xref: /linux/fs/xfs/xfs_bmap_util.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * Copyright (c) 2012 Red Hat, Inc.
5  * All Rights Reserved.
6  */
7 #include "xfs.h"
8 #include "xfs_fs.h"
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_bit.h"
14 #include "xfs_mount.h"
15 #include "xfs_defer.h"
16 #include "xfs_inode.h"
17 #include "xfs_btree.h"
18 #include "xfs_trans.h"
19 #include "xfs_alloc.h"
20 #include "xfs_bmap.h"
21 #include "xfs_bmap_util.h"
22 #include "xfs_bmap_btree.h"
23 #include "xfs_rtalloc.h"
24 #include "xfs_error.h"
25 #include "xfs_quota.h"
26 #include "xfs_trans_space.h"
27 #include "xfs_trace.h"
28 #include "xfs_icache.h"
29 #include "xfs_iomap.h"
30 #include "xfs_reflink.h"
31 #include "xfs_rtbitmap.h"
32 
33 /* Kernel only BMAP related definitions and functions */
34 
35 /*
36  * Convert the given file system block to a disk block.  We have to treat it
37  * differently based on whether the file is a real time file or not, because the
38  * bmap code does.
39  */
40 xfs_daddr_t
41 xfs_fsb_to_db(struct xfs_inode *ip, xfs_fsblock_t fsb)
42 {
43 	if (XFS_IS_REALTIME_INODE(ip))
44 		return XFS_FSB_TO_BB(ip->i_mount, fsb);
45 	return XFS_FSB_TO_DADDR(ip->i_mount, fsb);
46 }
47 
48 /*
49  * Routine to zero an extent on disk allocated to the specific inode.
50  *
51  * The VFS functions take a linearised filesystem block offset, so we have to
52  * convert the sparse xfs fsb to the right format first.
53  * VFS types are real funky, too.
54  */
55 int
56 xfs_zero_extent(
57 	struct xfs_inode	*ip,
58 	xfs_fsblock_t		start_fsb,
59 	xfs_off_t		count_fsb)
60 {
61 	struct xfs_mount	*mp = ip->i_mount;
62 	struct xfs_buftarg	*target = xfs_inode_buftarg(ip);
63 	xfs_daddr_t		sector = xfs_fsb_to_db(ip, start_fsb);
64 	sector_t		block = XFS_BB_TO_FSBT(mp, sector);
65 
66 	return blkdev_issue_zeroout(target->bt_bdev,
67 		block << (mp->m_super->s_blocksize_bits - 9),
68 		count_fsb << (mp->m_super->s_blocksize_bits - 9),
69 		GFP_KERNEL, 0);
70 }
71 
72 /*
73  * Extent tree block counting routines.
74  */
75 
76 /*
77  * Count leaf blocks given a range of extent records.  Delayed allocation
78  * extents are not counted towards the totals.
79  */
80 xfs_extnum_t
81 xfs_bmap_count_leaves(
82 	struct xfs_ifork	*ifp,
83 	xfs_filblks_t		*count)
84 {
85 	struct xfs_iext_cursor	icur;
86 	struct xfs_bmbt_irec	got;
87 	xfs_extnum_t		numrecs = 0;
88 
89 	for_each_xfs_iext(ifp, &icur, &got) {
90 		if (!isnullstartblock(got.br_startblock)) {
91 			*count += got.br_blockcount;
92 			numrecs++;
93 		}
94 	}
95 
96 	return numrecs;
97 }
98 
99 /*
100  * Count fsblocks of the given fork.  Delayed allocation extents are
101  * not counted towards the totals.
102  */
103 int
104 xfs_bmap_count_blocks(
105 	struct xfs_trans	*tp,
106 	struct xfs_inode	*ip,
107 	int			whichfork,
108 	xfs_extnum_t		*nextents,
109 	xfs_filblks_t		*count)
110 {
111 	struct xfs_mount	*mp = ip->i_mount;
112 	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, whichfork);
113 	struct xfs_btree_cur	*cur;
114 	xfs_extlen_t		btblocks = 0;
115 	int			error;
116 
117 	*nextents = 0;
118 	*count = 0;
119 
120 	if (!ifp)
121 		return 0;
122 
123 	switch (ifp->if_format) {
124 	case XFS_DINODE_FMT_BTREE:
125 		error = xfs_iread_extents(tp, ip, whichfork);
126 		if (error)
127 			return error;
128 
129 		cur = xfs_bmbt_init_cursor(mp, tp, ip, whichfork);
130 		error = xfs_btree_count_blocks(cur, &btblocks);
131 		xfs_btree_del_cursor(cur, error);
132 		if (error)
133 			return error;
134 
135 		/*
136 		 * xfs_btree_count_blocks includes the root block contained in
137 		 * the inode fork in @btblocks, so subtract one because we're
138 		 * only interested in allocated disk blocks.
139 		 */
140 		*count += btblocks - 1;
141 
142 		fallthrough;
143 	case XFS_DINODE_FMT_EXTENTS:
144 		*nextents = xfs_bmap_count_leaves(ifp, count);
145 		break;
146 	}
147 
148 	return 0;
149 }
150 
151 static int
152 xfs_getbmap_report_one(
153 	struct xfs_inode	*ip,
154 	struct getbmapx		*bmv,
155 	struct kgetbmap		*out,
156 	int64_t			bmv_end,
157 	struct xfs_bmbt_irec	*got)
158 {
159 	struct kgetbmap		*p = out + bmv->bmv_entries;
160 	bool			shared = false;
161 	int			error;
162 
163 	error = xfs_reflink_trim_around_shared(ip, got, &shared);
164 	if (error)
165 		return error;
166 
167 	if (isnullstartblock(got->br_startblock) ||
168 	    got->br_startblock == DELAYSTARTBLOCK) {
169 		/*
170 		 * Take the flush completion as being a point-in-time snapshot
171 		 * where there are no delalloc extents, and if any new ones
172 		 * have been created racily, just skip them as being 'after'
173 		 * the flush and so don't get reported.
174 		 */
175 		if (!(bmv->bmv_iflags & BMV_IF_DELALLOC))
176 			return 0;
177 
178 		p->bmv_oflags |= BMV_OF_DELALLOC;
179 		p->bmv_block = -2;
180 	} else {
181 		p->bmv_block = xfs_fsb_to_db(ip, got->br_startblock);
182 	}
183 
184 	if (got->br_state == XFS_EXT_UNWRITTEN &&
185 	    (bmv->bmv_iflags & BMV_IF_PREALLOC))
186 		p->bmv_oflags |= BMV_OF_PREALLOC;
187 
188 	if (shared)
189 		p->bmv_oflags |= BMV_OF_SHARED;
190 
191 	p->bmv_offset = XFS_FSB_TO_BB(ip->i_mount, got->br_startoff);
192 	p->bmv_length = XFS_FSB_TO_BB(ip->i_mount, got->br_blockcount);
193 
194 	bmv->bmv_offset = p->bmv_offset + p->bmv_length;
195 	bmv->bmv_length = max(0LL, bmv_end - bmv->bmv_offset);
196 	bmv->bmv_entries++;
197 	return 0;
198 }
199 
200 static void
201 xfs_getbmap_report_hole(
202 	struct xfs_inode	*ip,
203 	struct getbmapx		*bmv,
204 	struct kgetbmap		*out,
205 	int64_t			bmv_end,
206 	xfs_fileoff_t		bno,
207 	xfs_fileoff_t		end)
208 {
209 	struct kgetbmap		*p = out + bmv->bmv_entries;
210 
211 	if (bmv->bmv_iflags & BMV_IF_NO_HOLES)
212 		return;
213 
214 	p->bmv_block = -1;
215 	p->bmv_offset = XFS_FSB_TO_BB(ip->i_mount, bno);
216 	p->bmv_length = XFS_FSB_TO_BB(ip->i_mount, end - bno);
217 
218 	bmv->bmv_offset = p->bmv_offset + p->bmv_length;
219 	bmv->bmv_length = max(0LL, bmv_end - bmv->bmv_offset);
220 	bmv->bmv_entries++;
221 }
222 
223 static inline bool
224 xfs_getbmap_full(
225 	struct getbmapx		*bmv)
226 {
227 	return bmv->bmv_length == 0 || bmv->bmv_entries >= bmv->bmv_count - 1;
228 }
229 
230 static bool
231 xfs_getbmap_next_rec(
232 	struct xfs_bmbt_irec	*rec,
233 	xfs_fileoff_t		total_end)
234 {
235 	xfs_fileoff_t		end = rec->br_startoff + rec->br_blockcount;
236 
237 	if (end == total_end)
238 		return false;
239 
240 	rec->br_startoff += rec->br_blockcount;
241 	if (!isnullstartblock(rec->br_startblock) &&
242 	    rec->br_startblock != DELAYSTARTBLOCK)
243 		rec->br_startblock += rec->br_blockcount;
244 	rec->br_blockcount = total_end - end;
245 	return true;
246 }
247 
248 /*
249  * Get inode's extents as described in bmv, and format for output.
250  * Calls formatter to fill the user's buffer until all extents
251  * are mapped, until the passed-in bmv->bmv_count slots have
252  * been filled, or until the formatter short-circuits the loop,
253  * if it is tracking filled-in extents on its own.
254  */
255 int						/* error code */
256 xfs_getbmap(
257 	struct xfs_inode	*ip,
258 	struct getbmapx		*bmv,		/* user bmap structure */
259 	struct kgetbmap		*out)
260 {
261 	struct xfs_mount	*mp = ip->i_mount;
262 	int			iflags = bmv->bmv_iflags;
263 	int			whichfork, lock, error = 0;
264 	int64_t			bmv_end, max_len;
265 	xfs_fileoff_t		bno, first_bno;
266 	struct xfs_ifork	*ifp;
267 	struct xfs_bmbt_irec	got, rec;
268 	xfs_filblks_t		len;
269 	struct xfs_iext_cursor	icur;
270 
271 	if (bmv->bmv_iflags & ~BMV_IF_VALID)
272 		return -EINVAL;
273 #ifndef DEBUG
274 	/* Only allow CoW fork queries if we're debugging. */
275 	if (iflags & BMV_IF_COWFORK)
276 		return -EINVAL;
277 #endif
278 	if ((iflags & BMV_IF_ATTRFORK) && (iflags & BMV_IF_COWFORK))
279 		return -EINVAL;
280 
281 	if (bmv->bmv_length < -1)
282 		return -EINVAL;
283 	bmv->bmv_entries = 0;
284 	if (bmv->bmv_length == 0)
285 		return 0;
286 
287 	if (iflags & BMV_IF_ATTRFORK)
288 		whichfork = XFS_ATTR_FORK;
289 	else if (iflags & BMV_IF_COWFORK)
290 		whichfork = XFS_COW_FORK;
291 	else
292 		whichfork = XFS_DATA_FORK;
293 
294 	xfs_ilock(ip, XFS_IOLOCK_SHARED);
295 	switch (whichfork) {
296 	case XFS_ATTR_FORK:
297 		lock = xfs_ilock_attr_map_shared(ip);
298 		if (!xfs_inode_has_attr_fork(ip))
299 			goto out_unlock_ilock;
300 
301 		max_len = 1LL << 32;
302 		break;
303 	case XFS_COW_FORK:
304 		lock = XFS_ILOCK_SHARED;
305 		xfs_ilock(ip, lock);
306 
307 		/* No CoW fork? Just return */
308 		if (!xfs_ifork_ptr(ip, whichfork))
309 			goto out_unlock_ilock;
310 
311 		if (xfs_get_cowextsz_hint(ip))
312 			max_len = mp->m_super->s_maxbytes;
313 		else
314 			max_len = XFS_ISIZE(ip);
315 		break;
316 	case XFS_DATA_FORK:
317 		if (!(iflags & BMV_IF_DELALLOC) &&
318 		    (ip->i_delayed_blks || XFS_ISIZE(ip) > ip->i_disk_size)) {
319 			error = filemap_write_and_wait(VFS_I(ip)->i_mapping);
320 			if (error)
321 				goto out_unlock_iolock;
322 
323 			/*
324 			 * Even after flushing the inode, there can still be
325 			 * delalloc blocks on the inode beyond EOF due to
326 			 * speculative preallocation.  These are not removed
327 			 * until the release function is called or the inode
328 			 * is inactivated.  Hence we cannot assert here that
329 			 * ip->i_delayed_blks == 0.
330 			 */
331 		}
332 
333 		if (xfs_get_extsz_hint(ip) ||
334 		    (ip->i_diflags & XFS_DIFLAG_PREALLOC))
335 			max_len = mp->m_super->s_maxbytes;
336 		else
337 			max_len = XFS_ISIZE(ip);
338 
339 		lock = xfs_ilock_data_map_shared(ip);
340 		break;
341 	}
342 
343 	ifp = xfs_ifork_ptr(ip, whichfork);
344 
345 	switch (ifp->if_format) {
346 	case XFS_DINODE_FMT_EXTENTS:
347 	case XFS_DINODE_FMT_BTREE:
348 		break;
349 	case XFS_DINODE_FMT_LOCAL:
350 		/* Local format inode forks report no extents. */
351 		goto out_unlock_ilock;
352 	default:
353 		error = -EINVAL;
354 		goto out_unlock_ilock;
355 	}
356 
357 	if (bmv->bmv_length == -1) {
358 		max_len = XFS_FSB_TO_BB(mp, XFS_B_TO_FSB(mp, max_len));
359 		bmv->bmv_length = max(0LL, max_len - bmv->bmv_offset);
360 	}
361 
362 	bmv_end = bmv->bmv_offset + bmv->bmv_length;
363 
364 	first_bno = bno = XFS_BB_TO_FSBT(mp, bmv->bmv_offset);
365 	len = XFS_BB_TO_FSB(mp, bmv->bmv_length);
366 
367 	error = xfs_iread_extents(NULL, ip, whichfork);
368 	if (error)
369 		goto out_unlock_ilock;
370 
371 	if (!xfs_iext_lookup_extent(ip, ifp, bno, &icur, &got)) {
372 		/*
373 		 * Report a whole-file hole if the delalloc flag is set to
374 		 * stay compatible with the old implementation.
375 		 */
376 		if (iflags & BMV_IF_DELALLOC)
377 			xfs_getbmap_report_hole(ip, bmv, out, bmv_end, bno,
378 					XFS_B_TO_FSB(mp, XFS_ISIZE(ip)));
379 		goto out_unlock_ilock;
380 	}
381 
382 	while (!xfs_getbmap_full(bmv)) {
383 		xfs_trim_extent(&got, first_bno, len);
384 
385 		/*
386 		 * Report an entry for a hole if this extent doesn't directly
387 		 * follow the previous one.
388 		 */
389 		if (got.br_startoff > bno) {
390 			xfs_getbmap_report_hole(ip, bmv, out, bmv_end, bno,
391 					got.br_startoff);
392 			if (xfs_getbmap_full(bmv))
393 				break;
394 		}
395 
396 		/*
397 		 * In order to report shared extents accurately, we report each
398 		 * distinct shared / unshared part of a single bmbt record with
399 		 * an individual getbmapx record.
400 		 */
401 		bno = got.br_startoff + got.br_blockcount;
402 		rec = got;
403 		do {
404 			error = xfs_getbmap_report_one(ip, bmv, out, bmv_end,
405 					&rec);
406 			if (error || xfs_getbmap_full(bmv))
407 				goto out_unlock_ilock;
408 		} while (xfs_getbmap_next_rec(&rec, bno));
409 
410 		if (!xfs_iext_next_extent(ifp, &icur, &got)) {
411 			xfs_fileoff_t	end = XFS_B_TO_FSB(mp, XFS_ISIZE(ip));
412 
413 			if (bmv->bmv_entries > 0)
414 				out[bmv->bmv_entries - 1].bmv_oflags |=
415 								BMV_OF_LAST;
416 
417 			if (whichfork != XFS_ATTR_FORK && bno < end &&
418 			    !xfs_getbmap_full(bmv)) {
419 				xfs_getbmap_report_hole(ip, bmv, out, bmv_end,
420 						bno, end);
421 			}
422 			break;
423 		}
424 
425 		if (bno >= first_bno + len)
426 			break;
427 	}
428 
429 out_unlock_ilock:
430 	xfs_iunlock(ip, lock);
431 out_unlock_iolock:
432 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
433 	return error;
434 }
435 
436 /*
437  * Dead simple method of punching delalyed allocation blocks from a range in
438  * the inode.  This will always punch out both the start and end blocks, even
439  * if the ranges only partially overlap them, so it is up to the caller to
440  * ensure that partial blocks are not passed in.
441  */
442 void
443 xfs_bmap_punch_delalloc_range(
444 	struct xfs_inode	*ip,
445 	int			whichfork,
446 	xfs_off_t		start_byte,
447 	xfs_off_t		end_byte)
448 {
449 	struct xfs_mount	*mp = ip->i_mount;
450 	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, whichfork);
451 	xfs_fileoff_t		start_fsb = XFS_B_TO_FSBT(mp, start_byte);
452 	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, end_byte);
453 	struct xfs_bmbt_irec	got, del;
454 	struct xfs_iext_cursor	icur;
455 
456 	ASSERT(!xfs_need_iread_extents(ifp));
457 
458 	xfs_ilock(ip, XFS_ILOCK_EXCL);
459 	if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
460 		goto out_unlock;
461 
462 	while (got.br_startoff + got.br_blockcount > start_fsb) {
463 		del = got;
464 		xfs_trim_extent(&del, start_fsb, end_fsb - start_fsb);
465 
466 		/*
467 		 * A delete can push the cursor forward. Step back to the
468 		 * previous extent on non-delalloc or extents outside the
469 		 * target range.
470 		 */
471 		if (!del.br_blockcount ||
472 		    !isnullstartblock(del.br_startblock)) {
473 			if (!xfs_iext_prev_extent(ifp, &icur, &got))
474 				break;
475 			continue;
476 		}
477 
478 		xfs_bmap_del_extent_delay(ip, whichfork, &icur, &got, &del);
479 		if (!xfs_iext_get_extent(ifp, &icur, &got))
480 			break;
481 	}
482 
483 	if (whichfork == XFS_COW_FORK && !ifp->if_bytes)
484 		xfs_inode_clear_cowblocks_tag(ip);
485 
486 out_unlock:
487 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
488 }
489 
490 /*
491  * Test whether it is appropriate to check an inode for and free post EOF
492  * blocks.
493  */
494 bool
495 xfs_can_free_eofblocks(
496 	struct xfs_inode	*ip)
497 {
498 	struct xfs_mount	*mp = ip->i_mount;
499 	bool			found_blocks = false;
500 	xfs_fileoff_t		end_fsb;
501 	xfs_fileoff_t		last_fsb;
502 	struct xfs_bmbt_irec	imap;
503 	struct xfs_iext_cursor	icur;
504 
505 	/*
506 	 * Caller must either hold the exclusive io lock; or be inactivating
507 	 * the inode, which guarantees there are no other users of the inode.
508 	 */
509 	if (!(VFS_I(ip)->i_state & I_FREEING))
510 		xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL);
511 
512 	/* prealloc/delalloc exists only on regular files */
513 	if (!S_ISREG(VFS_I(ip)->i_mode))
514 		return false;
515 
516 	/*
517 	 * Zero sized files with no cached pages and delalloc blocks will not
518 	 * have speculative prealloc/delalloc blocks to remove.
519 	 */
520 	if (VFS_I(ip)->i_size == 0 &&
521 	    VFS_I(ip)->i_mapping->nrpages == 0 &&
522 	    ip->i_delayed_blks == 0)
523 		return false;
524 
525 	/* If we haven't read in the extent list, then don't do it now. */
526 	if (xfs_need_iread_extents(&ip->i_df))
527 		return false;
528 
529 	/*
530 	 * Do not free real extents in preallocated files unless the file has
531 	 * delalloc blocks and we are forced to remove them.
532 	 */
533 	if ((ip->i_diflags & XFS_DIFLAG_PREALLOC) && !ip->i_delayed_blks)
534 		return false;
535 
536 	/*
537 	 * Do not try to free post-EOF blocks if EOF is beyond the end of the
538 	 * range supported by the page cache, because the truncation will loop
539 	 * forever.
540 	 */
541 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_ISIZE(ip));
542 	if (xfs_inode_has_bigrtalloc(ip))
543 		end_fsb = xfs_rtb_roundup_rtx(mp, end_fsb);
544 	last_fsb = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
545 	if (last_fsb <= end_fsb)
546 		return false;
547 
548 	/*
549 	 * Check if there is an post-EOF extent to free.
550 	 */
551 	xfs_ilock(ip, XFS_ILOCK_SHARED);
552 	if (xfs_iext_lookup_extent(ip, &ip->i_df, end_fsb, &icur, &imap))
553 		found_blocks = true;
554 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
555 	return found_blocks;
556 }
557 
558 /*
559  * This is called to free any blocks beyond eof. The caller must hold
560  * IOLOCK_EXCL unless we are in the inode reclaim path and have the only
561  * reference to the inode.
562  */
563 int
564 xfs_free_eofblocks(
565 	struct xfs_inode	*ip)
566 {
567 	struct xfs_trans	*tp;
568 	struct xfs_mount	*mp = ip->i_mount;
569 	int			error;
570 
571 	/* Attach the dquots to the inode up front. */
572 	error = xfs_qm_dqattach(ip);
573 	if (error)
574 		return error;
575 
576 	/* Wait on dio to ensure i_size has settled. */
577 	inode_dio_wait(VFS_I(ip));
578 
579 	/*
580 	 * For preallocated files only free delayed allocations.
581 	 *
582 	 * Note that this means we also leave speculative preallocations in
583 	 * place for preallocated files.
584 	 */
585 	if (ip->i_diflags & (XFS_DIFLAG_PREALLOC | XFS_DIFLAG_APPEND)) {
586 		if (ip->i_delayed_blks) {
587 			xfs_bmap_punch_delalloc_range(ip, XFS_DATA_FORK,
588 				round_up(XFS_ISIZE(ip), mp->m_sb.sb_blocksize),
589 				LLONG_MAX);
590 		}
591 		xfs_inode_clear_eofblocks_tag(ip);
592 		return 0;
593 	}
594 
595 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
596 	if (error) {
597 		ASSERT(xfs_is_shutdown(mp));
598 		return error;
599 	}
600 
601 	xfs_ilock(ip, XFS_ILOCK_EXCL);
602 	xfs_trans_ijoin(tp, ip, 0);
603 
604 	/*
605 	 * Do not update the on-disk file size.  If we update the on-disk file
606 	 * size and then the system crashes before the contents of the file are
607 	 * flushed to disk then the files may be full of holes (ie NULL files
608 	 * bug).
609 	 */
610 	error = xfs_itruncate_extents_flags(&tp, ip, XFS_DATA_FORK,
611 				XFS_ISIZE(ip), XFS_BMAPI_NODISCARD);
612 	if (error)
613 		goto err_cancel;
614 
615 	error = xfs_trans_commit(tp);
616 	if (error)
617 		goto out_unlock;
618 
619 	xfs_inode_clear_eofblocks_tag(ip);
620 	goto out_unlock;
621 
622 err_cancel:
623 	/*
624 	 * If we get an error at this point we simply don't
625 	 * bother truncating the file.
626 	 */
627 	xfs_trans_cancel(tp);
628 out_unlock:
629 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
630 	return error;
631 }
632 
633 int
634 xfs_alloc_file_space(
635 	struct xfs_inode	*ip,
636 	xfs_off_t		offset,
637 	xfs_off_t		len)
638 {
639 	xfs_mount_t		*mp = ip->i_mount;
640 	xfs_off_t		count;
641 	xfs_filblks_t		allocatesize_fsb;
642 	xfs_extlen_t		extsz, temp;
643 	xfs_fileoff_t		startoffset_fsb;
644 	xfs_fileoff_t		endoffset_fsb;
645 	int			rt;
646 	xfs_trans_t		*tp;
647 	xfs_bmbt_irec_t		imaps[1], *imapp;
648 	int			error;
649 
650 	if (xfs_is_always_cow_inode(ip))
651 		return 0;
652 
653 	trace_xfs_alloc_file_space(ip);
654 
655 	if (xfs_is_shutdown(mp))
656 		return -EIO;
657 
658 	error = xfs_qm_dqattach(ip);
659 	if (error)
660 		return error;
661 
662 	if (len <= 0)
663 		return -EINVAL;
664 
665 	rt = XFS_IS_REALTIME_INODE(ip);
666 	extsz = xfs_get_extsz_hint(ip);
667 
668 	count = len;
669 	imapp = &imaps[0];
670 	startoffset_fsb	= XFS_B_TO_FSBT(mp, offset);
671 	endoffset_fsb = XFS_B_TO_FSB(mp, offset + count);
672 	allocatesize_fsb = endoffset_fsb - startoffset_fsb;
673 
674 	/*
675 	 * Allocate file space until done or until there is an error
676 	 */
677 	while (allocatesize_fsb && !error) {
678 		xfs_fileoff_t	s, e;
679 		unsigned int	dblocks, rblocks, resblks;
680 		int		nimaps = 1;
681 
682 		/*
683 		 * Determine space reservations for data/realtime.
684 		 */
685 		if (unlikely(extsz)) {
686 			s = startoffset_fsb;
687 			do_div(s, extsz);
688 			s *= extsz;
689 			e = startoffset_fsb + allocatesize_fsb;
690 			div_u64_rem(startoffset_fsb, extsz, &temp);
691 			if (temp)
692 				e += temp;
693 			div_u64_rem(e, extsz, &temp);
694 			if (temp)
695 				e += extsz - temp;
696 		} else {
697 			s = 0;
698 			e = allocatesize_fsb;
699 		}
700 
701 		/*
702 		 * The transaction reservation is limited to a 32-bit block
703 		 * count, hence we need to limit the number of blocks we are
704 		 * trying to reserve to avoid an overflow. We can't allocate
705 		 * more than @nimaps extents, and an extent is limited on disk
706 		 * to XFS_BMBT_MAX_EXTLEN (21 bits), so use that to enforce the
707 		 * limit.
708 		 */
709 		resblks = min_t(xfs_fileoff_t, (e - s),
710 				(XFS_MAX_BMBT_EXTLEN * nimaps));
711 		if (unlikely(rt)) {
712 			dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
713 			rblocks = resblks;
714 		} else {
715 			dblocks = XFS_DIOSTRAT_SPACE_RES(mp, resblks);
716 			rblocks = 0;
717 		}
718 
719 		error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write,
720 				dblocks, rblocks, false, &tp);
721 		if (error)
722 			break;
723 
724 		error = xfs_iext_count_extend(tp, ip, XFS_DATA_FORK,
725 				XFS_IEXT_ADD_NOSPLIT_CNT);
726 		if (error)
727 			goto error;
728 
729 		/*
730 		 * If the allocator cannot find a single free extent large
731 		 * enough to cover the start block of the requested range,
732 		 * xfs_bmapi_write will return -ENOSR.
733 		 *
734 		 * In that case we simply need to keep looping with the same
735 		 * startoffset_fsb so that one of the following allocations
736 		 * will eventually reach the requested range.
737 		 */
738 		error = xfs_bmapi_write(tp, ip, startoffset_fsb,
739 				allocatesize_fsb, XFS_BMAPI_PREALLOC, 0, imapp,
740 				&nimaps);
741 		if (error) {
742 			if (error != -ENOSR)
743 				goto error;
744 			error = 0;
745 		} else {
746 			startoffset_fsb += imapp->br_blockcount;
747 			allocatesize_fsb -= imapp->br_blockcount;
748 		}
749 
750 		ip->i_diflags |= XFS_DIFLAG_PREALLOC;
751 		xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
752 
753 		error = xfs_trans_commit(tp);
754 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
755 	}
756 
757 	return error;
758 
759 error:
760 	xfs_trans_cancel(tp);
761 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
762 	return error;
763 }
764 
765 static int
766 xfs_unmap_extent(
767 	struct xfs_inode	*ip,
768 	xfs_fileoff_t		startoffset_fsb,
769 	xfs_filblks_t		len_fsb,
770 	int			*done)
771 {
772 	struct xfs_mount	*mp = ip->i_mount;
773 	struct xfs_trans	*tp;
774 	uint			resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
775 	int			error;
776 
777 	error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, resblks, 0,
778 			false, &tp);
779 	if (error)
780 		return error;
781 
782 	error = xfs_iext_count_extend(tp, ip, XFS_DATA_FORK,
783 			XFS_IEXT_PUNCH_HOLE_CNT);
784 	if (error)
785 		goto out_trans_cancel;
786 
787 	error = xfs_bunmapi(tp, ip, startoffset_fsb, len_fsb, 0, 2, done);
788 	if (error)
789 		goto out_trans_cancel;
790 
791 	error = xfs_trans_commit(tp);
792 out_unlock:
793 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
794 	return error;
795 
796 out_trans_cancel:
797 	xfs_trans_cancel(tp);
798 	goto out_unlock;
799 }
800 
801 /* Caller must first wait for the completion of any pending DIOs if required. */
802 int
803 xfs_flush_unmap_range(
804 	struct xfs_inode	*ip,
805 	xfs_off_t		offset,
806 	xfs_off_t		len)
807 {
808 	struct inode		*inode = VFS_I(ip);
809 	xfs_off_t		rounding, start, end;
810 	int			error;
811 
812 	/*
813 	 * Make sure we extend the flush out to extent alignment
814 	 * boundaries so any extent range overlapping the start/end
815 	 * of the modification we are about to do is clean and idle.
816 	 */
817 	rounding = max_t(xfs_off_t, xfs_inode_alloc_unitsize(ip), PAGE_SIZE);
818 	start = rounddown_64(offset, rounding);
819 	end = roundup_64(offset + len, rounding) - 1;
820 
821 	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
822 	if (error)
823 		return error;
824 	truncate_pagecache_range(inode, start, end);
825 	return 0;
826 }
827 
828 int
829 xfs_free_file_space(
830 	struct xfs_inode	*ip,
831 	xfs_off_t		offset,
832 	xfs_off_t		len)
833 {
834 	struct xfs_mount	*mp = ip->i_mount;
835 	xfs_fileoff_t		startoffset_fsb;
836 	xfs_fileoff_t		endoffset_fsb;
837 	int			done = 0, error;
838 
839 	trace_xfs_free_file_space(ip);
840 
841 	error = xfs_qm_dqattach(ip);
842 	if (error)
843 		return error;
844 
845 	if (len <= 0)	/* if nothing being freed */
846 		return 0;
847 
848 	/*
849 	 * Now AIO and DIO has drained we flush and (if necessary) invalidate
850 	 * the cached range over the first operation we are about to run.
851 	 */
852 	error = xfs_flush_unmap_range(ip, offset, len);
853 	if (error)
854 		return error;
855 
856 	startoffset_fsb = XFS_B_TO_FSB(mp, offset);
857 	endoffset_fsb = XFS_B_TO_FSBT(mp, offset + len);
858 
859 	/* We can only free complete realtime extents. */
860 	if (xfs_inode_has_bigrtalloc(ip)) {
861 		startoffset_fsb = xfs_rtb_roundup_rtx(mp, startoffset_fsb);
862 		endoffset_fsb = xfs_rtb_rounddown_rtx(mp, endoffset_fsb);
863 	}
864 
865 	/*
866 	 * Need to zero the stuff we're not freeing, on disk.
867 	 */
868 	if (endoffset_fsb > startoffset_fsb) {
869 		while (!done) {
870 			error = xfs_unmap_extent(ip, startoffset_fsb,
871 					endoffset_fsb - startoffset_fsb, &done);
872 			if (error)
873 				return error;
874 		}
875 	}
876 
877 	/*
878 	 * Now that we've unmap all full blocks we'll have to zero out any
879 	 * partial block at the beginning and/or end.  xfs_zero_range is smart
880 	 * enough to skip any holes, including those we just created, but we
881 	 * must take care not to zero beyond EOF and enlarge i_size.
882 	 */
883 	if (offset >= XFS_ISIZE(ip))
884 		return 0;
885 	if (offset + len > XFS_ISIZE(ip))
886 		len = XFS_ISIZE(ip) - offset;
887 	error = xfs_zero_range(ip, offset, len, NULL);
888 	if (error)
889 		return error;
890 
891 	/*
892 	 * If we zeroed right up to EOF and EOF straddles a page boundary we
893 	 * must make sure that the post-EOF area is also zeroed because the
894 	 * page could be mmap'd and xfs_zero_range doesn't do that for us.
895 	 * Writeback of the eof page will do this, albeit clumsily.
896 	 */
897 	if (offset + len >= XFS_ISIZE(ip) && offset_in_page(offset + len) > 0) {
898 		error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
899 				round_down(offset + len, PAGE_SIZE), LLONG_MAX);
900 	}
901 
902 	return error;
903 }
904 
905 static int
906 xfs_prepare_shift(
907 	struct xfs_inode	*ip,
908 	loff_t			offset)
909 {
910 	unsigned int		rounding;
911 	int			error;
912 
913 	/*
914 	 * Trim eofblocks to avoid shifting uninitialized post-eof preallocation
915 	 * into the accessible region of the file.
916 	 */
917 	if (xfs_can_free_eofblocks(ip)) {
918 		error = xfs_free_eofblocks(ip);
919 		if (error)
920 			return error;
921 	}
922 
923 	/*
924 	 * Shift operations must stabilize the start block offset boundary along
925 	 * with the full range of the operation. If we don't, a COW writeback
926 	 * completion could race with an insert, front merge with the start
927 	 * extent (after split) during the shift and corrupt the file. Start
928 	 * with the allocation unit just prior to the start to stabilize the
929 	 * boundary.
930 	 */
931 	rounding = xfs_inode_alloc_unitsize(ip);
932 	offset = rounddown_64(offset, rounding);
933 	if (offset)
934 		offset -= rounding;
935 
936 	/*
937 	 * Writeback and invalidate cache for the remainder of the file as we're
938 	 * about to shift down every extent from offset to EOF.
939 	 */
940 	error = xfs_flush_unmap_range(ip, offset, XFS_ISIZE(ip));
941 	if (error)
942 		return error;
943 
944 	/*
945 	 * Clean out anything hanging around in the cow fork now that
946 	 * we've flushed all the dirty data out to disk to avoid having
947 	 * CoW extents at the wrong offsets.
948 	 */
949 	if (xfs_inode_has_cow_data(ip)) {
950 		error = xfs_reflink_cancel_cow_range(ip, offset, NULLFILEOFF,
951 				true);
952 		if (error)
953 			return error;
954 	}
955 
956 	return 0;
957 }
958 
959 /*
960  * xfs_collapse_file_space()
961  *	This routine frees disk space and shift extent for the given file.
962  *	The first thing we do is to free data blocks in the specified range
963  *	by calling xfs_free_file_space(). It would also sync dirty data
964  *	and invalidate page cache over the region on which collapse range
965  *	is working. And Shift extent records to the left to cover a hole.
966  * RETURNS:
967  *	0 on success
968  *	errno on error
969  *
970  */
971 int
972 xfs_collapse_file_space(
973 	struct xfs_inode	*ip,
974 	xfs_off_t		offset,
975 	xfs_off_t		len)
976 {
977 	struct xfs_mount	*mp = ip->i_mount;
978 	struct xfs_trans	*tp;
979 	int			error;
980 	xfs_fileoff_t		next_fsb = XFS_B_TO_FSB(mp, offset + len);
981 	xfs_fileoff_t		shift_fsb = XFS_B_TO_FSB(mp, len);
982 	bool			done = false;
983 
984 	xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL);
985 
986 	trace_xfs_collapse_file_space(ip);
987 
988 	error = xfs_free_file_space(ip, offset, len);
989 	if (error)
990 		return error;
991 
992 	error = xfs_prepare_shift(ip, offset);
993 	if (error)
994 		return error;
995 
996 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp);
997 	if (error)
998 		return error;
999 
1000 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1001 	xfs_trans_ijoin(tp, ip, 0);
1002 
1003 	while (!done) {
1004 		error = xfs_bmap_collapse_extents(tp, ip, &next_fsb, shift_fsb,
1005 				&done);
1006 		if (error)
1007 			goto out_trans_cancel;
1008 		if (done)
1009 			break;
1010 
1011 		/* finish any deferred frees and roll the transaction */
1012 		error = xfs_defer_finish(&tp);
1013 		if (error)
1014 			goto out_trans_cancel;
1015 	}
1016 
1017 	error = xfs_trans_commit(tp);
1018 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1019 	return error;
1020 
1021 out_trans_cancel:
1022 	xfs_trans_cancel(tp);
1023 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1024 	return error;
1025 }
1026 
1027 /*
1028  * xfs_insert_file_space()
1029  *	This routine create hole space by shifting extents for the given file.
1030  *	The first thing we do is to sync dirty data and invalidate page cache
1031  *	over the region on which insert range is working. And split an extent
1032  *	to two extents at given offset by calling xfs_bmap_split_extent.
1033  *	And shift all extent records which are laying between [offset,
1034  *	last allocated extent] to the right to reserve hole range.
1035  * RETURNS:
1036  *	0 on success
1037  *	errno on error
1038  */
1039 int
1040 xfs_insert_file_space(
1041 	struct xfs_inode	*ip,
1042 	loff_t			offset,
1043 	loff_t			len)
1044 {
1045 	struct xfs_mount	*mp = ip->i_mount;
1046 	struct xfs_trans	*tp;
1047 	int			error;
1048 	xfs_fileoff_t		stop_fsb = XFS_B_TO_FSB(mp, offset);
1049 	xfs_fileoff_t		next_fsb = NULLFSBLOCK;
1050 	xfs_fileoff_t		shift_fsb = XFS_B_TO_FSB(mp, len);
1051 	bool			done = false;
1052 
1053 	xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL);
1054 
1055 	trace_xfs_insert_file_space(ip);
1056 
1057 	error = xfs_bmap_can_insert_extents(ip, stop_fsb, shift_fsb);
1058 	if (error)
1059 		return error;
1060 
1061 	error = xfs_prepare_shift(ip, offset);
1062 	if (error)
1063 		return error;
1064 
1065 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write,
1066 			XFS_DIOSTRAT_SPACE_RES(mp, 0), 0, 0, &tp);
1067 	if (error)
1068 		return error;
1069 
1070 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1071 	xfs_trans_ijoin(tp, ip, 0);
1072 
1073 	error = xfs_iext_count_extend(tp, ip, XFS_DATA_FORK,
1074 			XFS_IEXT_PUNCH_HOLE_CNT);
1075 	if (error)
1076 		goto out_trans_cancel;
1077 
1078 	/*
1079 	 * The extent shifting code works on extent granularity. So, if stop_fsb
1080 	 * is not the starting block of extent, we need to split the extent at
1081 	 * stop_fsb.
1082 	 */
1083 	error = xfs_bmap_split_extent(tp, ip, stop_fsb);
1084 	if (error)
1085 		goto out_trans_cancel;
1086 
1087 	do {
1088 		error = xfs_defer_finish(&tp);
1089 		if (error)
1090 			goto out_trans_cancel;
1091 
1092 		error = xfs_bmap_insert_extents(tp, ip, &next_fsb, shift_fsb,
1093 				&done, stop_fsb);
1094 		if (error)
1095 			goto out_trans_cancel;
1096 	} while (!done);
1097 
1098 	error = xfs_trans_commit(tp);
1099 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1100 	return error;
1101 
1102 out_trans_cancel:
1103 	xfs_trans_cancel(tp);
1104 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1105 	return error;
1106 }
1107 
1108 /*
1109  * We need to check that the format of the data fork in the temporary inode is
1110  * valid for the target inode before doing the swap. This is not a problem with
1111  * attr1 because of the fixed fork offset, but attr2 has a dynamically sized
1112  * data fork depending on the space the attribute fork is taking so we can get
1113  * invalid formats on the target inode.
1114  *
1115  * E.g. target has space for 7 extents in extent format, temp inode only has
1116  * space for 6.  If we defragment down to 7 extents, then the tmp format is a
1117  * btree, but when swapped it needs to be in extent format. Hence we can't just
1118  * blindly swap data forks on attr2 filesystems.
1119  *
1120  * Note that we check the swap in both directions so that we don't end up with
1121  * a corrupt temporary inode, either.
1122  *
1123  * Note that fixing the way xfs_fsr sets up the attribute fork in the source
1124  * inode will prevent this situation from occurring, so all we do here is
1125  * reject and log the attempt. basically we are putting the responsibility on
1126  * userspace to get this right.
1127  */
1128 static int
1129 xfs_swap_extents_check_format(
1130 	struct xfs_inode	*ip,	/* target inode */
1131 	struct xfs_inode	*tip)	/* tmp inode */
1132 {
1133 	struct xfs_ifork	*ifp = &ip->i_df;
1134 	struct xfs_ifork	*tifp = &tip->i_df;
1135 
1136 	/* User/group/project quota ids must match if quotas are enforced. */
1137 	if (XFS_IS_QUOTA_ON(ip->i_mount) &&
1138 	    (!uid_eq(VFS_I(ip)->i_uid, VFS_I(tip)->i_uid) ||
1139 	     !gid_eq(VFS_I(ip)->i_gid, VFS_I(tip)->i_gid) ||
1140 	     ip->i_projid != tip->i_projid))
1141 		return -EINVAL;
1142 
1143 	/* Should never get a local format */
1144 	if (ifp->if_format == XFS_DINODE_FMT_LOCAL ||
1145 	    tifp->if_format == XFS_DINODE_FMT_LOCAL)
1146 		return -EINVAL;
1147 
1148 	/*
1149 	 * if the target inode has less extents that then temporary inode then
1150 	 * why did userspace call us?
1151 	 */
1152 	if (ifp->if_nextents < tifp->if_nextents)
1153 		return -EINVAL;
1154 
1155 	/*
1156 	 * If we have to use the (expensive) rmap swap method, we can
1157 	 * handle any number of extents and any format.
1158 	 */
1159 	if (xfs_has_rmapbt(ip->i_mount))
1160 		return 0;
1161 
1162 	/*
1163 	 * if the target inode is in extent form and the temp inode is in btree
1164 	 * form then we will end up with the target inode in the wrong format
1165 	 * as we already know there are less extents in the temp inode.
1166 	 */
1167 	if (ifp->if_format == XFS_DINODE_FMT_EXTENTS &&
1168 	    tifp->if_format == XFS_DINODE_FMT_BTREE)
1169 		return -EINVAL;
1170 
1171 	/* Check temp in extent form to max in target */
1172 	if (tifp->if_format == XFS_DINODE_FMT_EXTENTS &&
1173 	    tifp->if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK))
1174 		return -EINVAL;
1175 
1176 	/* Check target in extent form to max in temp */
1177 	if (ifp->if_format == XFS_DINODE_FMT_EXTENTS &&
1178 	    ifp->if_nextents > XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK))
1179 		return -EINVAL;
1180 
1181 	/*
1182 	 * If we are in a btree format, check that the temp root block will fit
1183 	 * in the target and that it has enough extents to be in btree format
1184 	 * in the target.
1185 	 *
1186 	 * Note that we have to be careful to allow btree->extent conversions
1187 	 * (a common defrag case) which will occur when the temp inode is in
1188 	 * extent format...
1189 	 */
1190 	if (tifp->if_format == XFS_DINODE_FMT_BTREE) {
1191 		if (xfs_inode_has_attr_fork(ip) &&
1192 		    xfs_bmap_bmdr_space(tifp->if_broot) > xfs_inode_fork_boff(ip))
1193 			return -EINVAL;
1194 		if (tifp->if_nextents <= XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK))
1195 			return -EINVAL;
1196 	}
1197 
1198 	/* Reciprocal target->temp btree format checks */
1199 	if (ifp->if_format == XFS_DINODE_FMT_BTREE) {
1200 		if (xfs_inode_has_attr_fork(tip) &&
1201 		    xfs_bmap_bmdr_space(ip->i_df.if_broot) > xfs_inode_fork_boff(tip))
1202 			return -EINVAL;
1203 		if (ifp->if_nextents <= XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK))
1204 			return -EINVAL;
1205 	}
1206 
1207 	return 0;
1208 }
1209 
1210 static int
1211 xfs_swap_extent_flush(
1212 	struct xfs_inode	*ip)
1213 {
1214 	int	error;
1215 
1216 	error = filemap_write_and_wait(VFS_I(ip)->i_mapping);
1217 	if (error)
1218 		return error;
1219 	truncate_pagecache_range(VFS_I(ip), 0, -1);
1220 
1221 	/* Verify O_DIRECT for ftmp */
1222 	if (VFS_I(ip)->i_mapping->nrpages)
1223 		return -EINVAL;
1224 	return 0;
1225 }
1226 
1227 /*
1228  * Move extents from one file to another, when rmap is enabled.
1229  */
1230 STATIC int
1231 xfs_swap_extent_rmap(
1232 	struct xfs_trans		**tpp,
1233 	struct xfs_inode		*ip,
1234 	struct xfs_inode		*tip)
1235 {
1236 	struct xfs_trans		*tp = *tpp;
1237 	struct xfs_bmbt_irec		irec;
1238 	struct xfs_bmbt_irec		uirec;
1239 	struct xfs_bmbt_irec		tirec;
1240 	xfs_fileoff_t			offset_fsb;
1241 	xfs_fileoff_t			end_fsb;
1242 	xfs_filblks_t			count_fsb;
1243 	int				error;
1244 	xfs_filblks_t			ilen;
1245 	xfs_filblks_t			rlen;
1246 	int				nimaps;
1247 	uint64_t			tip_flags2;
1248 
1249 	/*
1250 	 * If the source file has shared blocks, we must flag the donor
1251 	 * file as having shared blocks so that we get the shared-block
1252 	 * rmap functions when we go to fix up the rmaps.  The flags
1253 	 * will be switch for reals later.
1254 	 */
1255 	tip_flags2 = tip->i_diflags2;
1256 	if (ip->i_diflags2 & XFS_DIFLAG2_REFLINK)
1257 		tip->i_diflags2 |= XFS_DIFLAG2_REFLINK;
1258 
1259 	offset_fsb = 0;
1260 	end_fsb = XFS_B_TO_FSB(ip->i_mount, i_size_read(VFS_I(ip)));
1261 	count_fsb = (xfs_filblks_t)(end_fsb - offset_fsb);
1262 
1263 	while (count_fsb) {
1264 		/* Read extent from the donor file */
1265 		nimaps = 1;
1266 		error = xfs_bmapi_read(tip, offset_fsb, count_fsb, &tirec,
1267 				&nimaps, 0);
1268 		if (error)
1269 			goto out;
1270 		ASSERT(nimaps == 1);
1271 		ASSERT(tirec.br_startblock != DELAYSTARTBLOCK);
1272 
1273 		trace_xfs_swap_extent_rmap_remap(tip, &tirec);
1274 		ilen = tirec.br_blockcount;
1275 
1276 		/* Unmap the old blocks in the source file. */
1277 		while (tirec.br_blockcount) {
1278 			ASSERT(tp->t_highest_agno == NULLAGNUMBER);
1279 			trace_xfs_swap_extent_rmap_remap_piece(tip, &tirec);
1280 
1281 			/* Read extent from the source file */
1282 			nimaps = 1;
1283 			error = xfs_bmapi_read(ip, tirec.br_startoff,
1284 					tirec.br_blockcount, &irec,
1285 					&nimaps, 0);
1286 			if (error)
1287 				goto out;
1288 			ASSERT(nimaps == 1);
1289 			ASSERT(tirec.br_startoff == irec.br_startoff);
1290 			trace_xfs_swap_extent_rmap_remap_piece(ip, &irec);
1291 
1292 			/* Trim the extent. */
1293 			uirec = tirec;
1294 			uirec.br_blockcount = rlen = min_t(xfs_filblks_t,
1295 					tirec.br_blockcount,
1296 					irec.br_blockcount);
1297 			trace_xfs_swap_extent_rmap_remap_piece(tip, &uirec);
1298 
1299 			if (xfs_bmap_is_real_extent(&uirec)) {
1300 				error = xfs_iext_count_extend(tp, ip,
1301 						XFS_DATA_FORK,
1302 						XFS_IEXT_SWAP_RMAP_CNT);
1303 				if (error)
1304 					goto out;
1305 			}
1306 
1307 			if (xfs_bmap_is_real_extent(&irec)) {
1308 				error = xfs_iext_count_extend(tp, tip,
1309 						XFS_DATA_FORK,
1310 						XFS_IEXT_SWAP_RMAP_CNT);
1311 				if (error)
1312 					goto out;
1313 			}
1314 
1315 			/* Remove the mapping from the donor file. */
1316 			xfs_bmap_unmap_extent(tp, tip, XFS_DATA_FORK, &uirec);
1317 
1318 			/* Remove the mapping from the source file. */
1319 			xfs_bmap_unmap_extent(tp, ip, XFS_DATA_FORK, &irec);
1320 
1321 			/* Map the donor file's blocks into the source file. */
1322 			xfs_bmap_map_extent(tp, ip, XFS_DATA_FORK, &uirec);
1323 
1324 			/* Map the source file's blocks into the donor file. */
1325 			xfs_bmap_map_extent(tp, tip, XFS_DATA_FORK, &irec);
1326 
1327 			error = xfs_defer_finish(tpp);
1328 			tp = *tpp;
1329 			if (error)
1330 				goto out;
1331 
1332 			tirec.br_startoff += rlen;
1333 			if (tirec.br_startblock != HOLESTARTBLOCK &&
1334 			    tirec.br_startblock != DELAYSTARTBLOCK)
1335 				tirec.br_startblock += rlen;
1336 			tirec.br_blockcount -= rlen;
1337 		}
1338 
1339 		/* Roll on... */
1340 		count_fsb -= ilen;
1341 		offset_fsb += ilen;
1342 	}
1343 
1344 	tip->i_diflags2 = tip_flags2;
1345 	return 0;
1346 
1347 out:
1348 	trace_xfs_swap_extent_rmap_error(ip, error, _RET_IP_);
1349 	tip->i_diflags2 = tip_flags2;
1350 	return error;
1351 }
1352 
1353 /* Swap the extents of two files by swapping data forks. */
1354 STATIC int
1355 xfs_swap_extent_forks(
1356 	struct xfs_trans	*tp,
1357 	struct xfs_inode	*ip,
1358 	struct xfs_inode	*tip,
1359 	int			*src_log_flags,
1360 	int			*target_log_flags)
1361 {
1362 	xfs_filblks_t		aforkblks = 0;
1363 	xfs_filblks_t		taforkblks = 0;
1364 	xfs_extnum_t		junk;
1365 	uint64_t		tmp;
1366 	int			error;
1367 
1368 	/*
1369 	 * Count the number of extended attribute blocks
1370 	 */
1371 	if (xfs_inode_has_attr_fork(ip) && ip->i_af.if_nextents > 0 &&
1372 	    ip->i_af.if_format != XFS_DINODE_FMT_LOCAL) {
1373 		error = xfs_bmap_count_blocks(tp, ip, XFS_ATTR_FORK, &junk,
1374 				&aforkblks);
1375 		if (error)
1376 			return error;
1377 	}
1378 	if (xfs_inode_has_attr_fork(tip) && tip->i_af.if_nextents > 0 &&
1379 	    tip->i_af.if_format != XFS_DINODE_FMT_LOCAL) {
1380 		error = xfs_bmap_count_blocks(tp, tip, XFS_ATTR_FORK, &junk,
1381 				&taforkblks);
1382 		if (error)
1383 			return error;
1384 	}
1385 
1386 	/*
1387 	 * Btree format (v3) inodes have the inode number stamped in the bmbt
1388 	 * block headers. We can't start changing the bmbt blocks until the
1389 	 * inode owner change is logged so recovery does the right thing in the
1390 	 * event of a crash. Set the owner change log flags now and leave the
1391 	 * bmbt scan as the last step.
1392 	 */
1393 	if (xfs_has_v3inodes(ip->i_mount)) {
1394 		if (ip->i_df.if_format == XFS_DINODE_FMT_BTREE)
1395 			(*target_log_flags) |= XFS_ILOG_DOWNER;
1396 		if (tip->i_df.if_format == XFS_DINODE_FMT_BTREE)
1397 			(*src_log_flags) |= XFS_ILOG_DOWNER;
1398 	}
1399 
1400 	/*
1401 	 * Swap the data forks of the inodes
1402 	 */
1403 	swap(ip->i_df, tip->i_df);
1404 
1405 	/*
1406 	 * Fix the on-disk inode values
1407 	 */
1408 	tmp = (uint64_t)ip->i_nblocks;
1409 	ip->i_nblocks = tip->i_nblocks - taforkblks + aforkblks;
1410 	tip->i_nblocks = tmp + taforkblks - aforkblks;
1411 
1412 	/*
1413 	 * The extents in the source inode could still contain speculative
1414 	 * preallocation beyond EOF (e.g. the file is open but not modified
1415 	 * while defrag is in progress). In that case, we need to copy over the
1416 	 * number of delalloc blocks the data fork in the source inode is
1417 	 * tracking beyond EOF so that when the fork is truncated away when the
1418 	 * temporary inode is unlinked we don't underrun the i_delayed_blks
1419 	 * counter on that inode.
1420 	 */
1421 	ASSERT(tip->i_delayed_blks == 0);
1422 	tip->i_delayed_blks = ip->i_delayed_blks;
1423 	ip->i_delayed_blks = 0;
1424 
1425 	switch (ip->i_df.if_format) {
1426 	case XFS_DINODE_FMT_EXTENTS:
1427 		(*src_log_flags) |= XFS_ILOG_DEXT;
1428 		break;
1429 	case XFS_DINODE_FMT_BTREE:
1430 		ASSERT(!xfs_has_v3inodes(ip->i_mount) ||
1431 		       (*src_log_flags & XFS_ILOG_DOWNER));
1432 		(*src_log_flags) |= XFS_ILOG_DBROOT;
1433 		break;
1434 	}
1435 
1436 	switch (tip->i_df.if_format) {
1437 	case XFS_DINODE_FMT_EXTENTS:
1438 		(*target_log_flags) |= XFS_ILOG_DEXT;
1439 		break;
1440 	case XFS_DINODE_FMT_BTREE:
1441 		(*target_log_flags) |= XFS_ILOG_DBROOT;
1442 		ASSERT(!xfs_has_v3inodes(ip->i_mount) ||
1443 		       (*target_log_flags & XFS_ILOG_DOWNER));
1444 		break;
1445 	}
1446 
1447 	return 0;
1448 }
1449 
1450 /*
1451  * Fix up the owners of the bmbt blocks to refer to the current inode. The
1452  * change owner scan attempts to order all modified buffers in the current
1453  * transaction. In the event of ordered buffer failure, the offending buffer is
1454  * physically logged as a fallback and the scan returns -EAGAIN. We must roll
1455  * the transaction in this case to replenish the fallback log reservation and
1456  * restart the scan. This process repeats until the scan completes.
1457  */
1458 static int
1459 xfs_swap_change_owner(
1460 	struct xfs_trans	**tpp,
1461 	struct xfs_inode	*ip,
1462 	struct xfs_inode	*tmpip)
1463 {
1464 	int			error;
1465 	struct xfs_trans	*tp = *tpp;
1466 
1467 	do {
1468 		error = xfs_bmbt_change_owner(tp, ip, XFS_DATA_FORK, ip->i_ino,
1469 					      NULL);
1470 		/* success or fatal error */
1471 		if (error != -EAGAIN)
1472 			break;
1473 
1474 		error = xfs_trans_roll(tpp);
1475 		if (error)
1476 			break;
1477 		tp = *tpp;
1478 
1479 		/*
1480 		 * Redirty both inodes so they can relog and keep the log tail
1481 		 * moving forward.
1482 		 */
1483 		xfs_trans_ijoin(tp, ip, 0);
1484 		xfs_trans_ijoin(tp, tmpip, 0);
1485 		xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1486 		xfs_trans_log_inode(tp, tmpip, XFS_ILOG_CORE);
1487 	} while (true);
1488 
1489 	return error;
1490 }
1491 
1492 int
1493 xfs_swap_extents(
1494 	struct xfs_inode	*ip,	/* target inode */
1495 	struct xfs_inode	*tip,	/* tmp inode */
1496 	struct xfs_swapext	*sxp)
1497 {
1498 	struct xfs_mount	*mp = ip->i_mount;
1499 	struct xfs_trans	*tp;
1500 	struct xfs_bstat	*sbp = &sxp->sx_stat;
1501 	int			src_log_flags, target_log_flags;
1502 	int			error = 0;
1503 	uint64_t		f;
1504 	int			resblks = 0;
1505 	unsigned int		flags = 0;
1506 	struct timespec64	ctime, mtime;
1507 
1508 	/*
1509 	 * Lock the inodes against other IO, page faults and truncate to
1510 	 * begin with.  Then we can ensure the inodes are flushed and have no
1511 	 * page cache safely. Once we have done this we can take the ilocks and
1512 	 * do the rest of the checks.
1513 	 */
1514 	lock_two_nondirectories(VFS_I(ip), VFS_I(tip));
1515 	filemap_invalidate_lock_two(VFS_I(ip)->i_mapping,
1516 				    VFS_I(tip)->i_mapping);
1517 
1518 	/* Verify that both files have the same format */
1519 	if ((VFS_I(ip)->i_mode & S_IFMT) != (VFS_I(tip)->i_mode & S_IFMT)) {
1520 		error = -EINVAL;
1521 		goto out_unlock;
1522 	}
1523 
1524 	/* Verify both files are either real-time or non-realtime */
1525 	if (XFS_IS_REALTIME_INODE(ip) != XFS_IS_REALTIME_INODE(tip)) {
1526 		error = -EINVAL;
1527 		goto out_unlock;
1528 	}
1529 
1530 	error = xfs_qm_dqattach(ip);
1531 	if (error)
1532 		goto out_unlock;
1533 
1534 	error = xfs_qm_dqattach(tip);
1535 	if (error)
1536 		goto out_unlock;
1537 
1538 	error = xfs_swap_extent_flush(ip);
1539 	if (error)
1540 		goto out_unlock;
1541 	error = xfs_swap_extent_flush(tip);
1542 	if (error)
1543 		goto out_unlock;
1544 
1545 	if (xfs_inode_has_cow_data(tip)) {
1546 		error = xfs_reflink_cancel_cow_range(tip, 0, NULLFILEOFF, true);
1547 		if (error)
1548 			goto out_unlock;
1549 	}
1550 
1551 	/*
1552 	 * Extent "swapping" with rmap requires a permanent reservation and
1553 	 * a block reservation because it's really just a remap operation
1554 	 * performed with log redo items!
1555 	 */
1556 	if (xfs_has_rmapbt(mp)) {
1557 		int		w = XFS_DATA_FORK;
1558 		uint32_t	ipnext = ip->i_df.if_nextents;
1559 		uint32_t	tipnext	= tip->i_df.if_nextents;
1560 
1561 		/*
1562 		 * Conceptually this shouldn't affect the shape of either bmbt,
1563 		 * but since we atomically move extents one by one, we reserve
1564 		 * enough space to rebuild both trees.
1565 		 */
1566 		resblks = XFS_SWAP_RMAP_SPACE_RES(mp, ipnext, w);
1567 		resblks +=  XFS_SWAP_RMAP_SPACE_RES(mp, tipnext, w);
1568 
1569 		/*
1570 		 * If either inode straddles a bmapbt block allocation boundary,
1571 		 * the rmapbt algorithm triggers repeated allocs and frees as
1572 		 * extents are remapped. This can exhaust the block reservation
1573 		 * prematurely and cause shutdown. Return freed blocks to the
1574 		 * transaction reservation to counter this behavior.
1575 		 */
1576 		flags |= XFS_TRANS_RES_FDBLKS;
1577 	}
1578 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, flags,
1579 				&tp);
1580 	if (error)
1581 		goto out_unlock;
1582 
1583 	/*
1584 	 * Lock and join the inodes to the tansaction so that transaction commit
1585 	 * or cancel will unlock the inodes from this point onwards.
1586 	 */
1587 	xfs_lock_two_inodes(ip, XFS_ILOCK_EXCL, tip, XFS_ILOCK_EXCL);
1588 	xfs_trans_ijoin(tp, ip, 0);
1589 	xfs_trans_ijoin(tp, tip, 0);
1590 
1591 
1592 	/* Verify all data are being swapped */
1593 	if (sxp->sx_offset != 0 ||
1594 	    sxp->sx_length != ip->i_disk_size ||
1595 	    sxp->sx_length != tip->i_disk_size) {
1596 		error = -EFAULT;
1597 		goto out_trans_cancel;
1598 	}
1599 
1600 	trace_xfs_swap_extent_before(ip, 0);
1601 	trace_xfs_swap_extent_before(tip, 1);
1602 
1603 	/* check inode formats now that data is flushed */
1604 	error = xfs_swap_extents_check_format(ip, tip);
1605 	if (error) {
1606 		xfs_notice(mp,
1607 		    "%s: inode 0x%llx format is incompatible for exchanging.",
1608 				__func__, ip->i_ino);
1609 		goto out_trans_cancel;
1610 	}
1611 
1612 	/*
1613 	 * Compare the current change & modify times with that
1614 	 * passed in.  If they differ, we abort this swap.
1615 	 * This is the mechanism used to ensure the calling
1616 	 * process that the file was not changed out from
1617 	 * under it.
1618 	 */
1619 	ctime = inode_get_ctime(VFS_I(ip));
1620 	mtime = inode_get_mtime(VFS_I(ip));
1621 	if ((sbp->bs_ctime.tv_sec != ctime.tv_sec) ||
1622 	    (sbp->bs_ctime.tv_nsec != ctime.tv_nsec) ||
1623 	    (sbp->bs_mtime.tv_sec != mtime.tv_sec) ||
1624 	    (sbp->bs_mtime.tv_nsec != mtime.tv_nsec)) {
1625 		error = -EBUSY;
1626 		goto out_trans_cancel;
1627 	}
1628 
1629 	/*
1630 	 * Note the trickiness in setting the log flags - we set the owner log
1631 	 * flag on the opposite inode (i.e. the inode we are setting the new
1632 	 * owner to be) because once we swap the forks and log that, log
1633 	 * recovery is going to see the fork as owned by the swapped inode,
1634 	 * not the pre-swapped inodes.
1635 	 */
1636 	src_log_flags = XFS_ILOG_CORE;
1637 	target_log_flags = XFS_ILOG_CORE;
1638 
1639 	if (xfs_has_rmapbt(mp))
1640 		error = xfs_swap_extent_rmap(&tp, ip, tip);
1641 	else
1642 		error = xfs_swap_extent_forks(tp, ip, tip, &src_log_flags,
1643 				&target_log_flags);
1644 	if (error)
1645 		goto out_trans_cancel;
1646 
1647 	/* Do we have to swap reflink flags? */
1648 	if ((ip->i_diflags2 & XFS_DIFLAG2_REFLINK) ^
1649 	    (tip->i_diflags2 & XFS_DIFLAG2_REFLINK)) {
1650 		f = ip->i_diflags2 & XFS_DIFLAG2_REFLINK;
1651 		ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
1652 		ip->i_diflags2 |= tip->i_diflags2 & XFS_DIFLAG2_REFLINK;
1653 		tip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
1654 		tip->i_diflags2 |= f & XFS_DIFLAG2_REFLINK;
1655 	}
1656 
1657 	/* Swap the cow forks. */
1658 	if (xfs_has_reflink(mp)) {
1659 		ASSERT(!ip->i_cowfp ||
1660 		       ip->i_cowfp->if_format == XFS_DINODE_FMT_EXTENTS);
1661 		ASSERT(!tip->i_cowfp ||
1662 		       tip->i_cowfp->if_format == XFS_DINODE_FMT_EXTENTS);
1663 
1664 		swap(ip->i_cowfp, tip->i_cowfp);
1665 
1666 		if (ip->i_cowfp && ip->i_cowfp->if_bytes)
1667 			xfs_inode_set_cowblocks_tag(ip);
1668 		else
1669 			xfs_inode_clear_cowblocks_tag(ip);
1670 		if (tip->i_cowfp && tip->i_cowfp->if_bytes)
1671 			xfs_inode_set_cowblocks_tag(tip);
1672 		else
1673 			xfs_inode_clear_cowblocks_tag(tip);
1674 	}
1675 
1676 	xfs_trans_log_inode(tp, ip,  src_log_flags);
1677 	xfs_trans_log_inode(tp, tip, target_log_flags);
1678 
1679 	/*
1680 	 * The extent forks have been swapped, but crc=1,rmapbt=0 filesystems
1681 	 * have inode number owner values in the bmbt blocks that still refer to
1682 	 * the old inode. Scan each bmbt to fix up the owner values with the
1683 	 * inode number of the current inode.
1684 	 */
1685 	if (src_log_flags & XFS_ILOG_DOWNER) {
1686 		error = xfs_swap_change_owner(&tp, ip, tip);
1687 		if (error)
1688 			goto out_trans_cancel;
1689 	}
1690 	if (target_log_flags & XFS_ILOG_DOWNER) {
1691 		error = xfs_swap_change_owner(&tp, tip, ip);
1692 		if (error)
1693 			goto out_trans_cancel;
1694 	}
1695 
1696 	/*
1697 	 * If this is a synchronous mount, make sure that the
1698 	 * transaction goes to disk before returning to the user.
1699 	 */
1700 	if (xfs_has_wsync(mp))
1701 		xfs_trans_set_sync(tp);
1702 
1703 	error = xfs_trans_commit(tp);
1704 
1705 	trace_xfs_swap_extent_after(ip, 0);
1706 	trace_xfs_swap_extent_after(tip, 1);
1707 
1708 out_unlock_ilock:
1709 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1710 	xfs_iunlock(tip, XFS_ILOCK_EXCL);
1711 out_unlock:
1712 	filemap_invalidate_unlock_two(VFS_I(ip)->i_mapping,
1713 				      VFS_I(tip)->i_mapping);
1714 	unlock_two_nondirectories(VFS_I(ip), VFS_I(tip));
1715 	return error;
1716 
1717 out_trans_cancel:
1718 	xfs_trans_cancel(tp);
1719 	goto out_unlock_ilock;
1720 }
1721