1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (C) 2016 Oracle. All Rights Reserved. 4 * Author: Darrick J. Wong <darrick.wong@oracle.com> 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_format.h" 9 #include "xfs_log_format.h" 10 #include "xfs_trans_resv.h" 11 #include "xfs_bit.h" 12 #include "xfs_shared.h" 13 #include "xfs_mount.h" 14 #include "xfs_defer.h" 15 #include "xfs_inode.h" 16 #include "xfs_trans.h" 17 #include "xfs_trans_priv.h" 18 #include "xfs_bmap_item.h" 19 #include "xfs_log.h" 20 #include "xfs_bmap.h" 21 #include "xfs_icache.h" 22 #include "xfs_bmap_btree.h" 23 #include "xfs_trans_space.h" 24 #include "xfs_error.h" 25 #include "xfs_log_priv.h" 26 #include "xfs_log_recover.h" 27 #include "xfs_ag.h" 28 29 struct kmem_cache *xfs_bui_cache; 30 struct kmem_cache *xfs_bud_cache; 31 32 static const struct xfs_item_ops xfs_bui_item_ops; 33 34 static inline struct xfs_bui_log_item *BUI_ITEM(struct xfs_log_item *lip) 35 { 36 return container_of(lip, struct xfs_bui_log_item, bui_item); 37 } 38 39 STATIC void 40 xfs_bui_item_free( 41 struct xfs_bui_log_item *buip) 42 { 43 kmem_free(buip->bui_item.li_lv_shadow); 44 kmem_cache_free(xfs_bui_cache, buip); 45 } 46 47 /* 48 * Freeing the BUI requires that we remove it from the AIL if it has already 49 * been placed there. However, the BUI may not yet have been placed in the AIL 50 * when called by xfs_bui_release() from BUD processing due to the ordering of 51 * committed vs unpin operations in bulk insert operations. Hence the reference 52 * count to ensure only the last caller frees the BUI. 53 */ 54 STATIC void 55 xfs_bui_release( 56 struct xfs_bui_log_item *buip) 57 { 58 ASSERT(atomic_read(&buip->bui_refcount) > 0); 59 if (!atomic_dec_and_test(&buip->bui_refcount)) 60 return; 61 62 xfs_trans_ail_delete(&buip->bui_item, 0); 63 xfs_bui_item_free(buip); 64 } 65 66 67 STATIC void 68 xfs_bui_item_size( 69 struct xfs_log_item *lip, 70 int *nvecs, 71 int *nbytes) 72 { 73 struct xfs_bui_log_item *buip = BUI_ITEM(lip); 74 75 *nvecs += 1; 76 *nbytes += xfs_bui_log_format_sizeof(buip->bui_format.bui_nextents); 77 } 78 79 /* 80 * This is called to fill in the vector of log iovecs for the 81 * given bui log item. We use only 1 iovec, and we point that 82 * at the bui_log_format structure embedded in the bui item. 83 * It is at this point that we assert that all of the extent 84 * slots in the bui item have been filled. 85 */ 86 STATIC void 87 xfs_bui_item_format( 88 struct xfs_log_item *lip, 89 struct xfs_log_vec *lv) 90 { 91 struct xfs_bui_log_item *buip = BUI_ITEM(lip); 92 struct xfs_log_iovec *vecp = NULL; 93 94 ASSERT(atomic_read(&buip->bui_next_extent) == 95 buip->bui_format.bui_nextents); 96 97 buip->bui_format.bui_type = XFS_LI_BUI; 98 buip->bui_format.bui_size = 1; 99 100 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_BUI_FORMAT, &buip->bui_format, 101 xfs_bui_log_format_sizeof(buip->bui_format.bui_nextents)); 102 } 103 104 /* 105 * The unpin operation is the last place an BUI is manipulated in the log. It is 106 * either inserted in the AIL or aborted in the event of a log I/O error. In 107 * either case, the BUI transaction has been successfully committed to make it 108 * this far. Therefore, we expect whoever committed the BUI to either construct 109 * and commit the BUD or drop the BUD's reference in the event of error. Simply 110 * drop the log's BUI reference now that the log is done with it. 111 */ 112 STATIC void 113 xfs_bui_item_unpin( 114 struct xfs_log_item *lip, 115 int remove) 116 { 117 struct xfs_bui_log_item *buip = BUI_ITEM(lip); 118 119 xfs_bui_release(buip); 120 } 121 122 /* 123 * The BUI has been either committed or aborted if the transaction has been 124 * cancelled. If the transaction was cancelled, an BUD isn't going to be 125 * constructed and thus we free the BUI here directly. 126 */ 127 STATIC void 128 xfs_bui_item_release( 129 struct xfs_log_item *lip) 130 { 131 xfs_bui_release(BUI_ITEM(lip)); 132 } 133 134 /* 135 * Allocate and initialize an bui item with the given number of extents. 136 */ 137 STATIC struct xfs_bui_log_item * 138 xfs_bui_init( 139 struct xfs_mount *mp) 140 141 { 142 struct xfs_bui_log_item *buip; 143 144 buip = kmem_cache_zalloc(xfs_bui_cache, GFP_KERNEL | __GFP_NOFAIL); 145 146 xfs_log_item_init(mp, &buip->bui_item, XFS_LI_BUI, &xfs_bui_item_ops); 147 buip->bui_format.bui_nextents = XFS_BUI_MAX_FAST_EXTENTS; 148 buip->bui_format.bui_id = (uintptr_t)(void *)buip; 149 atomic_set(&buip->bui_next_extent, 0); 150 atomic_set(&buip->bui_refcount, 2); 151 152 return buip; 153 } 154 155 static inline struct xfs_bud_log_item *BUD_ITEM(struct xfs_log_item *lip) 156 { 157 return container_of(lip, struct xfs_bud_log_item, bud_item); 158 } 159 160 STATIC void 161 xfs_bud_item_size( 162 struct xfs_log_item *lip, 163 int *nvecs, 164 int *nbytes) 165 { 166 *nvecs += 1; 167 *nbytes += sizeof(struct xfs_bud_log_format); 168 } 169 170 /* 171 * This is called to fill in the vector of log iovecs for the 172 * given bud log item. We use only 1 iovec, and we point that 173 * at the bud_log_format structure embedded in the bud item. 174 * It is at this point that we assert that all of the extent 175 * slots in the bud item have been filled. 176 */ 177 STATIC void 178 xfs_bud_item_format( 179 struct xfs_log_item *lip, 180 struct xfs_log_vec *lv) 181 { 182 struct xfs_bud_log_item *budp = BUD_ITEM(lip); 183 struct xfs_log_iovec *vecp = NULL; 184 185 budp->bud_format.bud_type = XFS_LI_BUD; 186 budp->bud_format.bud_size = 1; 187 188 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_BUD_FORMAT, &budp->bud_format, 189 sizeof(struct xfs_bud_log_format)); 190 } 191 192 /* 193 * The BUD is either committed or aborted if the transaction is cancelled. If 194 * the transaction is cancelled, drop our reference to the BUI and free the 195 * BUD. 196 */ 197 STATIC void 198 xfs_bud_item_release( 199 struct xfs_log_item *lip) 200 { 201 struct xfs_bud_log_item *budp = BUD_ITEM(lip); 202 203 xfs_bui_release(budp->bud_buip); 204 kmem_free(budp->bud_item.li_lv_shadow); 205 kmem_cache_free(xfs_bud_cache, budp); 206 } 207 208 static struct xfs_log_item * 209 xfs_bud_item_intent( 210 struct xfs_log_item *lip) 211 { 212 return &BUD_ITEM(lip)->bud_buip->bui_item; 213 } 214 215 static const struct xfs_item_ops xfs_bud_item_ops = { 216 .flags = XFS_ITEM_RELEASE_WHEN_COMMITTED | 217 XFS_ITEM_INTENT_DONE, 218 .iop_size = xfs_bud_item_size, 219 .iop_format = xfs_bud_item_format, 220 .iop_release = xfs_bud_item_release, 221 .iop_intent = xfs_bud_item_intent, 222 }; 223 224 static struct xfs_bud_log_item * 225 xfs_trans_get_bud( 226 struct xfs_trans *tp, 227 struct xfs_bui_log_item *buip) 228 { 229 struct xfs_bud_log_item *budp; 230 231 budp = kmem_cache_zalloc(xfs_bud_cache, GFP_KERNEL | __GFP_NOFAIL); 232 xfs_log_item_init(tp->t_mountp, &budp->bud_item, XFS_LI_BUD, 233 &xfs_bud_item_ops); 234 budp->bud_buip = buip; 235 budp->bud_format.bud_bui_id = buip->bui_format.bui_id; 236 237 xfs_trans_add_item(tp, &budp->bud_item); 238 return budp; 239 } 240 241 /* 242 * Finish an bmap update and log it to the BUD. Note that the 243 * transaction is marked dirty regardless of whether the bmap update 244 * succeeds or fails to support the BUI/BUD lifecycle rules. 245 */ 246 static int 247 xfs_trans_log_finish_bmap_update( 248 struct xfs_trans *tp, 249 struct xfs_bud_log_item *budp, 250 struct xfs_bmap_intent *bi) 251 { 252 int error; 253 254 error = xfs_bmap_finish_one(tp, bi); 255 256 /* 257 * Mark the transaction dirty, even on error. This ensures the 258 * transaction is aborted, which: 259 * 260 * 1.) releases the BUI and frees the BUD 261 * 2.) shuts down the filesystem 262 */ 263 tp->t_flags |= XFS_TRANS_DIRTY | XFS_TRANS_HAS_INTENT_DONE; 264 set_bit(XFS_LI_DIRTY, &budp->bud_item.li_flags); 265 266 return error; 267 } 268 269 /* Sort bmap intents by inode. */ 270 static int 271 xfs_bmap_update_diff_items( 272 void *priv, 273 const struct list_head *a, 274 const struct list_head *b) 275 { 276 struct xfs_bmap_intent *ba; 277 struct xfs_bmap_intent *bb; 278 279 ba = container_of(a, struct xfs_bmap_intent, bi_list); 280 bb = container_of(b, struct xfs_bmap_intent, bi_list); 281 return ba->bi_owner->i_ino - bb->bi_owner->i_ino; 282 } 283 284 /* Set the map extent flags for this mapping. */ 285 static void 286 xfs_trans_set_bmap_flags( 287 struct xfs_map_extent *map, 288 enum xfs_bmap_intent_type type, 289 int whichfork, 290 xfs_exntst_t state) 291 { 292 map->me_flags = 0; 293 switch (type) { 294 case XFS_BMAP_MAP: 295 case XFS_BMAP_UNMAP: 296 map->me_flags = type; 297 break; 298 default: 299 ASSERT(0); 300 } 301 if (state == XFS_EXT_UNWRITTEN) 302 map->me_flags |= XFS_BMAP_EXTENT_UNWRITTEN; 303 if (whichfork == XFS_ATTR_FORK) 304 map->me_flags |= XFS_BMAP_EXTENT_ATTR_FORK; 305 } 306 307 /* Log bmap updates in the intent item. */ 308 STATIC void 309 xfs_bmap_update_log_item( 310 struct xfs_trans *tp, 311 struct xfs_bui_log_item *buip, 312 struct xfs_bmap_intent *bi) 313 { 314 uint next_extent; 315 struct xfs_map_extent *map; 316 317 tp->t_flags |= XFS_TRANS_DIRTY; 318 set_bit(XFS_LI_DIRTY, &buip->bui_item.li_flags); 319 320 /* 321 * atomic_inc_return gives us the value after the increment; 322 * we want to use it as an array index so we need to subtract 1 from 323 * it. 324 */ 325 next_extent = atomic_inc_return(&buip->bui_next_extent) - 1; 326 ASSERT(next_extent < buip->bui_format.bui_nextents); 327 map = &buip->bui_format.bui_extents[next_extent]; 328 map->me_owner = bi->bi_owner->i_ino; 329 map->me_startblock = bi->bi_bmap.br_startblock; 330 map->me_startoff = bi->bi_bmap.br_startoff; 331 map->me_len = bi->bi_bmap.br_blockcount; 332 xfs_trans_set_bmap_flags(map, bi->bi_type, bi->bi_whichfork, 333 bi->bi_bmap.br_state); 334 } 335 336 static struct xfs_log_item * 337 xfs_bmap_update_create_intent( 338 struct xfs_trans *tp, 339 struct list_head *items, 340 unsigned int count, 341 bool sort) 342 { 343 struct xfs_mount *mp = tp->t_mountp; 344 struct xfs_bui_log_item *buip = xfs_bui_init(mp); 345 struct xfs_bmap_intent *bi; 346 347 ASSERT(count == XFS_BUI_MAX_FAST_EXTENTS); 348 349 xfs_trans_add_item(tp, &buip->bui_item); 350 if (sort) 351 list_sort(mp, items, xfs_bmap_update_diff_items); 352 list_for_each_entry(bi, items, bi_list) 353 xfs_bmap_update_log_item(tp, buip, bi); 354 return &buip->bui_item; 355 } 356 357 /* Get an BUD so we can process all the deferred rmap updates. */ 358 static struct xfs_log_item * 359 xfs_bmap_update_create_done( 360 struct xfs_trans *tp, 361 struct xfs_log_item *intent, 362 unsigned int count) 363 { 364 return &xfs_trans_get_bud(tp, BUI_ITEM(intent))->bud_item; 365 } 366 367 /* Take a passive ref to the AG containing the space we're mapping. */ 368 void 369 xfs_bmap_update_get_group( 370 struct xfs_mount *mp, 371 struct xfs_bmap_intent *bi) 372 { 373 xfs_agnumber_t agno; 374 375 agno = XFS_FSB_TO_AGNO(mp, bi->bi_bmap.br_startblock); 376 377 /* 378 * Bump the intent count on behalf of the deferred rmap and refcount 379 * intent items that that we can queue when we finish this bmap work. 380 * This new intent item will bump the intent count before the bmap 381 * intent drops the intent count, ensuring that the intent count 382 * remains nonzero across the transaction roll. 383 */ 384 bi->bi_pag = xfs_perag_intent_get(mp, agno); 385 } 386 387 /* Release a passive AG ref after finishing mapping work. */ 388 static inline void 389 xfs_bmap_update_put_group( 390 struct xfs_bmap_intent *bi) 391 { 392 xfs_perag_intent_put(bi->bi_pag); 393 } 394 395 /* Process a deferred rmap update. */ 396 STATIC int 397 xfs_bmap_update_finish_item( 398 struct xfs_trans *tp, 399 struct xfs_log_item *done, 400 struct list_head *item, 401 struct xfs_btree_cur **state) 402 { 403 struct xfs_bmap_intent *bi; 404 int error; 405 406 bi = container_of(item, struct xfs_bmap_intent, bi_list); 407 408 error = xfs_trans_log_finish_bmap_update(tp, BUD_ITEM(done), bi); 409 if (!error && bi->bi_bmap.br_blockcount > 0) { 410 ASSERT(bi->bi_type == XFS_BMAP_UNMAP); 411 return -EAGAIN; 412 } 413 414 xfs_bmap_update_put_group(bi); 415 kmem_cache_free(xfs_bmap_intent_cache, bi); 416 return error; 417 } 418 419 /* Abort all pending BUIs. */ 420 STATIC void 421 xfs_bmap_update_abort_intent( 422 struct xfs_log_item *intent) 423 { 424 xfs_bui_release(BUI_ITEM(intent)); 425 } 426 427 /* Cancel a deferred bmap update. */ 428 STATIC void 429 xfs_bmap_update_cancel_item( 430 struct list_head *item) 431 { 432 struct xfs_bmap_intent *bi; 433 434 bi = container_of(item, struct xfs_bmap_intent, bi_list); 435 436 xfs_bmap_update_put_group(bi); 437 kmem_cache_free(xfs_bmap_intent_cache, bi); 438 } 439 440 const struct xfs_defer_op_type xfs_bmap_update_defer_type = { 441 .max_items = XFS_BUI_MAX_FAST_EXTENTS, 442 .create_intent = xfs_bmap_update_create_intent, 443 .abort_intent = xfs_bmap_update_abort_intent, 444 .create_done = xfs_bmap_update_create_done, 445 .finish_item = xfs_bmap_update_finish_item, 446 .cancel_item = xfs_bmap_update_cancel_item, 447 }; 448 449 /* Is this recovered BUI ok? */ 450 static inline bool 451 xfs_bui_validate( 452 struct xfs_mount *mp, 453 struct xfs_bui_log_item *buip) 454 { 455 struct xfs_map_extent *map; 456 457 /* Only one mapping operation per BUI... */ 458 if (buip->bui_format.bui_nextents != XFS_BUI_MAX_FAST_EXTENTS) 459 return false; 460 461 map = &buip->bui_format.bui_extents[0]; 462 463 if (map->me_flags & ~XFS_BMAP_EXTENT_FLAGS) 464 return false; 465 466 switch (map->me_flags & XFS_BMAP_EXTENT_TYPE_MASK) { 467 case XFS_BMAP_MAP: 468 case XFS_BMAP_UNMAP: 469 break; 470 default: 471 return false; 472 } 473 474 if (!xfs_verify_ino(mp, map->me_owner)) 475 return false; 476 477 if (!xfs_verify_fileext(mp, map->me_startoff, map->me_len)) 478 return false; 479 480 return xfs_verify_fsbext(mp, map->me_startblock, map->me_len); 481 } 482 483 /* 484 * Process a bmap update intent item that was recovered from the log. 485 * We need to update some inode's bmbt. 486 */ 487 STATIC int 488 xfs_bui_item_recover( 489 struct xfs_log_item *lip, 490 struct list_head *capture_list) 491 { 492 struct xfs_bmap_intent fake = { }; 493 struct xfs_trans_res resv; 494 struct xfs_bui_log_item *buip = BUI_ITEM(lip); 495 struct xfs_trans *tp; 496 struct xfs_inode *ip = NULL; 497 struct xfs_mount *mp = lip->li_log->l_mp; 498 struct xfs_map_extent *map; 499 struct xfs_bud_log_item *budp; 500 int iext_delta; 501 int error = 0; 502 503 if (!xfs_bui_validate(mp, buip)) { 504 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 505 &buip->bui_format, sizeof(buip->bui_format)); 506 return -EFSCORRUPTED; 507 } 508 509 map = &buip->bui_format.bui_extents[0]; 510 fake.bi_whichfork = (map->me_flags & XFS_BMAP_EXTENT_ATTR_FORK) ? 511 XFS_ATTR_FORK : XFS_DATA_FORK; 512 fake.bi_type = map->me_flags & XFS_BMAP_EXTENT_TYPE_MASK; 513 514 error = xlog_recover_iget(mp, map->me_owner, &ip); 515 if (error) 516 return error; 517 518 /* Allocate transaction and do the work. */ 519 resv = xlog_recover_resv(&M_RES(mp)->tr_itruncate); 520 error = xfs_trans_alloc(mp, &resv, 521 XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK), 0, 0, &tp); 522 if (error) 523 goto err_rele; 524 525 budp = xfs_trans_get_bud(tp, buip); 526 xfs_ilock(ip, XFS_ILOCK_EXCL); 527 xfs_trans_ijoin(tp, ip, 0); 528 529 if (fake.bi_type == XFS_BMAP_MAP) 530 iext_delta = XFS_IEXT_ADD_NOSPLIT_CNT; 531 else 532 iext_delta = XFS_IEXT_PUNCH_HOLE_CNT; 533 534 error = xfs_iext_count_may_overflow(ip, fake.bi_whichfork, iext_delta); 535 if (error == -EFBIG) 536 error = xfs_iext_count_upgrade(tp, ip, iext_delta); 537 if (error) 538 goto err_cancel; 539 540 fake.bi_owner = ip; 541 fake.bi_bmap.br_startblock = map->me_startblock; 542 fake.bi_bmap.br_startoff = map->me_startoff; 543 fake.bi_bmap.br_blockcount = map->me_len; 544 fake.bi_bmap.br_state = (map->me_flags & XFS_BMAP_EXTENT_UNWRITTEN) ? 545 XFS_EXT_UNWRITTEN : XFS_EXT_NORM; 546 547 xfs_bmap_update_get_group(mp, &fake); 548 error = xfs_trans_log_finish_bmap_update(tp, budp, &fake); 549 if (error == -EFSCORRUPTED) 550 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, map, 551 sizeof(*map)); 552 xfs_bmap_update_put_group(&fake); 553 if (error) 554 goto err_cancel; 555 556 if (fake.bi_bmap.br_blockcount > 0) { 557 ASSERT(fake.bi_type == XFS_BMAP_UNMAP); 558 xfs_bmap_unmap_extent(tp, ip, &fake.bi_bmap); 559 } 560 561 /* 562 * Commit transaction, which frees the transaction and saves the inode 563 * for later replay activities. 564 */ 565 error = xfs_defer_ops_capture_and_commit(tp, capture_list); 566 if (error) 567 goto err_unlock; 568 569 xfs_iunlock(ip, XFS_ILOCK_EXCL); 570 xfs_irele(ip); 571 return 0; 572 573 err_cancel: 574 xfs_trans_cancel(tp); 575 err_unlock: 576 xfs_iunlock(ip, XFS_ILOCK_EXCL); 577 err_rele: 578 xfs_irele(ip); 579 return error; 580 } 581 582 STATIC bool 583 xfs_bui_item_match( 584 struct xfs_log_item *lip, 585 uint64_t intent_id) 586 { 587 return BUI_ITEM(lip)->bui_format.bui_id == intent_id; 588 } 589 590 /* Relog an intent item to push the log tail forward. */ 591 static struct xfs_log_item * 592 xfs_bui_item_relog( 593 struct xfs_log_item *intent, 594 struct xfs_trans *tp) 595 { 596 struct xfs_bud_log_item *budp; 597 struct xfs_bui_log_item *buip; 598 struct xfs_map_extent *map; 599 unsigned int count; 600 601 count = BUI_ITEM(intent)->bui_format.bui_nextents; 602 map = BUI_ITEM(intent)->bui_format.bui_extents; 603 604 tp->t_flags |= XFS_TRANS_DIRTY; 605 budp = xfs_trans_get_bud(tp, BUI_ITEM(intent)); 606 set_bit(XFS_LI_DIRTY, &budp->bud_item.li_flags); 607 608 buip = xfs_bui_init(tp->t_mountp); 609 memcpy(buip->bui_format.bui_extents, map, count * sizeof(*map)); 610 atomic_set(&buip->bui_next_extent, count); 611 xfs_trans_add_item(tp, &buip->bui_item); 612 set_bit(XFS_LI_DIRTY, &buip->bui_item.li_flags); 613 return &buip->bui_item; 614 } 615 616 static const struct xfs_item_ops xfs_bui_item_ops = { 617 .flags = XFS_ITEM_INTENT, 618 .iop_size = xfs_bui_item_size, 619 .iop_format = xfs_bui_item_format, 620 .iop_unpin = xfs_bui_item_unpin, 621 .iop_release = xfs_bui_item_release, 622 .iop_recover = xfs_bui_item_recover, 623 .iop_match = xfs_bui_item_match, 624 .iop_relog = xfs_bui_item_relog, 625 }; 626 627 static inline void 628 xfs_bui_copy_format( 629 struct xfs_bui_log_format *dst, 630 const struct xfs_bui_log_format *src) 631 { 632 unsigned int i; 633 634 memcpy(dst, src, offsetof(struct xfs_bui_log_format, bui_extents)); 635 636 for (i = 0; i < src->bui_nextents; i++) 637 memcpy(&dst->bui_extents[i], &src->bui_extents[i], 638 sizeof(struct xfs_map_extent)); 639 } 640 641 /* 642 * This routine is called to create an in-core extent bmap update 643 * item from the bui format structure which was logged on disk. 644 * It allocates an in-core bui, copies the extents from the format 645 * structure into it, and adds the bui to the AIL with the given 646 * LSN. 647 */ 648 STATIC int 649 xlog_recover_bui_commit_pass2( 650 struct xlog *log, 651 struct list_head *buffer_list, 652 struct xlog_recover_item *item, 653 xfs_lsn_t lsn) 654 { 655 struct xfs_mount *mp = log->l_mp; 656 struct xfs_bui_log_item *buip; 657 struct xfs_bui_log_format *bui_formatp; 658 size_t len; 659 660 bui_formatp = item->ri_buf[0].i_addr; 661 662 if (item->ri_buf[0].i_len < xfs_bui_log_format_sizeof(0)) { 663 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 664 item->ri_buf[0].i_addr, item->ri_buf[0].i_len); 665 return -EFSCORRUPTED; 666 } 667 668 if (bui_formatp->bui_nextents != XFS_BUI_MAX_FAST_EXTENTS) { 669 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 670 item->ri_buf[0].i_addr, item->ri_buf[0].i_len); 671 return -EFSCORRUPTED; 672 } 673 674 len = xfs_bui_log_format_sizeof(bui_formatp->bui_nextents); 675 if (item->ri_buf[0].i_len != len) { 676 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 677 item->ri_buf[0].i_addr, item->ri_buf[0].i_len); 678 return -EFSCORRUPTED; 679 } 680 681 buip = xfs_bui_init(mp); 682 xfs_bui_copy_format(&buip->bui_format, bui_formatp); 683 atomic_set(&buip->bui_next_extent, bui_formatp->bui_nextents); 684 /* 685 * Insert the intent into the AIL directly and drop one reference so 686 * that finishing or canceling the work will drop the other. 687 */ 688 xfs_trans_ail_insert(log->l_ailp, &buip->bui_item, lsn); 689 xfs_bui_release(buip); 690 return 0; 691 } 692 693 const struct xlog_recover_item_ops xlog_bui_item_ops = { 694 .item_type = XFS_LI_BUI, 695 .commit_pass2 = xlog_recover_bui_commit_pass2, 696 }; 697 698 /* 699 * This routine is called when an BUD format structure is found in a committed 700 * transaction in the log. Its purpose is to cancel the corresponding BUI if it 701 * was still in the log. To do this it searches the AIL for the BUI with an id 702 * equal to that in the BUD format structure. If we find it we drop the BUD 703 * reference, which removes the BUI from the AIL and frees it. 704 */ 705 STATIC int 706 xlog_recover_bud_commit_pass2( 707 struct xlog *log, 708 struct list_head *buffer_list, 709 struct xlog_recover_item *item, 710 xfs_lsn_t lsn) 711 { 712 struct xfs_bud_log_format *bud_formatp; 713 714 bud_formatp = item->ri_buf[0].i_addr; 715 if (item->ri_buf[0].i_len != sizeof(struct xfs_bud_log_format)) { 716 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp, 717 item->ri_buf[0].i_addr, item->ri_buf[0].i_len); 718 return -EFSCORRUPTED; 719 } 720 721 xlog_recover_release_intent(log, XFS_LI_BUI, bud_formatp->bud_bui_id); 722 return 0; 723 } 724 725 const struct xlog_recover_item_ops xlog_bud_item_ops = { 726 .item_type = XFS_LI_BUD, 727 .commit_pass2 = xlog_recover_bud_commit_pass2, 728 }; 729