1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * Copyright (c) 2012 Red Hat, Inc. 4 * All Rights Reserved. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as 8 * published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it would be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 */ 19 #include "xfs.h" 20 #include "xfs_fs.h" 21 #include "xfs_shared.h" 22 #include "xfs_format.h" 23 #include "xfs_log_format.h" 24 #include "xfs_trans_resv.h" 25 #include "xfs_bit.h" 26 #include "xfs_mount.h" 27 #include "xfs_da_format.h" 28 #include "xfs_inode.h" 29 #include "xfs_btree.h" 30 #include "xfs_trans.h" 31 #include "xfs_extfree_item.h" 32 #include "xfs_alloc.h" 33 #include "xfs_bmap.h" 34 #include "xfs_bmap_util.h" 35 #include "xfs_bmap_btree.h" 36 #include "xfs_rtalloc.h" 37 #include "xfs_error.h" 38 #include "xfs_quota.h" 39 #include "xfs_trans_space.h" 40 #include "xfs_trace.h" 41 #include "xfs_icache.h" 42 #include "xfs_log.h" 43 44 /* Kernel only BMAP related definitions and functions */ 45 46 /* 47 * Convert the given file system block to a disk block. We have to treat it 48 * differently based on whether the file is a real time file or not, because the 49 * bmap code does. 50 */ 51 xfs_daddr_t 52 xfs_fsb_to_db(struct xfs_inode *ip, xfs_fsblock_t fsb) 53 { 54 return (XFS_IS_REALTIME_INODE(ip) ? \ 55 (xfs_daddr_t)XFS_FSB_TO_BB((ip)->i_mount, (fsb)) : \ 56 XFS_FSB_TO_DADDR((ip)->i_mount, (fsb))); 57 } 58 59 /* 60 * Routine to zero an extent on disk allocated to the specific inode. 61 * 62 * The VFS functions take a linearised filesystem block offset, so we have to 63 * convert the sparse xfs fsb to the right format first. 64 * VFS types are real funky, too. 65 */ 66 int 67 xfs_zero_extent( 68 struct xfs_inode *ip, 69 xfs_fsblock_t start_fsb, 70 xfs_off_t count_fsb) 71 { 72 struct xfs_mount *mp = ip->i_mount; 73 xfs_daddr_t sector = xfs_fsb_to_db(ip, start_fsb); 74 sector_t block = XFS_BB_TO_FSBT(mp, sector); 75 ssize_t size = XFS_FSB_TO_B(mp, count_fsb); 76 77 if (IS_DAX(VFS_I(ip))) 78 return dax_clear_blocks(VFS_I(ip), block, size); 79 80 /* 81 * let the block layer decide on the fastest method of 82 * implementing the zeroing. 83 */ 84 return sb_issue_zeroout(mp->m_super, block, count_fsb, GFP_NOFS); 85 86 } 87 88 /* 89 * Routine to be called at transaction's end by xfs_bmapi, xfs_bunmapi 90 * caller. Frees all the extents that need freeing, which must be done 91 * last due to locking considerations. We never free any extents in 92 * the first transaction. 93 * 94 * If an inode *ip is provided, rejoin it to the transaction if 95 * the transaction was committed. 96 */ 97 int /* error */ 98 xfs_bmap_finish( 99 struct xfs_trans **tp, /* transaction pointer addr */ 100 struct xfs_bmap_free *flist, /* i/o: list extents to free */ 101 struct xfs_inode *ip) 102 { 103 struct xfs_efd_log_item *efd; /* extent free data */ 104 struct xfs_efi_log_item *efi; /* extent free intention */ 105 int error; /* error return value */ 106 int committed;/* xact committed or not */ 107 struct xfs_bmap_free_item *free; /* free extent item */ 108 struct xfs_bmap_free_item *next; /* next item on free list */ 109 110 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES); 111 if (flist->xbf_count == 0) 112 return 0; 113 114 efi = xfs_trans_get_efi(*tp, flist->xbf_count); 115 for (free = flist->xbf_first; free; free = free->xbfi_next) 116 xfs_trans_log_efi_extent(*tp, efi, free->xbfi_startblock, 117 free->xbfi_blockcount); 118 119 error = __xfs_trans_roll(tp, ip, &committed); 120 if (error) { 121 /* 122 * If the transaction was committed, drop the EFD reference 123 * since we're bailing out of here. The other reference is 124 * dropped when the EFI hits the AIL. 125 * 126 * If the transaction was not committed, the EFI is freed by the 127 * EFI item unlock handler on abort. Also, we have a new 128 * transaction so we should return committed=1 even though we're 129 * returning an error. 130 */ 131 if (committed) { 132 xfs_efi_release(efi); 133 xfs_force_shutdown((*tp)->t_mountp, 134 (error == -EFSCORRUPTED) ? 135 SHUTDOWN_CORRUPT_INCORE : 136 SHUTDOWN_META_IO_ERROR); 137 } 138 return error; 139 } 140 141 /* 142 * Get an EFD and free each extent in the list, logging to the EFD in 143 * the process. The remaining bmap free list is cleaned up by the caller 144 * on error. 145 */ 146 efd = xfs_trans_get_efd(*tp, efi, flist->xbf_count); 147 for (free = flist->xbf_first; free != NULL; free = next) { 148 next = free->xbfi_next; 149 150 error = xfs_trans_free_extent(*tp, efd, free->xbfi_startblock, 151 free->xbfi_blockcount); 152 if (error) 153 return error; 154 155 xfs_bmap_del_free(flist, NULL, free); 156 } 157 158 return 0; 159 } 160 161 int 162 xfs_bmap_rtalloc( 163 struct xfs_bmalloca *ap) /* bmap alloc argument struct */ 164 { 165 xfs_alloctype_t atype = 0; /* type for allocation routines */ 166 int error; /* error return value */ 167 xfs_mount_t *mp; /* mount point structure */ 168 xfs_extlen_t prod = 0; /* product factor for allocators */ 169 xfs_extlen_t ralen = 0; /* realtime allocation length */ 170 xfs_extlen_t align; /* minimum allocation alignment */ 171 xfs_rtblock_t rtb; 172 173 mp = ap->ip->i_mount; 174 align = xfs_get_extsz_hint(ap->ip); 175 prod = align / mp->m_sb.sb_rextsize; 176 error = xfs_bmap_extsize_align(mp, &ap->got, &ap->prev, 177 align, 1, ap->eof, 0, 178 ap->conv, &ap->offset, &ap->length); 179 if (error) 180 return error; 181 ASSERT(ap->length); 182 ASSERT(ap->length % mp->m_sb.sb_rextsize == 0); 183 184 /* 185 * If the offset & length are not perfectly aligned 186 * then kill prod, it will just get us in trouble. 187 */ 188 if (do_mod(ap->offset, align) || ap->length % align) 189 prod = 1; 190 /* 191 * Set ralen to be the actual requested length in rtextents. 192 */ 193 ralen = ap->length / mp->m_sb.sb_rextsize; 194 /* 195 * If the old value was close enough to MAXEXTLEN that 196 * we rounded up to it, cut it back so it's valid again. 197 * Note that if it's a really large request (bigger than 198 * MAXEXTLEN), we don't hear about that number, and can't 199 * adjust the starting point to match it. 200 */ 201 if (ralen * mp->m_sb.sb_rextsize >= MAXEXTLEN) 202 ralen = MAXEXTLEN / mp->m_sb.sb_rextsize; 203 204 /* 205 * Lock out other modifications to the RT bitmap inode. 206 */ 207 xfs_ilock(mp->m_rbmip, XFS_ILOCK_EXCL); 208 xfs_trans_ijoin(ap->tp, mp->m_rbmip, XFS_ILOCK_EXCL); 209 210 /* 211 * If it's an allocation to an empty file at offset 0, 212 * pick an extent that will space things out in the rt area. 213 */ 214 if (ap->eof && ap->offset == 0) { 215 xfs_rtblock_t uninitialized_var(rtx); /* realtime extent no */ 216 217 error = xfs_rtpick_extent(mp, ap->tp, ralen, &rtx); 218 if (error) 219 return error; 220 ap->blkno = rtx * mp->m_sb.sb_rextsize; 221 } else { 222 ap->blkno = 0; 223 } 224 225 xfs_bmap_adjacent(ap); 226 227 /* 228 * Realtime allocation, done through xfs_rtallocate_extent. 229 */ 230 atype = ap->blkno == 0 ? XFS_ALLOCTYPE_ANY_AG : XFS_ALLOCTYPE_NEAR_BNO; 231 do_div(ap->blkno, mp->m_sb.sb_rextsize); 232 rtb = ap->blkno; 233 ap->length = ralen; 234 if ((error = xfs_rtallocate_extent(ap->tp, ap->blkno, 1, ap->length, 235 &ralen, atype, ap->wasdel, prod, &rtb))) 236 return error; 237 if (rtb == NULLFSBLOCK && prod > 1 && 238 (error = xfs_rtallocate_extent(ap->tp, ap->blkno, 1, 239 ap->length, &ralen, atype, 240 ap->wasdel, 1, &rtb))) 241 return error; 242 ap->blkno = rtb; 243 if (ap->blkno != NULLFSBLOCK) { 244 ap->blkno *= mp->m_sb.sb_rextsize; 245 ralen *= mp->m_sb.sb_rextsize; 246 ap->length = ralen; 247 ap->ip->i_d.di_nblocks += ralen; 248 xfs_trans_log_inode(ap->tp, ap->ip, XFS_ILOG_CORE); 249 if (ap->wasdel) 250 ap->ip->i_delayed_blks -= ralen; 251 /* 252 * Adjust the disk quota also. This was reserved 253 * earlier. 254 */ 255 xfs_trans_mod_dquot_byino(ap->tp, ap->ip, 256 ap->wasdel ? XFS_TRANS_DQ_DELRTBCOUNT : 257 XFS_TRANS_DQ_RTBCOUNT, (long) ralen); 258 259 /* Zero the extent if we were asked to do so */ 260 if (ap->userdata & XFS_ALLOC_USERDATA_ZERO) { 261 error = xfs_zero_extent(ap->ip, ap->blkno, ap->length); 262 if (error) 263 return error; 264 } 265 } else { 266 ap->length = 0; 267 } 268 return 0; 269 } 270 271 /* 272 * Check if the endoff is outside the last extent. If so the caller will grow 273 * the allocation to a stripe unit boundary. All offsets are considered outside 274 * the end of file for an empty fork, so 1 is returned in *eof in that case. 275 */ 276 int 277 xfs_bmap_eof( 278 struct xfs_inode *ip, 279 xfs_fileoff_t endoff, 280 int whichfork, 281 int *eof) 282 { 283 struct xfs_bmbt_irec rec; 284 int error; 285 286 error = xfs_bmap_last_extent(NULL, ip, whichfork, &rec, eof); 287 if (error || *eof) 288 return error; 289 290 *eof = endoff >= rec.br_startoff + rec.br_blockcount; 291 return 0; 292 } 293 294 /* 295 * Extent tree block counting routines. 296 */ 297 298 /* 299 * Count leaf blocks given a range of extent records. 300 */ 301 STATIC void 302 xfs_bmap_count_leaves( 303 xfs_ifork_t *ifp, 304 xfs_extnum_t idx, 305 int numrecs, 306 int *count) 307 { 308 int b; 309 310 for (b = 0; b < numrecs; b++) { 311 xfs_bmbt_rec_host_t *frp = xfs_iext_get_ext(ifp, idx + b); 312 *count += xfs_bmbt_get_blockcount(frp); 313 } 314 } 315 316 /* 317 * Count leaf blocks given a range of extent records originally 318 * in btree format. 319 */ 320 STATIC void 321 xfs_bmap_disk_count_leaves( 322 struct xfs_mount *mp, 323 struct xfs_btree_block *block, 324 int numrecs, 325 int *count) 326 { 327 int b; 328 xfs_bmbt_rec_t *frp; 329 330 for (b = 1; b <= numrecs; b++) { 331 frp = XFS_BMBT_REC_ADDR(mp, block, b); 332 *count += xfs_bmbt_disk_get_blockcount(frp); 333 } 334 } 335 336 /* 337 * Recursively walks each level of a btree 338 * to count total fsblocks in use. 339 */ 340 STATIC int /* error */ 341 xfs_bmap_count_tree( 342 xfs_mount_t *mp, /* file system mount point */ 343 xfs_trans_t *tp, /* transaction pointer */ 344 xfs_ifork_t *ifp, /* inode fork pointer */ 345 xfs_fsblock_t blockno, /* file system block number */ 346 int levelin, /* level in btree */ 347 int *count) /* Count of blocks */ 348 { 349 int error; 350 xfs_buf_t *bp, *nbp; 351 int level = levelin; 352 __be64 *pp; 353 xfs_fsblock_t bno = blockno; 354 xfs_fsblock_t nextbno; 355 struct xfs_btree_block *block, *nextblock; 356 int numrecs; 357 358 error = xfs_btree_read_bufl(mp, tp, bno, 0, &bp, XFS_BMAP_BTREE_REF, 359 &xfs_bmbt_buf_ops); 360 if (error) 361 return error; 362 *count += 1; 363 block = XFS_BUF_TO_BLOCK(bp); 364 365 if (--level) { 366 /* Not at node above leaves, count this level of nodes */ 367 nextbno = be64_to_cpu(block->bb_u.l.bb_rightsib); 368 while (nextbno != NULLFSBLOCK) { 369 error = xfs_btree_read_bufl(mp, tp, nextbno, 0, &nbp, 370 XFS_BMAP_BTREE_REF, 371 &xfs_bmbt_buf_ops); 372 if (error) 373 return error; 374 *count += 1; 375 nextblock = XFS_BUF_TO_BLOCK(nbp); 376 nextbno = be64_to_cpu(nextblock->bb_u.l.bb_rightsib); 377 xfs_trans_brelse(tp, nbp); 378 } 379 380 /* Dive to the next level */ 381 pp = XFS_BMBT_PTR_ADDR(mp, block, 1, mp->m_bmap_dmxr[1]); 382 bno = be64_to_cpu(*pp); 383 if (unlikely((error = 384 xfs_bmap_count_tree(mp, tp, ifp, bno, level, count)) < 0)) { 385 xfs_trans_brelse(tp, bp); 386 XFS_ERROR_REPORT("xfs_bmap_count_tree(1)", 387 XFS_ERRLEVEL_LOW, mp); 388 return -EFSCORRUPTED; 389 } 390 xfs_trans_brelse(tp, bp); 391 } else { 392 /* count all level 1 nodes and their leaves */ 393 for (;;) { 394 nextbno = be64_to_cpu(block->bb_u.l.bb_rightsib); 395 numrecs = be16_to_cpu(block->bb_numrecs); 396 xfs_bmap_disk_count_leaves(mp, block, numrecs, count); 397 xfs_trans_brelse(tp, bp); 398 if (nextbno == NULLFSBLOCK) 399 break; 400 bno = nextbno; 401 error = xfs_btree_read_bufl(mp, tp, bno, 0, &bp, 402 XFS_BMAP_BTREE_REF, 403 &xfs_bmbt_buf_ops); 404 if (error) 405 return error; 406 *count += 1; 407 block = XFS_BUF_TO_BLOCK(bp); 408 } 409 } 410 return 0; 411 } 412 413 /* 414 * Count fsblocks of the given fork. 415 */ 416 int /* error */ 417 xfs_bmap_count_blocks( 418 xfs_trans_t *tp, /* transaction pointer */ 419 xfs_inode_t *ip, /* incore inode */ 420 int whichfork, /* data or attr fork */ 421 int *count) /* out: count of blocks */ 422 { 423 struct xfs_btree_block *block; /* current btree block */ 424 xfs_fsblock_t bno; /* block # of "block" */ 425 xfs_ifork_t *ifp; /* fork structure */ 426 int level; /* btree level, for checking */ 427 xfs_mount_t *mp; /* file system mount structure */ 428 __be64 *pp; /* pointer to block address */ 429 430 bno = NULLFSBLOCK; 431 mp = ip->i_mount; 432 ifp = XFS_IFORK_PTR(ip, whichfork); 433 if ( XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_EXTENTS ) { 434 xfs_bmap_count_leaves(ifp, 0, 435 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t), 436 count); 437 return 0; 438 } 439 440 /* 441 * Root level must use BMAP_BROOT_PTR_ADDR macro to get ptr out. 442 */ 443 block = ifp->if_broot; 444 level = be16_to_cpu(block->bb_level); 445 ASSERT(level > 0); 446 pp = XFS_BMAP_BROOT_PTR_ADDR(mp, block, 1, ifp->if_broot_bytes); 447 bno = be64_to_cpu(*pp); 448 ASSERT(bno != NULLFSBLOCK); 449 ASSERT(XFS_FSB_TO_AGNO(mp, bno) < mp->m_sb.sb_agcount); 450 ASSERT(XFS_FSB_TO_AGBNO(mp, bno) < mp->m_sb.sb_agblocks); 451 452 if (unlikely(xfs_bmap_count_tree(mp, tp, ifp, bno, level, count) < 0)) { 453 XFS_ERROR_REPORT("xfs_bmap_count_blocks(2)", XFS_ERRLEVEL_LOW, 454 mp); 455 return -EFSCORRUPTED; 456 } 457 458 return 0; 459 } 460 461 /* 462 * returns 1 for success, 0 if we failed to map the extent. 463 */ 464 STATIC int 465 xfs_getbmapx_fix_eof_hole( 466 xfs_inode_t *ip, /* xfs incore inode pointer */ 467 struct getbmapx *out, /* output structure */ 468 int prealloced, /* this is a file with 469 * preallocated data space */ 470 __int64_t end, /* last block requested */ 471 xfs_fsblock_t startblock) 472 { 473 __int64_t fixlen; 474 xfs_mount_t *mp; /* file system mount point */ 475 xfs_ifork_t *ifp; /* inode fork pointer */ 476 xfs_extnum_t lastx; /* last extent pointer */ 477 xfs_fileoff_t fileblock; 478 479 if (startblock == HOLESTARTBLOCK) { 480 mp = ip->i_mount; 481 out->bmv_block = -1; 482 fixlen = XFS_FSB_TO_BB(mp, XFS_B_TO_FSB(mp, XFS_ISIZE(ip))); 483 fixlen -= out->bmv_offset; 484 if (prealloced && out->bmv_offset + out->bmv_length == end) { 485 /* Came to hole at EOF. Trim it. */ 486 if (fixlen <= 0) 487 return 0; 488 out->bmv_length = fixlen; 489 } 490 } else { 491 if (startblock == DELAYSTARTBLOCK) 492 out->bmv_block = -2; 493 else 494 out->bmv_block = xfs_fsb_to_db(ip, startblock); 495 fileblock = XFS_BB_TO_FSB(ip->i_mount, out->bmv_offset); 496 ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK); 497 if (xfs_iext_bno_to_ext(ifp, fileblock, &lastx) && 498 (lastx == (ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t))-1)) 499 out->bmv_oflags |= BMV_OF_LAST; 500 } 501 502 return 1; 503 } 504 505 /* 506 * Get inode's extents as described in bmv, and format for output. 507 * Calls formatter to fill the user's buffer until all extents 508 * are mapped, until the passed-in bmv->bmv_count slots have 509 * been filled, or until the formatter short-circuits the loop, 510 * if it is tracking filled-in extents on its own. 511 */ 512 int /* error code */ 513 xfs_getbmap( 514 xfs_inode_t *ip, 515 struct getbmapx *bmv, /* user bmap structure */ 516 xfs_bmap_format_t formatter, /* format to user */ 517 void *arg) /* formatter arg */ 518 { 519 __int64_t bmvend; /* last block requested */ 520 int error = 0; /* return value */ 521 __int64_t fixlen; /* length for -1 case */ 522 int i; /* extent number */ 523 int lock; /* lock state */ 524 xfs_bmbt_irec_t *map; /* buffer for user's data */ 525 xfs_mount_t *mp; /* file system mount point */ 526 int nex; /* # of user extents can do */ 527 int nexleft; /* # of user extents left */ 528 int subnex; /* # of bmapi's can do */ 529 int nmap; /* number of map entries */ 530 struct getbmapx *out; /* output structure */ 531 int whichfork; /* data or attr fork */ 532 int prealloced; /* this is a file with 533 * preallocated data space */ 534 int iflags; /* interface flags */ 535 int bmapi_flags; /* flags for xfs_bmapi */ 536 int cur_ext = 0; 537 538 mp = ip->i_mount; 539 iflags = bmv->bmv_iflags; 540 whichfork = iflags & BMV_IF_ATTRFORK ? XFS_ATTR_FORK : XFS_DATA_FORK; 541 542 if (whichfork == XFS_ATTR_FORK) { 543 if (XFS_IFORK_Q(ip)) { 544 if (ip->i_d.di_aformat != XFS_DINODE_FMT_EXTENTS && 545 ip->i_d.di_aformat != XFS_DINODE_FMT_BTREE && 546 ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL) 547 return -EINVAL; 548 } else if (unlikely( 549 ip->i_d.di_aformat != 0 && 550 ip->i_d.di_aformat != XFS_DINODE_FMT_EXTENTS)) { 551 XFS_ERROR_REPORT("xfs_getbmap", XFS_ERRLEVEL_LOW, 552 ip->i_mount); 553 return -EFSCORRUPTED; 554 } 555 556 prealloced = 0; 557 fixlen = 1LL << 32; 558 } else { 559 if (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS && 560 ip->i_d.di_format != XFS_DINODE_FMT_BTREE && 561 ip->i_d.di_format != XFS_DINODE_FMT_LOCAL) 562 return -EINVAL; 563 564 if (xfs_get_extsz_hint(ip) || 565 ip->i_d.di_flags & (XFS_DIFLAG_PREALLOC|XFS_DIFLAG_APPEND)){ 566 prealloced = 1; 567 fixlen = mp->m_super->s_maxbytes; 568 } else { 569 prealloced = 0; 570 fixlen = XFS_ISIZE(ip); 571 } 572 } 573 574 if (bmv->bmv_length == -1) { 575 fixlen = XFS_FSB_TO_BB(mp, XFS_B_TO_FSB(mp, fixlen)); 576 bmv->bmv_length = 577 max_t(__int64_t, fixlen - bmv->bmv_offset, 0); 578 } else if (bmv->bmv_length == 0) { 579 bmv->bmv_entries = 0; 580 return 0; 581 } else if (bmv->bmv_length < 0) { 582 return -EINVAL; 583 } 584 585 nex = bmv->bmv_count - 1; 586 if (nex <= 0) 587 return -EINVAL; 588 bmvend = bmv->bmv_offset + bmv->bmv_length; 589 590 591 if (bmv->bmv_count > ULONG_MAX / sizeof(struct getbmapx)) 592 return -ENOMEM; 593 out = kmem_zalloc_large(bmv->bmv_count * sizeof(struct getbmapx), 0); 594 if (!out) 595 return -ENOMEM; 596 597 xfs_ilock(ip, XFS_IOLOCK_SHARED); 598 if (whichfork == XFS_DATA_FORK) { 599 if (!(iflags & BMV_IF_DELALLOC) && 600 (ip->i_delayed_blks || XFS_ISIZE(ip) > ip->i_d.di_size)) { 601 error = filemap_write_and_wait(VFS_I(ip)->i_mapping); 602 if (error) 603 goto out_unlock_iolock; 604 605 /* 606 * Even after flushing the inode, there can still be 607 * delalloc blocks on the inode beyond EOF due to 608 * speculative preallocation. These are not removed 609 * until the release function is called or the inode 610 * is inactivated. Hence we cannot assert here that 611 * ip->i_delayed_blks == 0. 612 */ 613 } 614 615 lock = xfs_ilock_data_map_shared(ip); 616 } else { 617 lock = xfs_ilock_attr_map_shared(ip); 618 } 619 620 /* 621 * Don't let nex be bigger than the number of extents 622 * we can have assuming alternating holes and real extents. 623 */ 624 if (nex > XFS_IFORK_NEXTENTS(ip, whichfork) * 2 + 1) 625 nex = XFS_IFORK_NEXTENTS(ip, whichfork) * 2 + 1; 626 627 bmapi_flags = xfs_bmapi_aflag(whichfork); 628 if (!(iflags & BMV_IF_PREALLOC)) 629 bmapi_flags |= XFS_BMAPI_IGSTATE; 630 631 /* 632 * Allocate enough space to handle "subnex" maps at a time. 633 */ 634 error = -ENOMEM; 635 subnex = 16; 636 map = kmem_alloc(subnex * sizeof(*map), KM_MAYFAIL | KM_NOFS); 637 if (!map) 638 goto out_unlock_ilock; 639 640 bmv->bmv_entries = 0; 641 642 if (XFS_IFORK_NEXTENTS(ip, whichfork) == 0 && 643 (whichfork == XFS_ATTR_FORK || !(iflags & BMV_IF_DELALLOC))) { 644 error = 0; 645 goto out_free_map; 646 } 647 648 nexleft = nex; 649 650 do { 651 nmap = (nexleft > subnex) ? subnex : nexleft; 652 error = xfs_bmapi_read(ip, XFS_BB_TO_FSBT(mp, bmv->bmv_offset), 653 XFS_BB_TO_FSB(mp, bmv->bmv_length), 654 map, &nmap, bmapi_flags); 655 if (error) 656 goto out_free_map; 657 ASSERT(nmap <= subnex); 658 659 for (i = 0; i < nmap && nexleft && bmv->bmv_length; i++) { 660 out[cur_ext].bmv_oflags = 0; 661 if (map[i].br_state == XFS_EXT_UNWRITTEN) 662 out[cur_ext].bmv_oflags |= BMV_OF_PREALLOC; 663 else if (map[i].br_startblock == DELAYSTARTBLOCK) 664 out[cur_ext].bmv_oflags |= BMV_OF_DELALLOC; 665 out[cur_ext].bmv_offset = 666 XFS_FSB_TO_BB(mp, map[i].br_startoff); 667 out[cur_ext].bmv_length = 668 XFS_FSB_TO_BB(mp, map[i].br_blockcount); 669 out[cur_ext].bmv_unused1 = 0; 670 out[cur_ext].bmv_unused2 = 0; 671 672 /* 673 * delayed allocation extents that start beyond EOF can 674 * occur due to speculative EOF allocation when the 675 * delalloc extent is larger than the largest freespace 676 * extent at conversion time. These extents cannot be 677 * converted by data writeback, so can exist here even 678 * if we are not supposed to be finding delalloc 679 * extents. 680 */ 681 if (map[i].br_startblock == DELAYSTARTBLOCK && 682 map[i].br_startoff <= XFS_B_TO_FSB(mp, XFS_ISIZE(ip))) 683 ASSERT((iflags & BMV_IF_DELALLOC) != 0); 684 685 if (map[i].br_startblock == HOLESTARTBLOCK && 686 whichfork == XFS_ATTR_FORK) { 687 /* came to the end of attribute fork */ 688 out[cur_ext].bmv_oflags |= BMV_OF_LAST; 689 goto out_free_map; 690 } 691 692 if (!xfs_getbmapx_fix_eof_hole(ip, &out[cur_ext], 693 prealloced, bmvend, 694 map[i].br_startblock)) 695 goto out_free_map; 696 697 bmv->bmv_offset = 698 out[cur_ext].bmv_offset + 699 out[cur_ext].bmv_length; 700 bmv->bmv_length = 701 max_t(__int64_t, 0, bmvend - bmv->bmv_offset); 702 703 /* 704 * In case we don't want to return the hole, 705 * don't increase cur_ext so that we can reuse 706 * it in the next loop. 707 */ 708 if ((iflags & BMV_IF_NO_HOLES) && 709 map[i].br_startblock == HOLESTARTBLOCK) { 710 memset(&out[cur_ext], 0, sizeof(out[cur_ext])); 711 continue; 712 } 713 714 nexleft--; 715 bmv->bmv_entries++; 716 cur_ext++; 717 } 718 } while (nmap && nexleft && bmv->bmv_length); 719 720 out_free_map: 721 kmem_free(map); 722 out_unlock_ilock: 723 xfs_iunlock(ip, lock); 724 out_unlock_iolock: 725 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 726 727 for (i = 0; i < cur_ext; i++) { 728 int full = 0; /* user array is full */ 729 730 /* format results & advance arg */ 731 error = formatter(&arg, &out[i], &full); 732 if (error || full) 733 break; 734 } 735 736 kmem_free(out); 737 return error; 738 } 739 740 /* 741 * dead simple method of punching delalyed allocation blocks from a range in 742 * the inode. Walks a block at a time so will be slow, but is only executed in 743 * rare error cases so the overhead is not critical. This will always punch out 744 * both the start and end blocks, even if the ranges only partially overlap 745 * them, so it is up to the caller to ensure that partial blocks are not 746 * passed in. 747 */ 748 int 749 xfs_bmap_punch_delalloc_range( 750 struct xfs_inode *ip, 751 xfs_fileoff_t start_fsb, 752 xfs_fileoff_t length) 753 { 754 xfs_fileoff_t remaining = length; 755 int error = 0; 756 757 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 758 759 do { 760 int done; 761 xfs_bmbt_irec_t imap; 762 int nimaps = 1; 763 xfs_fsblock_t firstblock; 764 xfs_bmap_free_t flist; 765 766 /* 767 * Map the range first and check that it is a delalloc extent 768 * before trying to unmap the range. Otherwise we will be 769 * trying to remove a real extent (which requires a 770 * transaction) or a hole, which is probably a bad idea... 771 */ 772 error = xfs_bmapi_read(ip, start_fsb, 1, &imap, &nimaps, 773 XFS_BMAPI_ENTIRE); 774 775 if (error) { 776 /* something screwed, just bail */ 777 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { 778 xfs_alert(ip->i_mount, 779 "Failed delalloc mapping lookup ino %lld fsb %lld.", 780 ip->i_ino, start_fsb); 781 } 782 break; 783 } 784 if (!nimaps) { 785 /* nothing there */ 786 goto next_block; 787 } 788 if (imap.br_startblock != DELAYSTARTBLOCK) { 789 /* been converted, ignore */ 790 goto next_block; 791 } 792 WARN_ON(imap.br_blockcount == 0); 793 794 /* 795 * Note: while we initialise the firstblock/flist pair, they 796 * should never be used because blocks should never be 797 * allocated or freed for a delalloc extent and hence we need 798 * don't cancel or finish them after the xfs_bunmapi() call. 799 */ 800 xfs_bmap_init(&flist, &firstblock); 801 error = xfs_bunmapi(NULL, ip, start_fsb, 1, 0, 1, &firstblock, 802 &flist, &done); 803 if (error) 804 break; 805 806 ASSERT(!flist.xbf_count && !flist.xbf_first); 807 next_block: 808 start_fsb++; 809 remaining--; 810 } while(remaining > 0); 811 812 return error; 813 } 814 815 /* 816 * Test whether it is appropriate to check an inode for and free post EOF 817 * blocks. The 'force' parameter determines whether we should also consider 818 * regular files that are marked preallocated or append-only. 819 */ 820 bool 821 xfs_can_free_eofblocks(struct xfs_inode *ip, bool force) 822 { 823 /* prealloc/delalloc exists only on regular files */ 824 if (!S_ISREG(ip->i_d.di_mode)) 825 return false; 826 827 /* 828 * Zero sized files with no cached pages and delalloc blocks will not 829 * have speculative prealloc/delalloc blocks to remove. 830 */ 831 if (VFS_I(ip)->i_size == 0 && 832 VFS_I(ip)->i_mapping->nrpages == 0 && 833 ip->i_delayed_blks == 0) 834 return false; 835 836 /* If we haven't read in the extent list, then don't do it now. */ 837 if (!(ip->i_df.if_flags & XFS_IFEXTENTS)) 838 return false; 839 840 /* 841 * Do not free real preallocated or append-only files unless the file 842 * has delalloc blocks and we are forced to remove them. 843 */ 844 if (ip->i_d.di_flags & (XFS_DIFLAG_PREALLOC | XFS_DIFLAG_APPEND)) 845 if (!force || ip->i_delayed_blks == 0) 846 return false; 847 848 return true; 849 } 850 851 /* 852 * This is called by xfs_inactive to free any blocks beyond eof 853 * when the link count isn't zero and by xfs_dm_punch_hole() when 854 * punching a hole to EOF. 855 */ 856 int 857 xfs_free_eofblocks( 858 xfs_mount_t *mp, 859 xfs_inode_t *ip, 860 bool need_iolock) 861 { 862 xfs_trans_t *tp; 863 int error; 864 xfs_fileoff_t end_fsb; 865 xfs_fileoff_t last_fsb; 866 xfs_filblks_t map_len; 867 int nimaps; 868 xfs_bmbt_irec_t imap; 869 870 /* 871 * Figure out if there are any blocks beyond the end 872 * of the file. If not, then there is nothing to do. 873 */ 874 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_ISIZE(ip)); 875 last_fsb = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes); 876 if (last_fsb <= end_fsb) 877 return 0; 878 map_len = last_fsb - end_fsb; 879 880 nimaps = 1; 881 xfs_ilock(ip, XFS_ILOCK_SHARED); 882 error = xfs_bmapi_read(ip, end_fsb, map_len, &imap, &nimaps, 0); 883 xfs_iunlock(ip, XFS_ILOCK_SHARED); 884 885 if (!error && (nimaps != 0) && 886 (imap.br_startblock != HOLESTARTBLOCK || 887 ip->i_delayed_blks)) { 888 /* 889 * Attach the dquots to the inode up front. 890 */ 891 error = xfs_qm_dqattach(ip, 0); 892 if (error) 893 return error; 894 895 /* 896 * There are blocks after the end of file. 897 * Free them up now by truncating the file to 898 * its current size. 899 */ 900 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE); 901 902 if (need_iolock) { 903 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { 904 xfs_trans_cancel(tp); 905 return -EAGAIN; 906 } 907 } 908 909 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0); 910 if (error) { 911 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 912 xfs_trans_cancel(tp); 913 if (need_iolock) 914 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 915 return error; 916 } 917 918 xfs_ilock(ip, XFS_ILOCK_EXCL); 919 xfs_trans_ijoin(tp, ip, 0); 920 921 /* 922 * Do not update the on-disk file size. If we update the 923 * on-disk file size and then the system crashes before the 924 * contents of the file are flushed to disk then the files 925 * may be full of holes (ie NULL files bug). 926 */ 927 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 928 XFS_ISIZE(ip)); 929 if (error) { 930 /* 931 * If we get an error at this point we simply don't 932 * bother truncating the file. 933 */ 934 xfs_trans_cancel(tp); 935 } else { 936 error = xfs_trans_commit(tp); 937 if (!error) 938 xfs_inode_clear_eofblocks_tag(ip); 939 } 940 941 xfs_iunlock(ip, XFS_ILOCK_EXCL); 942 if (need_iolock) 943 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 944 } 945 return error; 946 } 947 948 int 949 xfs_alloc_file_space( 950 struct xfs_inode *ip, 951 xfs_off_t offset, 952 xfs_off_t len, 953 int alloc_type) 954 { 955 xfs_mount_t *mp = ip->i_mount; 956 xfs_off_t count; 957 xfs_filblks_t allocated_fsb; 958 xfs_filblks_t allocatesize_fsb; 959 xfs_extlen_t extsz, temp; 960 xfs_fileoff_t startoffset_fsb; 961 xfs_fsblock_t firstfsb; 962 int nimaps; 963 int quota_flag; 964 int rt; 965 xfs_trans_t *tp; 966 xfs_bmbt_irec_t imaps[1], *imapp; 967 xfs_bmap_free_t free_list; 968 uint qblocks, resblks, resrtextents; 969 int error; 970 971 trace_xfs_alloc_file_space(ip); 972 973 if (XFS_FORCED_SHUTDOWN(mp)) 974 return -EIO; 975 976 error = xfs_qm_dqattach(ip, 0); 977 if (error) 978 return error; 979 980 if (len <= 0) 981 return -EINVAL; 982 983 rt = XFS_IS_REALTIME_INODE(ip); 984 extsz = xfs_get_extsz_hint(ip); 985 986 count = len; 987 imapp = &imaps[0]; 988 nimaps = 1; 989 startoffset_fsb = XFS_B_TO_FSBT(mp, offset); 990 allocatesize_fsb = XFS_B_TO_FSB(mp, count); 991 992 /* 993 * Allocate file space until done or until there is an error 994 */ 995 while (allocatesize_fsb && !error) { 996 xfs_fileoff_t s, e; 997 998 /* 999 * Determine space reservations for data/realtime. 1000 */ 1001 if (unlikely(extsz)) { 1002 s = startoffset_fsb; 1003 do_div(s, extsz); 1004 s *= extsz; 1005 e = startoffset_fsb + allocatesize_fsb; 1006 if ((temp = do_mod(startoffset_fsb, extsz))) 1007 e += temp; 1008 if ((temp = do_mod(e, extsz))) 1009 e += extsz - temp; 1010 } else { 1011 s = 0; 1012 e = allocatesize_fsb; 1013 } 1014 1015 /* 1016 * The transaction reservation is limited to a 32-bit block 1017 * count, hence we need to limit the number of blocks we are 1018 * trying to reserve to avoid an overflow. We can't allocate 1019 * more than @nimaps extents, and an extent is limited on disk 1020 * to MAXEXTLEN (21 bits), so use that to enforce the limit. 1021 */ 1022 resblks = min_t(xfs_fileoff_t, (e - s), (MAXEXTLEN * nimaps)); 1023 if (unlikely(rt)) { 1024 resrtextents = qblocks = resblks; 1025 resrtextents /= mp->m_sb.sb_rextsize; 1026 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0); 1027 quota_flag = XFS_QMOPT_RES_RTBLKS; 1028 } else { 1029 resrtextents = 0; 1030 resblks = qblocks = XFS_DIOSTRAT_SPACE_RES(mp, resblks); 1031 quota_flag = XFS_QMOPT_RES_REGBLKS; 1032 } 1033 1034 /* 1035 * Allocate and setup the transaction. 1036 */ 1037 tp = xfs_trans_alloc(mp, XFS_TRANS_DIOSTRAT); 1038 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_write, 1039 resblks, resrtextents); 1040 /* 1041 * Check for running out of space 1042 */ 1043 if (error) { 1044 /* 1045 * Free the transaction structure. 1046 */ 1047 ASSERT(error == -ENOSPC || XFS_FORCED_SHUTDOWN(mp)); 1048 xfs_trans_cancel(tp); 1049 break; 1050 } 1051 xfs_ilock(ip, XFS_ILOCK_EXCL); 1052 error = xfs_trans_reserve_quota_nblks(tp, ip, qblocks, 1053 0, quota_flag); 1054 if (error) 1055 goto error1; 1056 1057 xfs_trans_ijoin(tp, ip, 0); 1058 1059 xfs_bmap_init(&free_list, &firstfsb); 1060 error = xfs_bmapi_write(tp, ip, startoffset_fsb, 1061 allocatesize_fsb, alloc_type, &firstfsb, 1062 resblks, imapp, &nimaps, &free_list); 1063 if (error) 1064 goto error0; 1065 1066 /* 1067 * Complete the transaction 1068 */ 1069 error = xfs_bmap_finish(&tp, &free_list, NULL); 1070 if (error) 1071 goto error0; 1072 1073 error = xfs_trans_commit(tp); 1074 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1075 if (error) 1076 break; 1077 1078 allocated_fsb = imapp->br_blockcount; 1079 1080 if (nimaps == 0) { 1081 error = -ENOSPC; 1082 break; 1083 } 1084 1085 startoffset_fsb += allocated_fsb; 1086 allocatesize_fsb -= allocated_fsb; 1087 } 1088 1089 return error; 1090 1091 error0: /* Cancel bmap, unlock inode, unreserve quota blocks, cancel trans */ 1092 xfs_bmap_cancel(&free_list); 1093 xfs_trans_unreserve_quota_nblks(tp, ip, (long)qblocks, 0, quota_flag); 1094 1095 error1: /* Just cancel transaction */ 1096 xfs_trans_cancel(tp); 1097 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1098 return error; 1099 } 1100 1101 /* 1102 * Zero file bytes between startoff and endoff inclusive. 1103 * The iolock is held exclusive and no blocks are buffered. 1104 * 1105 * This function is used by xfs_free_file_space() to zero 1106 * partial blocks when the range to free is not block aligned. 1107 * When unreserving space with boundaries that are not block 1108 * aligned we round up the start and round down the end 1109 * boundaries and then use this function to zero the parts of 1110 * the blocks that got dropped during the rounding. 1111 */ 1112 STATIC int 1113 xfs_zero_remaining_bytes( 1114 xfs_inode_t *ip, 1115 xfs_off_t startoff, 1116 xfs_off_t endoff) 1117 { 1118 xfs_bmbt_irec_t imap; 1119 xfs_fileoff_t offset_fsb; 1120 xfs_off_t lastoffset; 1121 xfs_off_t offset; 1122 xfs_buf_t *bp; 1123 xfs_mount_t *mp = ip->i_mount; 1124 int nimap; 1125 int error = 0; 1126 1127 /* 1128 * Avoid doing I/O beyond eof - it's not necessary 1129 * since nothing can read beyond eof. The space will 1130 * be zeroed when the file is extended anyway. 1131 */ 1132 if (startoff >= XFS_ISIZE(ip)) 1133 return 0; 1134 1135 if (endoff > XFS_ISIZE(ip)) 1136 endoff = XFS_ISIZE(ip); 1137 1138 for (offset = startoff; offset <= endoff; offset = lastoffset + 1) { 1139 uint lock_mode; 1140 1141 offset_fsb = XFS_B_TO_FSBT(mp, offset); 1142 nimap = 1; 1143 1144 lock_mode = xfs_ilock_data_map_shared(ip); 1145 error = xfs_bmapi_read(ip, offset_fsb, 1, &imap, &nimap, 0); 1146 xfs_iunlock(ip, lock_mode); 1147 1148 if (error || nimap < 1) 1149 break; 1150 ASSERT(imap.br_blockcount >= 1); 1151 ASSERT(imap.br_startoff == offset_fsb); 1152 ASSERT(imap.br_startblock != DELAYSTARTBLOCK); 1153 1154 if (imap.br_startblock == HOLESTARTBLOCK || 1155 imap.br_state == XFS_EXT_UNWRITTEN) { 1156 /* skip the entire extent */ 1157 lastoffset = XFS_FSB_TO_B(mp, imap.br_startoff + 1158 imap.br_blockcount) - 1; 1159 continue; 1160 } 1161 1162 lastoffset = XFS_FSB_TO_B(mp, imap.br_startoff + 1) - 1; 1163 if (lastoffset > endoff) 1164 lastoffset = endoff; 1165 1166 /* DAX can just zero the backing device directly */ 1167 if (IS_DAX(VFS_I(ip))) { 1168 error = dax_zero_page_range(VFS_I(ip), offset, 1169 lastoffset - offset + 1, 1170 xfs_get_blocks_direct); 1171 if (error) 1172 return error; 1173 continue; 1174 } 1175 1176 error = xfs_buf_read_uncached(XFS_IS_REALTIME_INODE(ip) ? 1177 mp->m_rtdev_targp : mp->m_ddev_targp, 1178 xfs_fsb_to_db(ip, imap.br_startblock), 1179 BTOBB(mp->m_sb.sb_blocksize), 1180 0, &bp, NULL); 1181 if (error) 1182 return error; 1183 1184 memset(bp->b_addr + 1185 (offset - XFS_FSB_TO_B(mp, imap.br_startoff)), 1186 0, lastoffset - offset + 1); 1187 1188 error = xfs_bwrite(bp); 1189 xfs_buf_relse(bp); 1190 if (error) 1191 return error; 1192 } 1193 return error; 1194 } 1195 1196 int 1197 xfs_free_file_space( 1198 struct xfs_inode *ip, 1199 xfs_off_t offset, 1200 xfs_off_t len) 1201 { 1202 int done; 1203 xfs_fileoff_t endoffset_fsb; 1204 int error; 1205 xfs_fsblock_t firstfsb; 1206 xfs_bmap_free_t free_list; 1207 xfs_bmbt_irec_t imap; 1208 xfs_off_t ioffset; 1209 xfs_off_t iendoffset; 1210 xfs_extlen_t mod=0; 1211 xfs_mount_t *mp; 1212 int nimap; 1213 uint resblks; 1214 xfs_off_t rounding; 1215 int rt; 1216 xfs_fileoff_t startoffset_fsb; 1217 xfs_trans_t *tp; 1218 1219 mp = ip->i_mount; 1220 1221 trace_xfs_free_file_space(ip); 1222 1223 error = xfs_qm_dqattach(ip, 0); 1224 if (error) 1225 return error; 1226 1227 error = 0; 1228 if (len <= 0) /* if nothing being freed */ 1229 return error; 1230 rt = XFS_IS_REALTIME_INODE(ip); 1231 startoffset_fsb = XFS_B_TO_FSB(mp, offset); 1232 endoffset_fsb = XFS_B_TO_FSBT(mp, offset + len); 1233 1234 /* wait for the completion of any pending DIOs */ 1235 inode_dio_wait(VFS_I(ip)); 1236 1237 rounding = max_t(xfs_off_t, 1 << mp->m_sb.sb_blocklog, PAGE_CACHE_SIZE); 1238 ioffset = round_down(offset, rounding); 1239 iendoffset = round_up(offset + len, rounding) - 1; 1240 error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping, ioffset, 1241 iendoffset); 1242 if (error) 1243 goto out; 1244 truncate_pagecache_range(VFS_I(ip), ioffset, iendoffset); 1245 1246 /* 1247 * Need to zero the stuff we're not freeing, on disk. 1248 * If it's a realtime file & can't use unwritten extents then we 1249 * actually need to zero the extent edges. Otherwise xfs_bunmapi 1250 * will take care of it for us. 1251 */ 1252 if (rt && !xfs_sb_version_hasextflgbit(&mp->m_sb)) { 1253 nimap = 1; 1254 error = xfs_bmapi_read(ip, startoffset_fsb, 1, 1255 &imap, &nimap, 0); 1256 if (error) 1257 goto out; 1258 ASSERT(nimap == 0 || nimap == 1); 1259 if (nimap && imap.br_startblock != HOLESTARTBLOCK) { 1260 xfs_daddr_t block; 1261 1262 ASSERT(imap.br_startblock != DELAYSTARTBLOCK); 1263 block = imap.br_startblock; 1264 mod = do_div(block, mp->m_sb.sb_rextsize); 1265 if (mod) 1266 startoffset_fsb += mp->m_sb.sb_rextsize - mod; 1267 } 1268 nimap = 1; 1269 error = xfs_bmapi_read(ip, endoffset_fsb - 1, 1, 1270 &imap, &nimap, 0); 1271 if (error) 1272 goto out; 1273 ASSERT(nimap == 0 || nimap == 1); 1274 if (nimap && imap.br_startblock != HOLESTARTBLOCK) { 1275 ASSERT(imap.br_startblock != DELAYSTARTBLOCK); 1276 mod++; 1277 if (mod && (mod != mp->m_sb.sb_rextsize)) 1278 endoffset_fsb -= mod; 1279 } 1280 } 1281 if ((done = (endoffset_fsb <= startoffset_fsb))) 1282 /* 1283 * One contiguous piece to clear 1284 */ 1285 error = xfs_zero_remaining_bytes(ip, offset, offset + len - 1); 1286 else { 1287 /* 1288 * Some full blocks, possibly two pieces to clear 1289 */ 1290 if (offset < XFS_FSB_TO_B(mp, startoffset_fsb)) 1291 error = xfs_zero_remaining_bytes(ip, offset, 1292 XFS_FSB_TO_B(mp, startoffset_fsb) - 1); 1293 if (!error && 1294 XFS_FSB_TO_B(mp, endoffset_fsb) < offset + len) 1295 error = xfs_zero_remaining_bytes(ip, 1296 XFS_FSB_TO_B(mp, endoffset_fsb), 1297 offset + len - 1); 1298 } 1299 1300 /* 1301 * free file space until done or until there is an error 1302 */ 1303 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0); 1304 while (!error && !done) { 1305 1306 /* 1307 * allocate and setup the transaction. Allow this 1308 * transaction to dip into the reserve blocks to ensure 1309 * the freeing of the space succeeds at ENOSPC. 1310 */ 1311 tp = xfs_trans_alloc(mp, XFS_TRANS_DIOSTRAT); 1312 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_write, resblks, 0); 1313 1314 /* 1315 * check for running out of space 1316 */ 1317 if (error) { 1318 /* 1319 * Free the transaction structure. 1320 */ 1321 ASSERT(error == -ENOSPC || XFS_FORCED_SHUTDOWN(mp)); 1322 xfs_trans_cancel(tp); 1323 break; 1324 } 1325 xfs_ilock(ip, XFS_ILOCK_EXCL); 1326 error = xfs_trans_reserve_quota(tp, mp, 1327 ip->i_udquot, ip->i_gdquot, ip->i_pdquot, 1328 resblks, 0, XFS_QMOPT_RES_REGBLKS); 1329 if (error) 1330 goto error1; 1331 1332 xfs_trans_ijoin(tp, ip, 0); 1333 1334 /* 1335 * issue the bunmapi() call to free the blocks 1336 */ 1337 xfs_bmap_init(&free_list, &firstfsb); 1338 error = xfs_bunmapi(tp, ip, startoffset_fsb, 1339 endoffset_fsb - startoffset_fsb, 1340 0, 2, &firstfsb, &free_list, &done); 1341 if (error) 1342 goto error0; 1343 1344 /* 1345 * complete the transaction 1346 */ 1347 error = xfs_bmap_finish(&tp, &free_list, NULL); 1348 if (error) 1349 goto error0; 1350 1351 error = xfs_trans_commit(tp); 1352 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1353 } 1354 1355 out: 1356 return error; 1357 1358 error0: 1359 xfs_bmap_cancel(&free_list); 1360 error1: 1361 xfs_trans_cancel(tp); 1362 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1363 goto out; 1364 } 1365 1366 /* 1367 * Preallocate and zero a range of a file. This mechanism has the allocation 1368 * semantics of fallocate and in addition converts data in the range to zeroes. 1369 */ 1370 int 1371 xfs_zero_file_space( 1372 struct xfs_inode *ip, 1373 xfs_off_t offset, 1374 xfs_off_t len) 1375 { 1376 struct xfs_mount *mp = ip->i_mount; 1377 uint blksize; 1378 int error; 1379 1380 trace_xfs_zero_file_space(ip); 1381 1382 blksize = 1 << mp->m_sb.sb_blocklog; 1383 1384 /* 1385 * Punch a hole and prealloc the range. We use hole punch rather than 1386 * unwritten extent conversion for two reasons: 1387 * 1388 * 1.) Hole punch handles partial block zeroing for us. 1389 * 1390 * 2.) If prealloc returns ENOSPC, the file range is still zero-valued 1391 * by virtue of the hole punch. 1392 */ 1393 error = xfs_free_file_space(ip, offset, len); 1394 if (error) 1395 goto out; 1396 1397 error = xfs_alloc_file_space(ip, round_down(offset, blksize), 1398 round_up(offset + len, blksize) - 1399 round_down(offset, blksize), 1400 XFS_BMAPI_PREALLOC); 1401 out: 1402 return error; 1403 1404 } 1405 1406 /* 1407 * @next_fsb will keep track of the extent currently undergoing shift. 1408 * @stop_fsb will keep track of the extent at which we have to stop. 1409 * If we are shifting left, we will start with block (offset + len) and 1410 * shift each extent till last extent. 1411 * If we are shifting right, we will start with last extent inside file space 1412 * and continue until we reach the block corresponding to offset. 1413 */ 1414 static int 1415 xfs_shift_file_space( 1416 struct xfs_inode *ip, 1417 xfs_off_t offset, 1418 xfs_off_t len, 1419 enum shift_direction direction) 1420 { 1421 int done = 0; 1422 struct xfs_mount *mp = ip->i_mount; 1423 struct xfs_trans *tp; 1424 int error; 1425 struct xfs_bmap_free free_list; 1426 xfs_fsblock_t first_block; 1427 xfs_fileoff_t stop_fsb; 1428 xfs_fileoff_t next_fsb; 1429 xfs_fileoff_t shift_fsb; 1430 1431 ASSERT(direction == SHIFT_LEFT || direction == SHIFT_RIGHT); 1432 1433 if (direction == SHIFT_LEFT) { 1434 next_fsb = XFS_B_TO_FSB(mp, offset + len); 1435 stop_fsb = XFS_B_TO_FSB(mp, VFS_I(ip)->i_size); 1436 } else { 1437 /* 1438 * If right shift, delegate the work of initialization of 1439 * next_fsb to xfs_bmap_shift_extent as it has ilock held. 1440 */ 1441 next_fsb = NULLFSBLOCK; 1442 stop_fsb = XFS_B_TO_FSB(mp, offset); 1443 } 1444 1445 shift_fsb = XFS_B_TO_FSB(mp, len); 1446 1447 /* 1448 * Trim eofblocks to avoid shifting uninitialized post-eof preallocation 1449 * into the accessible region of the file. 1450 */ 1451 if (xfs_can_free_eofblocks(ip, true)) { 1452 error = xfs_free_eofblocks(mp, ip, false); 1453 if (error) 1454 return error; 1455 } 1456 1457 /* 1458 * Writeback and invalidate cache for the remainder of the file as we're 1459 * about to shift down every extent from offset to EOF. 1460 */ 1461 error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping, 1462 offset, -1); 1463 if (error) 1464 return error; 1465 error = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping, 1466 offset >> PAGE_CACHE_SHIFT, -1); 1467 if (error) 1468 return error; 1469 1470 /* 1471 * The extent shiting code works on extent granularity. So, if 1472 * stop_fsb is not the starting block of extent, we need to split 1473 * the extent at stop_fsb. 1474 */ 1475 if (direction == SHIFT_RIGHT) { 1476 error = xfs_bmap_split_extent(ip, stop_fsb); 1477 if (error) 1478 return error; 1479 } 1480 1481 while (!error && !done) { 1482 tp = xfs_trans_alloc(mp, XFS_TRANS_DIOSTRAT); 1483 /* 1484 * We would need to reserve permanent block for transaction. 1485 * This will come into picture when after shifting extent into 1486 * hole we found that adjacent extents can be merged which 1487 * may lead to freeing of a block during record update. 1488 */ 1489 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_write, 1490 XFS_DIOSTRAT_SPACE_RES(mp, 0), 0); 1491 if (error) { 1492 xfs_trans_cancel(tp); 1493 break; 1494 } 1495 1496 xfs_ilock(ip, XFS_ILOCK_EXCL); 1497 error = xfs_trans_reserve_quota(tp, mp, ip->i_udquot, 1498 ip->i_gdquot, ip->i_pdquot, 1499 XFS_DIOSTRAT_SPACE_RES(mp, 0), 0, 1500 XFS_QMOPT_RES_REGBLKS); 1501 if (error) 1502 goto out_trans_cancel; 1503 1504 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 1505 1506 xfs_bmap_init(&free_list, &first_block); 1507 1508 /* 1509 * We are using the write transaction in which max 2 bmbt 1510 * updates are allowed 1511 */ 1512 error = xfs_bmap_shift_extents(tp, ip, &next_fsb, shift_fsb, 1513 &done, stop_fsb, &first_block, &free_list, 1514 direction, XFS_BMAP_MAX_SHIFT_EXTENTS); 1515 if (error) 1516 goto out_bmap_cancel; 1517 1518 error = xfs_bmap_finish(&tp, &free_list, NULL); 1519 if (error) 1520 goto out_bmap_cancel; 1521 1522 error = xfs_trans_commit(tp); 1523 } 1524 1525 return error; 1526 1527 out_bmap_cancel: 1528 xfs_bmap_cancel(&free_list); 1529 out_trans_cancel: 1530 xfs_trans_cancel(tp); 1531 return error; 1532 } 1533 1534 /* 1535 * xfs_collapse_file_space() 1536 * This routine frees disk space and shift extent for the given file. 1537 * The first thing we do is to free data blocks in the specified range 1538 * by calling xfs_free_file_space(). It would also sync dirty data 1539 * and invalidate page cache over the region on which collapse range 1540 * is working. And Shift extent records to the left to cover a hole. 1541 * RETURNS: 1542 * 0 on success 1543 * errno on error 1544 * 1545 */ 1546 int 1547 xfs_collapse_file_space( 1548 struct xfs_inode *ip, 1549 xfs_off_t offset, 1550 xfs_off_t len) 1551 { 1552 int error; 1553 1554 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1555 trace_xfs_collapse_file_space(ip); 1556 1557 error = xfs_free_file_space(ip, offset, len); 1558 if (error) 1559 return error; 1560 1561 return xfs_shift_file_space(ip, offset, len, SHIFT_LEFT); 1562 } 1563 1564 /* 1565 * xfs_insert_file_space() 1566 * This routine create hole space by shifting extents for the given file. 1567 * The first thing we do is to sync dirty data and invalidate page cache 1568 * over the region on which insert range is working. And split an extent 1569 * to two extents at given offset by calling xfs_bmap_split_extent. 1570 * And shift all extent records which are laying between [offset, 1571 * last allocated extent] to the right to reserve hole range. 1572 * RETURNS: 1573 * 0 on success 1574 * errno on error 1575 */ 1576 int 1577 xfs_insert_file_space( 1578 struct xfs_inode *ip, 1579 loff_t offset, 1580 loff_t len) 1581 { 1582 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1583 trace_xfs_insert_file_space(ip); 1584 1585 return xfs_shift_file_space(ip, offset, len, SHIFT_RIGHT); 1586 } 1587 1588 /* 1589 * We need to check that the format of the data fork in the temporary inode is 1590 * valid for the target inode before doing the swap. This is not a problem with 1591 * attr1 because of the fixed fork offset, but attr2 has a dynamically sized 1592 * data fork depending on the space the attribute fork is taking so we can get 1593 * invalid formats on the target inode. 1594 * 1595 * E.g. target has space for 7 extents in extent format, temp inode only has 1596 * space for 6. If we defragment down to 7 extents, then the tmp format is a 1597 * btree, but when swapped it needs to be in extent format. Hence we can't just 1598 * blindly swap data forks on attr2 filesystems. 1599 * 1600 * Note that we check the swap in both directions so that we don't end up with 1601 * a corrupt temporary inode, either. 1602 * 1603 * Note that fixing the way xfs_fsr sets up the attribute fork in the source 1604 * inode will prevent this situation from occurring, so all we do here is 1605 * reject and log the attempt. basically we are putting the responsibility on 1606 * userspace to get this right. 1607 */ 1608 static int 1609 xfs_swap_extents_check_format( 1610 xfs_inode_t *ip, /* target inode */ 1611 xfs_inode_t *tip) /* tmp inode */ 1612 { 1613 1614 /* Should never get a local format */ 1615 if (ip->i_d.di_format == XFS_DINODE_FMT_LOCAL || 1616 tip->i_d.di_format == XFS_DINODE_FMT_LOCAL) 1617 return -EINVAL; 1618 1619 /* 1620 * if the target inode has less extents that then temporary inode then 1621 * why did userspace call us? 1622 */ 1623 if (ip->i_d.di_nextents < tip->i_d.di_nextents) 1624 return -EINVAL; 1625 1626 /* 1627 * if the target inode is in extent form and the temp inode is in btree 1628 * form then we will end up with the target inode in the wrong format 1629 * as we already know there are less extents in the temp inode. 1630 */ 1631 if (ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS && 1632 tip->i_d.di_format == XFS_DINODE_FMT_BTREE) 1633 return -EINVAL; 1634 1635 /* Check temp in extent form to max in target */ 1636 if (tip->i_d.di_format == XFS_DINODE_FMT_EXTENTS && 1637 XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK) > 1638 XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)) 1639 return -EINVAL; 1640 1641 /* Check target in extent form to max in temp */ 1642 if (ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS && 1643 XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK) > 1644 XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK)) 1645 return -EINVAL; 1646 1647 /* 1648 * If we are in a btree format, check that the temp root block will fit 1649 * in the target and that it has enough extents to be in btree format 1650 * in the target. 1651 * 1652 * Note that we have to be careful to allow btree->extent conversions 1653 * (a common defrag case) which will occur when the temp inode is in 1654 * extent format... 1655 */ 1656 if (tip->i_d.di_format == XFS_DINODE_FMT_BTREE) { 1657 if (XFS_IFORK_BOFF(ip) && 1658 XFS_BMAP_BMDR_SPACE(tip->i_df.if_broot) > XFS_IFORK_BOFF(ip)) 1659 return -EINVAL; 1660 if (XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK) <= 1661 XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)) 1662 return -EINVAL; 1663 } 1664 1665 /* Reciprocal target->temp btree format checks */ 1666 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE) { 1667 if (XFS_IFORK_BOFF(tip) && 1668 XFS_BMAP_BMDR_SPACE(ip->i_df.if_broot) > XFS_IFORK_BOFF(tip)) 1669 return -EINVAL; 1670 if (XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK) <= 1671 XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK)) 1672 return -EINVAL; 1673 } 1674 1675 return 0; 1676 } 1677 1678 static int 1679 xfs_swap_extent_flush( 1680 struct xfs_inode *ip) 1681 { 1682 int error; 1683 1684 error = filemap_write_and_wait(VFS_I(ip)->i_mapping); 1685 if (error) 1686 return error; 1687 truncate_pagecache_range(VFS_I(ip), 0, -1); 1688 1689 /* Verify O_DIRECT for ftmp */ 1690 if (VFS_I(ip)->i_mapping->nrpages) 1691 return -EINVAL; 1692 return 0; 1693 } 1694 1695 int 1696 xfs_swap_extents( 1697 xfs_inode_t *ip, /* target inode */ 1698 xfs_inode_t *tip, /* tmp inode */ 1699 xfs_swapext_t *sxp) 1700 { 1701 xfs_mount_t *mp = ip->i_mount; 1702 xfs_trans_t *tp; 1703 xfs_bstat_t *sbp = &sxp->sx_stat; 1704 xfs_ifork_t *tempifp, *ifp, *tifp; 1705 int src_log_flags, target_log_flags; 1706 int error = 0; 1707 int aforkblks = 0; 1708 int taforkblks = 0; 1709 __uint64_t tmp; 1710 int lock_flags; 1711 1712 tempifp = kmem_alloc(sizeof(xfs_ifork_t), KM_MAYFAIL); 1713 if (!tempifp) { 1714 error = -ENOMEM; 1715 goto out; 1716 } 1717 1718 /* 1719 * Lock the inodes against other IO, page faults and truncate to 1720 * begin with. Then we can ensure the inodes are flushed and have no 1721 * page cache safely. Once we have done this we can take the ilocks and 1722 * do the rest of the checks. 1723 */ 1724 lock_flags = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL; 1725 xfs_lock_two_inodes(ip, tip, XFS_IOLOCK_EXCL); 1726 xfs_lock_two_inodes(ip, tip, XFS_MMAPLOCK_EXCL); 1727 1728 /* Verify that both files have the same format */ 1729 if ((ip->i_d.di_mode & S_IFMT) != (tip->i_d.di_mode & S_IFMT)) { 1730 error = -EINVAL; 1731 goto out_unlock; 1732 } 1733 1734 /* Verify both files are either real-time or non-realtime */ 1735 if (XFS_IS_REALTIME_INODE(ip) != XFS_IS_REALTIME_INODE(tip)) { 1736 error = -EINVAL; 1737 goto out_unlock; 1738 } 1739 1740 error = xfs_swap_extent_flush(ip); 1741 if (error) 1742 goto out_unlock; 1743 error = xfs_swap_extent_flush(tip); 1744 if (error) 1745 goto out_unlock; 1746 1747 tp = xfs_trans_alloc(mp, XFS_TRANS_SWAPEXT); 1748 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ichange, 0, 0); 1749 if (error) { 1750 xfs_trans_cancel(tp); 1751 goto out_unlock; 1752 } 1753 1754 /* 1755 * Lock and join the inodes to the tansaction so that transaction commit 1756 * or cancel will unlock the inodes from this point onwards. 1757 */ 1758 xfs_lock_two_inodes(ip, tip, XFS_ILOCK_EXCL); 1759 lock_flags |= XFS_ILOCK_EXCL; 1760 xfs_trans_ijoin(tp, ip, lock_flags); 1761 xfs_trans_ijoin(tp, tip, lock_flags); 1762 1763 1764 /* Verify all data are being swapped */ 1765 if (sxp->sx_offset != 0 || 1766 sxp->sx_length != ip->i_d.di_size || 1767 sxp->sx_length != tip->i_d.di_size) { 1768 error = -EFAULT; 1769 goto out_trans_cancel; 1770 } 1771 1772 trace_xfs_swap_extent_before(ip, 0); 1773 trace_xfs_swap_extent_before(tip, 1); 1774 1775 /* check inode formats now that data is flushed */ 1776 error = xfs_swap_extents_check_format(ip, tip); 1777 if (error) { 1778 xfs_notice(mp, 1779 "%s: inode 0x%llx format is incompatible for exchanging.", 1780 __func__, ip->i_ino); 1781 goto out_trans_cancel; 1782 } 1783 1784 /* 1785 * Compare the current change & modify times with that 1786 * passed in. If they differ, we abort this swap. 1787 * This is the mechanism used to ensure the calling 1788 * process that the file was not changed out from 1789 * under it. 1790 */ 1791 if ((sbp->bs_ctime.tv_sec != VFS_I(ip)->i_ctime.tv_sec) || 1792 (sbp->bs_ctime.tv_nsec != VFS_I(ip)->i_ctime.tv_nsec) || 1793 (sbp->bs_mtime.tv_sec != VFS_I(ip)->i_mtime.tv_sec) || 1794 (sbp->bs_mtime.tv_nsec != VFS_I(ip)->i_mtime.tv_nsec)) { 1795 error = -EBUSY; 1796 goto out_trans_cancel; 1797 } 1798 /* 1799 * Count the number of extended attribute blocks 1800 */ 1801 if ( ((XFS_IFORK_Q(ip) != 0) && (ip->i_d.di_anextents > 0)) && 1802 (ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)) { 1803 error = xfs_bmap_count_blocks(tp, ip, XFS_ATTR_FORK, &aforkblks); 1804 if (error) 1805 goto out_trans_cancel; 1806 } 1807 if ( ((XFS_IFORK_Q(tip) != 0) && (tip->i_d.di_anextents > 0)) && 1808 (tip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)) { 1809 error = xfs_bmap_count_blocks(tp, tip, XFS_ATTR_FORK, 1810 &taforkblks); 1811 if (error) 1812 goto out_trans_cancel; 1813 } 1814 1815 /* 1816 * Before we've swapped the forks, lets set the owners of the forks 1817 * appropriately. We have to do this as we are demand paging the btree 1818 * buffers, and so the validation done on read will expect the owner 1819 * field to be correctly set. Once we change the owners, we can swap the 1820 * inode forks. 1821 * 1822 * Note the trickiness in setting the log flags - we set the owner log 1823 * flag on the opposite inode (i.e. the inode we are setting the new 1824 * owner to be) because once we swap the forks and log that, log 1825 * recovery is going to see the fork as owned by the swapped inode, 1826 * not the pre-swapped inodes. 1827 */ 1828 src_log_flags = XFS_ILOG_CORE; 1829 target_log_flags = XFS_ILOG_CORE; 1830 if (ip->i_d.di_version == 3 && 1831 ip->i_d.di_format == XFS_DINODE_FMT_BTREE) { 1832 target_log_flags |= XFS_ILOG_DOWNER; 1833 error = xfs_bmbt_change_owner(tp, ip, XFS_DATA_FORK, 1834 tip->i_ino, NULL); 1835 if (error) 1836 goto out_trans_cancel; 1837 } 1838 1839 if (tip->i_d.di_version == 3 && 1840 tip->i_d.di_format == XFS_DINODE_FMT_BTREE) { 1841 src_log_flags |= XFS_ILOG_DOWNER; 1842 error = xfs_bmbt_change_owner(tp, tip, XFS_DATA_FORK, 1843 ip->i_ino, NULL); 1844 if (error) 1845 goto out_trans_cancel; 1846 } 1847 1848 /* 1849 * Swap the data forks of the inodes 1850 */ 1851 ifp = &ip->i_df; 1852 tifp = &tip->i_df; 1853 *tempifp = *ifp; /* struct copy */ 1854 *ifp = *tifp; /* struct copy */ 1855 *tifp = *tempifp; /* struct copy */ 1856 1857 /* 1858 * Fix the on-disk inode values 1859 */ 1860 tmp = (__uint64_t)ip->i_d.di_nblocks; 1861 ip->i_d.di_nblocks = tip->i_d.di_nblocks - taforkblks + aforkblks; 1862 tip->i_d.di_nblocks = tmp + taforkblks - aforkblks; 1863 1864 tmp = (__uint64_t) ip->i_d.di_nextents; 1865 ip->i_d.di_nextents = tip->i_d.di_nextents; 1866 tip->i_d.di_nextents = tmp; 1867 1868 tmp = (__uint64_t) ip->i_d.di_format; 1869 ip->i_d.di_format = tip->i_d.di_format; 1870 tip->i_d.di_format = tmp; 1871 1872 /* 1873 * The extents in the source inode could still contain speculative 1874 * preallocation beyond EOF (e.g. the file is open but not modified 1875 * while defrag is in progress). In that case, we need to copy over the 1876 * number of delalloc blocks the data fork in the source inode is 1877 * tracking beyond EOF so that when the fork is truncated away when the 1878 * temporary inode is unlinked we don't underrun the i_delayed_blks 1879 * counter on that inode. 1880 */ 1881 ASSERT(tip->i_delayed_blks == 0); 1882 tip->i_delayed_blks = ip->i_delayed_blks; 1883 ip->i_delayed_blks = 0; 1884 1885 switch (ip->i_d.di_format) { 1886 case XFS_DINODE_FMT_EXTENTS: 1887 /* If the extents fit in the inode, fix the 1888 * pointer. Otherwise it's already NULL or 1889 * pointing to the extent. 1890 */ 1891 if (ip->i_d.di_nextents <= XFS_INLINE_EXTS) { 1892 ifp->if_u1.if_extents = 1893 ifp->if_u2.if_inline_ext; 1894 } 1895 src_log_flags |= XFS_ILOG_DEXT; 1896 break; 1897 case XFS_DINODE_FMT_BTREE: 1898 ASSERT(ip->i_d.di_version < 3 || 1899 (src_log_flags & XFS_ILOG_DOWNER)); 1900 src_log_flags |= XFS_ILOG_DBROOT; 1901 break; 1902 } 1903 1904 switch (tip->i_d.di_format) { 1905 case XFS_DINODE_FMT_EXTENTS: 1906 /* If the extents fit in the inode, fix the 1907 * pointer. Otherwise it's already NULL or 1908 * pointing to the extent. 1909 */ 1910 if (tip->i_d.di_nextents <= XFS_INLINE_EXTS) { 1911 tifp->if_u1.if_extents = 1912 tifp->if_u2.if_inline_ext; 1913 } 1914 target_log_flags |= XFS_ILOG_DEXT; 1915 break; 1916 case XFS_DINODE_FMT_BTREE: 1917 target_log_flags |= XFS_ILOG_DBROOT; 1918 ASSERT(tip->i_d.di_version < 3 || 1919 (target_log_flags & XFS_ILOG_DOWNER)); 1920 break; 1921 } 1922 1923 xfs_trans_log_inode(tp, ip, src_log_flags); 1924 xfs_trans_log_inode(tp, tip, target_log_flags); 1925 1926 /* 1927 * If this is a synchronous mount, make sure that the 1928 * transaction goes to disk before returning to the user. 1929 */ 1930 if (mp->m_flags & XFS_MOUNT_WSYNC) 1931 xfs_trans_set_sync(tp); 1932 1933 error = xfs_trans_commit(tp); 1934 1935 trace_xfs_swap_extent_after(ip, 0); 1936 trace_xfs_swap_extent_after(tip, 1); 1937 out: 1938 kmem_free(tempifp); 1939 return error; 1940 1941 out_unlock: 1942 xfs_iunlock(ip, lock_flags); 1943 xfs_iunlock(tip, lock_flags); 1944 goto out; 1945 1946 out_trans_cancel: 1947 xfs_trans_cancel(tp); 1948 goto out; 1949 } 1950