* 745 * In case we don't want to return the hole, 746 * don't increase cur_ext so that we can reuse 747 * it in the next loop. 748 */ 749 if ((iflags & BMV_IF_NO_HOLES) && 750 map[i].br_startblock == HOLESTARTBLOCK) { 751 memset(&out[cur_ext], 0, sizeof(out[cur_ext])); 752 continue; 753 } 754 755 /* 756 * In order to report shared extents accurately, 757 * we report each distinct shared/unshared part 758 * of a single bmbt record using multiple bmap 759 * extents. To make that happen, we iterate the 760 * same map array item multiple times, each 761 * time trimming out the subextent that we just 762 * reported. 763 * 764 * Because of this, we must check the out array 765 * index (cur_ext) directly against bmv_count-1 766 * to avoid overflows. 767 */ 768 if (inject_map.br_startblock != NULLFSBLOCK) { 769 map[i] = inject_map; 770 i--; 771 } 772 bmv->bmv_entries++; 773 cur_ext++; 774 } 775 } while (nmap && bmv->bmv_length && cur_ext < bmv->bmv_count - 1); 776 777 out_free_map: 778 kmem_free(map); 779 out_unlock_ilock: 780 xfs_iunlock(ip, lock); 781 out_unlock_iolock: 782 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 783 784 for (i = 0; i < cur_ext; i++) { 785 /* format results & advance arg */ 786 error = formatter(&arg, &out[i]); 787 if (error) 788 break; 789 } 790 791 kmem_free(out); 792 return error; 793 } 794 795 /* 796 * dead simple method of punching delalyed allocation blocks from a range in 797 * the inode. Walks a block at a time so will be slow, but is only executed in 798 * rare error cases so the overhead is not critical. This will always punch out 799 * both the start and end blocks, even if the ranges only partially overlap 800 * them, so it is up to the caller to ensure that partial blocks are not 801 * passed in. 802 */ 803 int 804 xfs_bmap_punch_delalloc_range( 805 struct xfs_inode *ip, 806 xfs_fileoff_t start_fsb, 807 xfs_fileoff_t length) 808 { 809 xfs_fileoff_t remaining = length; 810 int error = 0; 811 812 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 813 814 do { 815 int done; 816 xfs_bmbt_irec_t imap; 817 int nimaps = 1; 818 xfs_fsblock_t firstblock; 819 struct xfs_defer_ops dfops; 820 821 /* 822 * Map the range first and check that it is a delalloc extent 823 * before trying to unmap the range. Otherwise we will be 824 * trying to remove a real extent (which requires a 825 * transaction) or a hole, which is probably a bad idea... 826 */ 827 error = xfs_bmapi_read(ip, start_fsb, 1, &imap, &nimaps, 828 XFS_BMAPI_ENTIRE); 829 830 if (error) { 831 /* something screwed, just bail */ 832 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { 833 xfs_alert(ip->i_mount, 834 "Failed delalloc mapping lookup ino %lld fsb %lld.", 835 ip->i_ino, start_fsb); 836 } 837 break; 838 } 839 if (!nimaps) { 840 /* nothing there */ 841 goto next_block; 842 } 843 if (imap.br_startblock != DELAYSTARTBLOCK) { 844 /* been converted, ignore */ 845 goto next_block; 846 } 847 WARN_ON(imap.br_blockcount == 0); 848 849 /* 850 * Note: while we initialise the firstblock/dfops pair, they 851 * should never be used because blocks should never be 852 * allocated or freed for a delalloc extent and hence we need 853 * don't cancel or finish them after the xfs_bunmapi() call. 854 */ 855 xfs_defer_init(&dfops, &firstblock); 856 error = xfs_bunmapi(NULL, ip, start_fsb, 1, 0, 1, &firstblock, 857 &dfops, &done); 858 if (error) 859 break; 860 861 ASSERT(!xfs_defer_has_unfinished_work(&dfops)); 862 next_block: 863 start_fsb++; 864 remaining--; 865 } while(remaining > 0); 866 867 return error; 868 } 869 870 /* 871 * Test whether it is appropriate to check an inode for and free post EOF 872 * blocks. The 'force' parameter determines whether we should also consider 873 * regular files that are marked preallocated or append-only. 874 */ 875 bool 876 xfs_can_free_eofblocks(struct xfs_inode *ip, bool force) 877 { 878 /* prealloc/delalloc exists only on regular files */ 879 if (!S_ISREG(VFS_I(ip)->i_mode)) 880 return false; 881 882 /* 883 * Zero sized files with no cached pages and delalloc blocks will not 884 * have speculative prealloc/delalloc blocks to remove. 885 */ 886 if (VFS_I(ip)->i_size == 0 && 887 VFS_I(ip)->i_mapping->nrpages == 0 && 888 ip->i_delayed_blks == 0) 889 return false; 890 891 /* If we haven't read in the extent list, then don't do it now. */ 892 if (!(ip->i_df.if_flags & XFS_IFEXTENTS)) 893 return false; 894 895 /* 896 * Do not free real preallocated or append-only files unless the file 897 * has delalloc blocks and we are forced to remove them. 898 */ 899 if (ip->i_d.di_flags & (XFS_DIFLAG_PREALLOC | XFS_DIFLAG_APPEND)) 900 if (!force || ip->i_delayed_blks == 0) 901 return false; 902 903 return true; 904 } 905 906 /* 907 * This is called by xfs_inactive to free any blocks beyond eof 908 * when the link count isn't zero and by xfs_dm_punch_hole() when 909 * punching a hole to EOF. 910 */ 911 int 912 xfs_free_eofblocks( 913 struct xfs_inode *ip) 914 { 915 struct xfs_trans *tp; 916 int error; 917 xfs_fileoff_t end_fsb; 918 xfs_fileoff_t last_fsb; 919 xfs_filblks_t map_len; 920 int nimaps; 921 struct xfs_bmbt_irec imap; 922 struct xfs_mount *mp = ip->i_mount; 923 924 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 925 926 /* 927 * Figure out if there are any blocks beyond the end 928 * of the file. If not, then there is nothing to do. 929 */ 930 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_ISIZE(ip)); 931 last_fsb = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes); 932 if (last_fsb <= end_fsb) 933 return 0; 934 map_len = last_fsb - end_fsb; 935 936 nimaps = 1; 937 xfs_ilock(ip, XFS_ILOCK_SHARED); 938 error = xfs_bmapi_read(ip, end_fsb, map_len, &imap, &nimaps, 0); 939 xfs_iunlock(ip, XFS_ILOCK_SHARED); 940 941 /* 942 * If there are blocks after the end of file, truncate the file to its 943 * current size to free them up. 944 */ 945 if (!error && (nimaps != 0) && 946 (imap.br_startblock != HOLESTARTBLOCK || 947 ip->i_delayed_blks)) { 948 /* 949 * Attach the dquots to the inode up front. 950 */ 951 error = xfs_qm_dqattach(ip, 0); 952 if (error) 953 return error; 954 955 /* wait on dio to ensure i_size has settled */ 956 inode_dio_wait(VFS_I(ip)); 957 958 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, 959 &tp); 960 if (error) { 961 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 962 return error; 963 } 964 965 xfs_ilock(ip, XFS_ILOCK_EXCL); 966 xfs_trans_ijoin(tp, ip, 0); 967 968 /* 969 * Do not update the on-disk file size. If we update the 970 * on-disk file size and then the system crashes before the 971 * contents of the file are flushed to disk then the files 972 * may be full of holes (ie NULL files bug). 973 */ 974 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 975 XFS_ISIZE(ip)); 976 if (error) { 977 /* 978 * If we get an error at this point we simply don't 979 * bother truncating the file. 980 */ 981 xfs_trans_cancel(tp); 982 } else { 983 error = xfs_trans_commit(tp); 984 if (!error) 985 xfs_inode_clear_eofblocks_tag(ip); 986 } 987 988 xfs_iunlock(ip, XFS_ILOCK_EXCL); 989 } 990 return error; 991 } 992 993 int 994 xfs_alloc_file_space( 995 struct xfs_inode *ip, 996 xfs_off_t offset, 997 xfs_off_t len, 998 int alloc_type) 999 { 1000 xfs_mount_t *mp = ip->i_mount; 1001 xfs_off_t count; 1002 xfs_filblks_t allocated_fsb; 1003 xfs_filblks_t allocatesize_fsb; 1004 xfs_extlen_t extsz, temp; 1005 xfs_fileoff_t startoffset_fsb; 1006 xfs_fsblock_t firstfsb; 1007 int nimaps; 1008 int quota_flag; 1009 int rt; 1010 xfs_trans_t *tp; 1011 xfs_bmbt_irec_t imaps[1], *imapp; 1012 struct xfs_defer_ops dfops; 1013 uint qblocks, resblks, resrtextents; 1014 int error; 1015 1016 trace_xfs_alloc_file_space(ip); 1017 1018 if (XFS_FORCED_SHUTDOWN(mp)) 1019 return -EIO; 1020 1021 error = xfs_qm_dqattach(ip, 0); 1022 if (error) 1023 return error; 1024 1025 if (len <= 0) 1026 return -EINVAL; 1027 1028 rt = XFS_IS_REALTIME_INODE(ip); 1029 extsz = xfs_get_extsz_hint(ip); 1030 1031 count = len; 1032 imapp = &imaps[0]; 1033 nimaps = 1; 1034 startoffset_fsb = XFS_B_TO_FSBT(mp, offset); 1035 allocatesize_fsb = XFS_B_TO_FSB(mp, count); 1036 1037 /* 1038 * Allocate file space until done or until there is an error 1039 */ 1040 while (allocatesize_fsb && !error) { 1041 xfs_fileoff_t s, e; 1042 1043 /* 1044 * Determine space reservations for data/realtime. 1045 */ 1046 if (unlikely(extsz)) { 1047 s = startoffset_fsb; 1048 do_div(s, extsz); 1049 s *= extsz; 1050 e = startoffset_fsb + allocatesize_fsb; 1051 if ((temp = do_mod(startoffset_fsb, extsz))) 1052 e += temp; 1053 if ((temp = do_mod(e, extsz))) 1054 e += extsz - temp; 1055 } else { 1056 s = 0; 1057 e = allocatesize_fsb; 1058 } 1059 1060 /* 1061 * The transaction reservation is limited to a 32-bit block 1062 * count, hence we need to limit the number of blocks we are 1063 * trying to reserve to avoid an overflow. We can't allocate 1064 * more than @nimaps extents, and an extent is limited on disk 1065 * to MAXEXTLEN (21 bits), so use that to enforce the limit. 1066 */ 1067 resblks = min_t(xfs_fileoff_t, (e - s), (MAXEXTLEN * nimaps)); 1068 if (unlikely(rt)) { 1069 resrtextents = qblocks = resblks; 1070 resrtextents /= mp->m_sb.sb_rextsize; 1071 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0); 1072 quota_flag = XFS_QMOPT_RES_RTBLKS; 1073 } else { 1074 resrtextents = 0; 1075 resblks = qblocks = XFS_DIOSTRAT_SPACE_RES(mp, resblks); 1076 quota_flag = XFS_QMOPT_RES_REGBLKS; 1077 } 1078 1079 /* 1080 * Allocate and setup the transaction. 1081 */ 1082 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 1083 resrtextents, 0, &tp); 1084 1085 /* 1086 * Check for running out of space 1087 */ 1088 if (error) { 1089 /* 1090 * Free the transaction structure. 1091 */ 1092 ASSERT(error == -ENOSPC || XFS_FORCED_SHUTDOWN(mp)); 1093 break; 1094 } 1095 xfs_ilock(ip, XFS_ILOCK_EXCL); 1096 error = xfs_trans_reserve_quota_nblks(tp, ip, qblocks, 1097 0, quota_flag); 1098 if (error) 1099 goto error1; 1100 1101 xfs_trans_ijoin(tp, ip, 0); 1102 1103 xfs_defer_init(&dfops, &firstfsb); 1104 error = xfs_bmapi_write(tp, ip, startoffset_fsb, 1105 allocatesize_fsb, alloc_type, &firstfsb, 1106 resblks, imapp, &nimaps, &dfops); 1107 if (error) 1108 goto error0; 1109 1110 /* 1111 * Complete the transaction 1112 */ 1113 error = xfs_defer_finish(&tp, &dfops, NULL); 1114 if (error) 1115 goto error0; 1116 1117 error = xfs_trans_commit(tp); 1118 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1119 if (error) 1120 break; 1121 1122 allocated_fsb = imapp->br_blockcount; 1123 1124 if (nimaps == 0) { 1125 error = -ENOSPC; 1126 break; 1127 } 1128 1129 startoffset_fsb += allocated_fsb; 1130 allocatesize_fsb -= allocated_fsb; 1131 } 1132 1133 return error; 1134 1135 error0: /* Cancel bmap, unlock inode, unreserve quota blocks, cancel trans */ 1136 xfs_defer_cancel(&dfops); 1137 xfs_trans_unreserve_quota_nblks(tp, ip, (long)qblocks, 0, quota_flag); 1138 1139 error1: /* Just cancel transaction */ 1140 xfs_trans_cancel(tp); 1141 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1142 return error; 1143 } 1144 1145 static int 1146 xfs_unmap_extent( 1147 struct xfs_inode *ip, 1148 xfs_fileoff_t startoffset_fsb, 1149 xfs_filblks_t len_fsb, 1150 int *done) 1151 { 1152 struct xfs_mount *mp = ip->i_mount; 1153 struct xfs_trans *tp; 1154 struct xfs_defer_ops dfops; 1155 xfs_fsblock_t firstfsb; 1156 uint resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0); 1157 int error; 1158 1159 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp); 1160 if (error) { 1161 ASSERT(error == -ENOSPC || XFS_FORCED_SHUTDOWN(mp)); 1162 return error; 1163 } 1164 1165 xfs_ilock(ip, XFS_ILOCK_EXCL); 1166 error = xfs_trans_reserve_quota(tp, mp, ip->i_udquot, ip->i_gdquot, 1167 ip->i_pdquot, resblks, 0, XFS_QMOPT_RES_REGBLKS); 1168 if (error) 1169 goto out_trans_cancel; 1170 1171 xfs_trans_ijoin(tp, ip, 0); 1172 1173 xfs_defer_init(&dfops, &firstfsb); 1174 error = xfs_bunmapi(tp, ip, startoffset_fsb, len_fsb, 0, 2, &firstfsb, 1175 &dfops, done); 1176 if (error) 1177 goto out_bmap_cancel; 1178 1179 error = xfs_defer_finish(&tp, &dfops, ip); 1180 if (error) 1181 goto out_bmap_cancel; 1182 1183 error = xfs_trans_commit(tp); 1184 out_unlock: 1185 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1186 return error; 1187 1188 out_bmap_cancel: 1189 xfs_defer_cancel(&dfops); 1190 out_trans_cancel: 1191 xfs_trans_cancel(tp); 1192 goto out_unlock; 1193 } 1194 1195 static int 1196 xfs_adjust_extent_unmap_boundaries( 1197 struct xfs_inode *ip, 1198 xfs_fileoff_t *startoffset_fsb, 1199 xfs_fileoff_t *endoffset_fsb) 1200 { 1201 struct xfs_mount *mp = ip->i_mount; 1202 struct xfs_bmbt_irec imap; 1203 int nimap, error; 1204 xfs_extlen_t mod = 0; 1205 1206 nimap = 1; 1207 error = xfs_bmapi_read(ip, *startoffset_fsb, 1, &imap, &nimap, 0); 1208 if (error) 1209 return error; 1210 1211 if (nimap && imap.br_startblock != HOLESTARTBLOCK) { 1212 xfs_daddr_t block; 1213 1214 ASSERT(imap.br_startblock != DELAYSTARTBLOCK); 1215 block = imap.br_startblock; 1216 mod = do_div(block, mp->m_sb.sb_rextsize); 1217 if (mod) 1218 *startoffset_fsb += mp->m_sb.sb_rextsize - mod; 1219 } 1220 1221 nimap = 1; 1222 error = xfs_bmapi_read(ip, *endoffset_fsb - 1, 1, &imap, &nimap, 0); 1223 if (error) 1224 return error; 1225 1226 if (nimap && imap.br_startblock != HOLESTARTBLOCK) { 1227 ASSERT(imap.br_startblock != DELAYSTARTBLOCK); 1228 mod++; 1229 if (mod && mod != mp->m_sb.sb_rextsize) 1230 *endoffset_fsb -= mod; 1231 } 1232 1233 return 0; 1234 } 1235 1236 static int 1237 xfs_flush_unmap_range( 1238 struct xfs_inode *ip, 1239 xfs_off_t offset, 1240 xfs_off_t len) 1241 { 1242 struct xfs_mount *mp = ip->i_mount; 1243 struct inode *inode = VFS_I(ip); 1244 xfs_off_t rounding, start, end; 1245 int error; 1246 1247 /* wait for the completion of any pending DIOs */ 1248 inode_dio_wait(inode); 1249 1250 rounding = max_t(xfs_off_t, 1 << mp->m_sb.sb_blocklog, PAGE_SIZE); 1251 start = round_down(offset, rounding); 1252 end = round_up(offset + len, rounding) - 1; 1253 1254 error = filemap_write_and_wait_range(inode->i_mapping, start, end); 1255 if (error) 1256 return error; 1257 truncate_pagecache_range(inode, start, end); 1258 return 0; 1259 } 1260 1261 int 1262 xfs_free_file_space( 1263 struct xfs_inode *ip, 1264 xfs_off_t offset, 1265 xfs_off_t len) 1266 { 1267 struct xfs_mount *mp = ip->i_mount; 1268 xfs_fileoff_t startoffset_fsb; 1269 xfs_fileoff_t endoffset_fsb; 1270 int done = 0, error; 1271 1272 trace_xfs_free_file_space(ip); 1273 1274 error = xfs_qm_dqattach(ip, 0); 1275 if (error) 1276 return error; 1277 1278 if (len <= 0) /* if nothing being freed */ 1279 return 0; 1280 1281 error = xfs_flush_unmap_range(ip, offset, len); 1282 if (error) 1283 return error; 1284 1285 startoffset_fsb = XFS_B_TO_FSB(mp, offset); 1286 endoffset_fsb = XFS_B_TO_FSBT(mp, offset + len); 1287 1288 /* 1289 * Need to zero the stuff we're not freeing, on disk. If it's a RT file 1290 * and we can't use unwritten extents then we actually need to ensure 1291 * to zero the whole extent, otherwise we just need to take of block 1292 * boundaries, and xfs_bunmapi will handle the rest. 1293 */ 1294 if (XFS_IS_REALTIME_INODE(ip) && 1295 !xfs_sb_version_hasextflgbit(&mp->m_sb)) { 1296 error = xfs_adjust_extent_unmap_boundaries(ip, &startoffset_fsb, 1297 &endoffset_fsb); 1298 if (error) 1299 return error; 1300 } 1301 1302 if (endoffset_fsb > startoffset_fsb) { 1303 while (!done) { 1304 error = xfs_unmap_extent(ip, startoffset_fsb, 1305 endoffset_fsb - startoffset_fsb, &done); 1306 if (error) 1307 return error; 1308 } 1309 } 1310 1311 /* 1312 * Now that we've unmap all full blocks we'll have to zero out any 1313 * partial block at the beginning and/or end. xfs_zero_range is 1314 * smart enough to skip any holes, including those we just created, 1315 * but we must take care not to zero beyond EOF and enlarge i_size. 1316 */ 1317 1318 if (offset >= XFS_ISIZE(ip)) 1319 return 0; 1320 1321 if (offset + len > XFS_ISIZE(ip)) 1322 len = XFS_ISIZE(ip) - offset; 1323 1324 return xfs_zero_range(ip, offset, len, NULL); 1325 } 1326 1327 /* 1328 * Preallocate and zero a range of a file. This mechanism has the allocation 1329 * semantics of fallocate and in addition converts data in the range to zeroes. 1330 */ 1331 int 1332 xfs_zero_file_space( 1333 struct xfs_inode *ip, 1334 xfs_off_t offset, 1335 xfs_off_t len) 1336 { 1337 struct xfs_mount *mp = ip->i_mount; 1338 uint blksize; 1339 int error; 1340 1341 trace_xfs_zero_file_space(ip); 1342 1343 blksize = 1 << mp->m_sb.sb_blocklog; 1344 1345 /* 1346 * Punch a hole and prealloc the range. We use hole punch rather than 1347 * unwritten extent conversion for two reasons: 1348 * 1349 * 1.) Hole punch handles partial block zeroing for us. 1350 * 1351 * 2.) If prealloc returns ENOSPC, the file range is still zero-valued 1352 * by virtue of the hole punch. 1353 */ 1354 error = xfs_free_file_space(ip, offset, len); 1355 if (error) 1356 goto out; 1357 1358 error = xfs_alloc_file_space(ip, round_down(offset, blksize), 1359 round_up(offset + len, blksize) - 1360 round_down(offset, blksize), 1361 XFS_BMAPI_PREALLOC); 1362 out: 1363 return error; 1364 1365 } 1366 1367 /* 1368 * @next_fsb will keep track of the extent currently undergoing shift. 1369 * @stop_fsb will keep track of the extent at which we have to stop. 1370 * If we are shifting left, we will start with block (offset + len) and 1371 * shift each extent till last extent. 1372 * If we are shifting right, we will start with last extent inside file space 1373 * and continue until we reach the block corresponding to offset. 1374 */ 1375 static int 1376 xfs_shift_file_space( 1377 struct xfs_inode *ip, 1378 xfs_off_t offset, 1379 xfs_off_t len, 1380 enum shift_direction direction) 1381 { 1382 int done = 0; 1383 struct xfs_mount *mp = ip->i_mount; 1384 struct xfs_trans *tp; 1385 int error; 1386 struct xfs_defer_ops dfops; 1387 xfs_fsblock_t first_block; 1388 xfs_fileoff_t stop_fsb; 1389 xfs_fileoff_t next_fsb; 1390 xfs_fileoff_t shift_fsb; 1391 uint resblks; 1392 1393 ASSERT(direction == SHIFT_LEFT || direction == SHIFT_RIGHT); 1394 1395 if (direction == SHIFT_LEFT) { 1396 /* 1397 * Reserve blocks to cover potential extent merges after left 1398 * shift operations. 1399 */ 1400 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0); 1401 next_fsb = XFS_B_TO_FSB(mp, offset + len); 1402 stop_fsb = XFS_B_TO_FSB(mp, VFS_I(ip)->i_size); 1403 } else { 1404 /* 1405 * If right shift, delegate the work of initialization of 1406 * next_fsb to xfs_bmap_shift_extent as it has ilock held. 1407 */ 1408 resblks = 0; 1409 next_fsb = NULLFSBLOCK; 1410 stop_fsb = XFS_B_TO_FSB(mp, offset); 1411 } 1412 1413 shift_fsb = XFS_B_TO_FSB(mp, len); 1414 1415 /* 1416 * Trim eofblocks to avoid shifting uninitialized post-eof preallocation 1417 * into the accessible region of the file. 1418 */ 1419 if (xfs_can_free_eofblocks(ip, true)) { 1420 error = xfs_free_eofblocks(ip); 1421 if (error) 1422 return error; 1423 } 1424 1425 /* 1426 * Writeback and invalidate cache for the remainder of the file as we're 1427 * about to shift down every extent from offset to EOF. 1428 */ 1429 error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping, 1430 offset, -1); 1431 if (error) 1432 return error; 1433 error = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping, 1434 offset >> PAGE_SHIFT, -1); 1435 if (error) 1436 return error; 1437 1438 /* 1439 * The extent shiting code works on extent granularity. So, if 1440 * stop_fsb is not the starting block of extent, we need to split 1441 * the extent at stop_fsb. 1442 */ 1443 if (direction == SHIFT_RIGHT) { 1444 error = xfs_bmap_split_extent(ip, stop_fsb); 1445 if (error) 1446 return error; 1447 } 1448 1449 while (!error && !done) { 1450 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, 1451 &tp); 1452 if (error) 1453 break; 1454 1455 xfs_ilock(ip, XFS_ILOCK_EXCL); 1456 error = xfs_trans_reserve_quota(tp, mp, ip->i_udquot, 1457 ip->i_gdquot, ip->i_pdquot, resblks, 0, 1458 XFS_QMOPT_RES_REGBLKS); 1459 if (error) 1460 goto out_trans_cancel; 1461 1462 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 1463 1464 xfs_defer_init(&dfops, &first_block); 1465 1466 /* 1467 * We are using the write transaction in which max 2 bmbt 1468 * updates are allowed 1469 */ 1470 error = xfs_bmap_shift_extents(tp, ip, &next_fsb, shift_fsb, 1471 &done, stop_fsb, &first_block, &dfops, 1472 direction, XFS_BMAP_MAX_SHIFT_EXTENTS); 1473 if (error) 1474 goto out_bmap_cancel; 1475 1476 error = xfs_defer_finish(&tp, &dfops, NULL); 1477 if (error) 1478 goto out_bmap_cancel; 1479 1480 error = xfs_trans_commit(tp); 1481 } 1482 1483 return error; 1484 1485 out_bmap_cancel: 1486 xfs_defer_cancel(&dfops); 1487 out_trans_cancel: 1488 xfs_trans_cancel(tp); 1489 return error; 1490 } 1491 1492 /* 1493 * xfs_collapse_file_space() 1494 * This routine frees disk space and shift extent for the given file. 1495 * The first thing we do is to free data blocks in the specified range 1496 * by calling xfs_free_file_space(). It would also sync dirty data 1497 * and invalidate page cache over the region on which collapse range 1498 * is working. And Shift extent records to the left to cover a hole. 1499 * RETURNS: 1500 * 0 on success 1501 * errno on error 1502 * 1503 */ 1504 int 1505 xfs_collapse_file_space( 1506 struct xfs_inode *ip, 1507 xfs_off_t offset, 1508 xfs_off_t len) 1509 { 1510 int error; 1511 1512 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1513 trace_xfs_collapse_file_space(ip); 1514 1515 error = xfs_free_file_space(ip, offset, len); 1516 if (error) 1517 return error; 1518 1519 return xfs_shift_file_space(ip, offset, len, SHIFT_LEFT); 1520 } 1521 1522 /* 1523 * xfs_insert_file_space() 1524 * This routine create hole space by shifting extents for the given file. 1525 * The first thing we do is to sync dirty data and invalidate page cache 1526 * over the region on which insert range is working. And split an extent 1527 * to two extents at given offset by calling xfs_bmap_split_extent. 1528 * And shift all extent records which are laying between [offset, 1529 * last allocated extent] to the right to reserve hole range. 1530 * RETURNS: 1531 * 0 on success 1532 * errno on error 1533 */ 1534 int 1535 xfs_insert_file_space( 1536 struct xfs_inode *ip, 1537 loff_t offset, 1538 loff_t len) 1539 { 1540 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1541 trace_xfs_insert_file_space(ip); 1542 1543 return xfs_shift_file_space(ip, offset, len, SHIFT_RIGHT); 1544 } 1545 1546 /* 1547 * We need to check that the format of the data fork in the temporary inode is 1548 * valid for the target inode before doing the swap. This is not a problem with 1549 * attr1 because of the fixed fork offset, but attr2 has a dynamically sized 1550 * data fork depending on the space the attribute fork is taking so we can get 1551 * invalid formats on the target inode. 1552 * 1553 * E.g. target has space for 7 extents in extent format, temp inode only has 1554 * space for 6. If we defragment down to 7 extents, then the tmp format is a 1555 * btree, but when swapped it needs to be in extent format. Hence we can't just 1556 * blindly swap data forks on attr2 filesystems. 1557 * 1558 * Note that we check the swap in both directions so that we don't end up with 1559 * a corrupt temporary inode, either. 1560 * 1561 * Note that fixing the way xfs_fsr sets up the attribute fork in the source 1562 * inode will prevent this situation from occurring, so all we do here is 1563 * reject and log the attempt. basically we are putting the responsibility on 1564 * userspace to get this right. 1565 */ 1566 static int 1567 xfs_swap_extents_check_format( 1568 struct xfs_inode *ip, /* target inode */ 1569 struct xfs_inode *tip) /* tmp inode */ 1570 { 1571 1572 /* Should never get a local format */ 1573 if (ip->i_d.di_format == XFS_DINODE_FMT_LOCAL || 1574 tip->i_d.di_format == XFS_DINODE_FMT_LOCAL) 1575 return -EINVAL; 1576 1577 /* 1578 * if the target inode has less extents that then temporary inode then 1579 * why did userspace call us? 1580 */ 1581 if (ip->i_d.di_nextents < tip->i_d.di_nextents) 1582 return -EINVAL; 1583 1584 /* 1585 * If we have to use the (expensive) rmap swap method, we can 1586 * handle any number of extents and any format. 1587 */ 1588 if (xfs_sb_version_hasrmapbt(&ip->i_mount->m_sb)) 1589 return 0; 1590 1591 /* 1592 * if the target inode is in extent form and the temp inode is in btree 1593 * form then we will end up with the target inode in the wrong format 1594 * as we already know there are less extents in the temp inode. 1595 */ 1596 if (ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS && 1597 tip->i_d.di_format == XFS_DINODE_FMT_BTREE) 1598 return -EINVAL; 1599 1600 /* Check temp in extent form to max in target */ 1601 if (tip->i_d.di_format == XFS_DINODE_FMT_EXTENTS && 1602 XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK) > 1603 XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)) 1604 return -EINVAL; 1605 1606 /* Check target in extent form to max in temp */ 1607 if (ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS && 1608 XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK) > 1609 XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK)) 1610 return -EINVAL; 1611 1612 /* 1613 * If we are in a btree format, check that the temp root block will fit 1614 * in the target and that it has enough extents to be in btree format 1615 * in the target. 1616 * 1617 * Note that we have to be careful to allow btree->extent conversions 1618 * (a common defrag case) which will occur when the temp inode is in 1619 * extent format... 1620 */ 1621 if (tip->i_d.di_format == XFS_DINODE_FMT_BTREE) { 1622 if (XFS_IFORK_BOFF(ip) && 1623 XFS_BMAP_BMDR_SPACE(tip->i_df.if_broot) > XFS_IFORK_BOFF(ip)) 1624 return -EINVAL; 1625 if (XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK) <= 1626 XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)) 1627 return -EINVAL; 1628 } 1629 1630 /* Reciprocal target->temp btree format checks */ 1631 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE) { 1632 if (XFS_IFORK_BOFF(tip) && 1633 XFS_BMAP_BMDR_SPACE(ip->i_df.if_broot) > XFS_IFORK_BOFF(tip)) 1634 return -EINVAL; 1635 if (XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK) <= 1636 XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK)) 1637 return -EINVAL; 1638 } 1639 1640 return 0; 1641 } 1642 1643 static int 1644 xfs_swap_extent_flush( 1645 struct xfs_inode *ip) 1646 { 1647 int error; 1648 1649 error = filemap_write_and_wait(VFS_I(ip)->i_mapping); 1650 if (error) 1651 return error; 1652 truncate_pagecache_range(VFS_I(ip), 0, -1); 1653 1654 /* Verify O_DIRECT for ftmp */ 1655 if (VFS_I(ip)->i_mapping->nrpages) 1656 return -EINVAL; 1657 return 0; 1658 } 1659 1660 /* 1661 * Move extents from one file to another, when rmap is enabled. 1662 */ 1663 STATIC int 1664 xfs_swap_extent_rmap( 1665 struct xfs_trans **tpp, 1666 struct xfs_inode *ip, 1667 struct xfs_inode *tip) 1668 { 1669 struct xfs_bmbt_irec irec; 1670 struct xfs_bmbt_irec uirec; 1671 struct xfs_bmbt_irec tirec; 1672 xfs_fileoff_t offset_fsb; 1673 xfs_fileoff_t end_fsb; 1674 xfs_filblks_t count_fsb; 1675 xfs_fsblock_t firstfsb; 1676 struct xfs_defer_ops dfops; 1677 int error; 1678 xfs_filblks_t ilen; 1679 xfs_filblks_t rlen; 1680 int nimaps; 1681 __uint64_t tip_flags2; 1682 1683 /* 1684 * If the source file has shared blocks, we must flag the donor 1685 * file as having shared blocks so that we get the shared-block 1686 * rmap functions when we go to fix up the rmaps. The flags 1687 * will be switch for reals later. 1688 */ 1689 tip_flags2 = tip->i_d.di_flags2; 1690 if (ip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK) 1691 tip->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK; 1692 1693 offset_fsb = 0; 1694 end_fsb = XFS_B_TO_FSB(ip->i_mount, i_size_read(VFS_I(ip))); 1695 count_fsb = (xfs_filblks_t)(end_fsb - offset_fsb); 1696 1697 while (count_fsb) { 1698 /* Read extent from the donor file */ 1699 nimaps = 1; 1700 error = xfs_bmapi_read(tip, offset_fsb, count_fsb, &tirec, 1701 &nimaps, 0); 1702 if (error) 1703 goto out; 1704 ASSERT(nimaps == 1); 1705 ASSERT(tirec.br_startblock != DELAYSTARTBLOCK); 1706 1707 trace_xfs_swap_extent_rmap_remap(tip, &tirec); 1708 ilen = tirec.br_blockcount; 1709 1710 /* Unmap the old blocks in the source file. */ 1711 while (tirec.br_blockcount) { 1712 xfs_defer_init(&dfops, &firstfsb); 1713 trace_xfs_swap_extent_rmap_remap_piece(tip, &tirec); 1714 1715 /* Read extent from the source file */ 1716 nimaps = 1; 1717 error = xfs_bmapi_read(ip, tirec.br_startoff, 1718 tirec.br_blockcount, &irec, 1719 &nimaps, 0); 1720 if (error) 1721 goto out_defer; 1722 ASSERT(nimaps == 1); 1723 ASSERT(tirec.br_startoff == irec.br_startoff); 1724 trace_xfs_swap_extent_rmap_remap_piece(ip, &irec); 1725 1726 /* Trim the extent. */ 1727 uirec = tirec; 1728 uirec.br_blockcount = rlen = min_t(xfs_filblks_t, 1729 tirec.br_blockcount, 1730 irec.br_blockcount); 1731 trace_xfs_swap_extent_rmap_remap_piece(tip, &uirec); 1732 1733 /* Remove the mapping from the donor file. */ 1734 error = xfs_bmap_unmap_extent((*tpp)->t_mountp, &dfops, 1735 tip, &uirec); 1736 if (error) 1737 goto out_defer; 1738 1739 /* Remove the mapping from the source file. */ 1740 error = xfs_bmap_unmap_extent((*tpp)->t_mountp, &dfops, 1741 ip, &irec); 1742 if (error) 1743 goto out_defer; 1744 1745 /* Map the donor file's blocks into the source file. */ 1746 error = xfs_bmap_map_extent((*tpp)->t_mountp, &dfops, 1747 ip, &uirec); 1748 if (error) 1749 goto out_defer; 1750 1751 /* Map the source file's blocks into the donor file. */ 1752 error = xfs_bmap_map_extent((*tpp)->t_mountp, &dfops, 1753 tip, &irec); 1754 if (error) 1755 goto out_defer; 1756 1757 error = xfs_defer_finish(tpp, &dfops, ip); 1758 if (error) 1759 goto out_defer; 1760 1761 tirec.br_startoff += rlen; 1762 if (tirec.br_startblock != HOLESTARTBLOCK && 1763 tirec.br_startblock != DELAYSTARTBLOCK) 1764 tirec.br_startblock += rlen; 1765 tirec.br_blockcount -= rlen; 1766 } 1767 1768 /* Roll on... */ 1769 count_fsb -= ilen; 1770 offset_fsb += ilen; 1771 } 1772 1773 tip->i_d.di_flags2 = tip_flags2; 1774 return 0; 1775 1776 out_defer: 1777 xfs_defer_cancel(&dfops); 1778 out: 1779 trace_xfs_swap_extent_rmap_error(ip, error, _RET_IP_); 1780 tip->i_d.di_flags2 = tip_flags2; 1781 return error; 1782 } 1783 1784 /* Swap the extents of two files by swapping data forks. */ 1785 STATIC int 1786 xfs_swap_extent_forks( 1787 struct xfs_trans *tp, 1788 struct xfs_inode *ip, 1789 struct xfs_inode *tip, 1790 int *src_log_flags, 1791 int *target_log_flags) 1792 { 1793 struct xfs_ifork tempifp, *ifp, *tifp; 1794 int aforkblks = 0; 1795 int taforkblks = 0; 1796 xfs_extnum_t nextents; 1797 __uint64_t tmp; 1798 int error; 1799 1800 /* 1801 * Count the number of extended attribute blocks 1802 */ 1803 if ( ((XFS_IFORK_Q(ip) != 0) && (ip->i_d.di_anextents > 0)) && 1804 (ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)) { 1805 error = xfs_bmap_count_blocks(tp, ip, XFS_ATTR_FORK, 1806 &aforkblks); 1807 if (error) 1808 return error; 1809 } 1810 if ( ((XFS_IFORK_Q(tip) != 0) && (tip->i_d.di_anextents > 0)) && 1811 (tip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)) { 1812 error = xfs_bmap_count_blocks(tp, tip, XFS_ATTR_FORK, 1813 &taforkblks); 1814 if (error) 1815 return error; 1816 } 1817 1818 /* 1819 * Before we've swapped the forks, lets set the owners of the forks 1820 * appropriately. We have to do this as we are demand paging the btree 1821 * buffers, and so the validation done on read will expect the owner 1822 * field to be correctly set. Once we change the owners, we can swap the 1823 * inode forks. 1824 */ 1825 if (ip->i_d.di_version == 3 && 1826 ip->i_d.di_format == XFS_DINODE_FMT_BTREE) { 1827 (*target_log_flags) |= XFS_ILOG_DOWNER; 1828 error = xfs_bmbt_change_owner(tp, ip, XFS_DATA_FORK, 1829 tip->i_ino, NULL); 1830 if (error) 1831 return error; 1832 } 1833 1834 if (tip->i_d.di_version == 3 && 1835 tip->i_d.di_format == XFS_DINODE_FMT_BTREE) { 1836 (*src_log_flags) |= XFS_ILOG_DOWNER; 1837 error = xfs_bmbt_change_owner(tp, tip, XFS_DATA_FORK, 1838 ip->i_ino, NULL); 1839 if (error) 1840 return error; 1841 } 1842 1843 /* 1844 * Swap the data forks of the inodes 1845 */ 1846 ifp = &ip->i_df; 1847 tifp = &tip->i_df; 1848 tempifp = *ifp; /* struct copy */ 1849 *ifp = *tifp; /* struct copy */ 1850 *tifp = tempifp; /* struct copy */ 1851 1852 /* 1853 * Fix the on-disk inode values 1854 */ 1855 tmp = (__uint64_t)ip->i_d.di_nblocks; 1856 ip->i_d.di_nblocks = tip->i_d.di_nblocks - taforkblks + aforkblks; 1857 tip->i_d.di_nblocks = tmp + taforkblks - aforkblks; 1858 1859 tmp = (__uint64_t) ip->i_d.di_nextents; 1860 ip->i_d.di_nextents = tip->i_d.di_nextents; 1861 tip->i_d.di_nextents = tmp; 1862 1863 tmp = (__uint64_t) ip->i_d.di_format; 1864 ip->i_d.di_format = tip->i_d.di_format; 1865 tip->i_d.di_format = tmp; 1866 1867 /* 1868 * The extents in the source inode could still contain speculative 1869 * preallocation beyond EOF (e.g. the file is open but not modified 1870 * while defrag is in progress). In that case, we need to copy over the 1871 * number of delalloc blocks the data fork in the source inode is 1872 * tracking beyond EOF so that when the fork is truncated away when the 1873 * temporary inode is unlinked we don't underrun the i_delayed_blks 1874 * counter on that inode. 1875 */ 1876 ASSERT(tip->i_delayed_blks == 0); 1877 tip->i_delayed_blks = ip->i_delayed_blks; 1878 ip->i_delayed_blks = 0; 1879 1880 switch (ip->i_d.di_format) { 1881 case XFS_DINODE_FMT_EXTENTS: 1882 /* 1883 * If the extents fit in the inode, fix the pointer. Otherwise 1884 * it's already NULL or pointing to the extent. 1885 */ 1886 nextents = xfs_iext_count(&ip->i_df); 1887 if (nextents <= XFS_INLINE_EXTS) 1888 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; 1889 (*src_log_flags) |= XFS_ILOG_DEXT; 1890 break; 1891 case XFS_DINODE_FMT_BTREE: 1892 ASSERT(ip->i_d.di_version < 3 || 1893 (*src_log_flags & XFS_ILOG_DOWNER)); 1894 (*src_log_flags) |= XFS_ILOG_DBROOT; 1895 break; 1896 } 1897 1898 switch (tip->i_d.di_format) { 1899 case XFS_DINODE_FMT_EXTENTS: 1900 /* 1901 * If the extents fit in the inode, fix the pointer. Otherwise 1902 * it's already NULL or pointing to the extent. 1903 */ 1904 nextents = xfs_iext_count(&tip->i_df); 1905 if (nextents <= XFS_INLINE_EXTS) 1906 tifp->if_u1.if_extents = tifp->if_u2.if_inline_ext; 1907 (*target_log_flags) |= XFS_ILOG_DEXT; 1908 break; 1909 case XFS_DINODE_FMT_BTREE: 1910 (*target_log_flags) |= XFS_ILOG_DBROOT; 1911 ASSERT(tip->i_d.di_version < 3 || 1912 (*target_log_flags & XFS_ILOG_DOWNER)); 1913 break; 1914 } 1915 1916 return 0; 1917 } 1918 1919 int 1920 xfs_swap_extents( 1921 struct xfs_inode *ip, /* target inode */ 1922 struct xfs_inode *tip, /* tmp inode */ 1923 struct xfs_swapext *sxp) 1924 { 1925 struct xfs_mount *mp = ip->i_mount; 1926 struct xfs_trans *tp; 1927 struct xfs_bstat *sbp = &sxp->sx_stat; 1928 int src_log_flags, target_log_flags; 1929 int error = 0; 1930 int lock_flags; 1931 struct xfs_ifork *cowfp; 1932 __uint64_t f; 1933 int resblks; 1934 1935 /* 1936 * Lock the inodes against other IO, page faults and truncate to 1937 * begin with. Then we can ensure the inodes are flushed and have no 1938 * page cache safely. Once we have done this we can take the ilocks and 1939 * do the rest of the checks. 1940 */ 1941 lock_two_nondirectories(VFS_I(ip), VFS_I(tip)); 1942 lock_flags = XFS_MMAPLOCK_EXCL; 1943 xfs_lock_two_inodes(ip, tip, XFS_MMAPLOCK_EXCL); 1944 1945 /* Verify that both files have the same format */ 1946 if ((VFS_I(ip)->i_mode & S_IFMT) != (VFS_I(tip)->i_mode & S_IFMT)) { 1947 error = -EINVAL; 1948 goto out_unlock; 1949 } 1950 1951 /* Verify both files are either real-time or non-realtime */ 1952 if (XFS_IS_REALTIME_INODE(ip) != XFS_IS_REALTIME_INODE(tip)) { 1953 error = -EINVAL; 1954 goto out_unlock; 1955 } 1956 1957 error = xfs_swap_extent_flush(ip); 1958 if (error) 1959 goto out_unlock; 1960 error = xfs_swap_extent_flush(tip); 1961 if (error) 1962 goto out_unlock; 1963 1964 /* 1965 * Extent "swapping" with rmap requires a permanent reservation and 1966 * a block reservation because it's really just a remap operation 1967 * performed with log redo items! 1968 */ 1969 if (xfs_sb_version_hasrmapbt(&mp->m_sb)) { 1970 /* 1971 * Conceptually this shouldn't affect the shape of either 1972 * bmbt, but since we atomically move extents one by one, 1973 * we reserve enough space to rebuild both trees. 1974 */ 1975 resblks = XFS_SWAP_RMAP_SPACE_RES(mp, 1976 XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK), 1977 XFS_DATA_FORK) + 1978 XFS_SWAP_RMAP_SPACE_RES(mp, 1979 XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK), 1980 XFS_DATA_FORK); 1981 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 1982 0, 0, &tp); 1983 } else 1984 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 1985 0, 0, &tp); 1986 if (error) 1987 goto out_unlock; 1988 1989 /* 1990 * Lock and join the inodes to the tansaction so that transaction commit 1991 * or cancel will unlock the inodes from this point onwards. 1992 */ 1993 xfs_lock_two_inodes(ip, tip, XFS_ILOCK_EXCL); 1994 lock_flags |= XFS_ILOCK_EXCL; 1995 xfs_trans_ijoin(tp, ip, 0); 1996 xfs_trans_ijoin(tp, tip, 0); 1997 1998 1999 /* Verify all data are being swapped */ 2000 if (sxp->sx_offset != 0 || 2001 sxp->sx_length != ip->i_d.di_size || 2002 sxp->sx_length != tip->i_d.di_size) { 2003 error = -EFAULT; 2004 goto out_trans_cancel; 2005 } 2006 2007 trace_xfs_swap_extent_before(ip, 0); 2008 trace_xfs_swap_extent_before(tip, 1); 2009 2010 /* check inode formats now that data is flushed */ 2011 error = xfs_swap_extents_check_format(ip, tip); 2012 if (error) { 2013 xfs_notice(mp, 2014 "%s: inode 0x%llx format is incompatible for exchanging.", 2015 __func__, ip->i_ino); 2016 goto out_trans_cancel; 2017 } 2018 2019 /* 2020 * Compare the current change & modify times with that 2021 * passed in. If they differ, we abort this swap. 2022 * This is the mechanism used to ensure the calling 2023 * process that the file was not changed out from 2024 * under it. 2025 */ 2026 if ((sbp->bs_ctime.tv_sec != VFS_I(ip)->i_ctime.tv_sec) || 2027 (sbp->bs_ctime.tv_nsec != VFS_I(ip)->i_ctime.tv_nsec) || 2028 (sbp->bs_mtime.tv_sec != VFS_I(ip)->i_mtime.tv_sec) || 2029 (sbp->bs_mtime.tv_nsec != VFS_I(ip)->i_mtime.tv_nsec)) { 2030 error = -EBUSY; 2031 goto out_trans_cancel; 2032 } 2033 2034 /* 2035 * Note the trickiness in setting the log flags - we set the owner log 2036 * flag on the opposite inode (i.e. the inode we are setting the new 2037 * owner to be) because once we swap the forks and log that, log 2038 * recovery is going to see the fork as owned by the swapped inode, 2039 * not the pre-swapped inodes. 2040 */ 2041 src_log_flags = XFS_ILOG_CORE; 2042 target_log_flags = XFS_ILOG_CORE; 2043 2044 if (xfs_sb_version_hasrmapbt(&mp->m_sb)) 2045 error = xfs_swap_extent_rmap(&tp, ip, tip); 2046 else 2047 error = xfs_swap_extent_forks(tp, ip, tip, &src_log_flags, 2048 &target_log_flags); 2049 if (error) 2050 goto out_trans_cancel; 2051 2052 /* Do we have to swap reflink flags? */ 2053 if ((ip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK) ^ 2054 (tip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK)) { 2055 f = ip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK; 2056 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK; 2057 ip->i_d.di_flags2 |= tip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK; 2058 tip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK; 2059 tip->i_d.di_flags2 |= f & XFS_DIFLAG2_REFLINK; 2060 cowfp = ip->i_cowfp; 2061 ip->i_cowfp = tip->i_cowfp; 2062 tip->i_cowfp = cowfp; 2063 xfs_inode_set_cowblocks_tag(ip); 2064 xfs_inode_set_cowblocks_tag(tip); 2065 } 2066 2067 xfs_trans_log_inode(tp, ip, src_log_flags); 2068 xfs_trans_log_inode(tp, tip, target_log_flags); 2069 2070 /* 2071 * If this is a synchronous mount, make sure that the 2072 * transaction goes to disk before returning to the user. 2073 */ 2074 if (mp->m_flags & XFS_MOUNT_WSYNC) 2075 xfs_trans_set_sync(tp); 2076 2077 error = xfs_trans_commit(tp); 2078 2079 trace_xfs_swap_extent_after(ip, 0); 2080 trace_xfs_swap_extent_after(tip, 1); 2081 2082 out_unlock: 2083 xfs_iunlock(ip, lock_flags); 2084 xfs_iunlock(tip, lock_flags); 2085 unlock_two_nondirectories(VFS_I(ip), VFS_I(tip)); 2086 return error; 2087 2088 out_trans_cancel: 2089 xfs_trans_cancel(tp); 2090 goto out_unlock; 2091 } 2092