1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_shared.h" 20 #include "xfs_format.h" 21 #include "xfs_log_format.h" 22 #include "xfs_trans_resv.h" 23 #include "xfs_mount.h" 24 #include "xfs_inode.h" 25 #include "xfs_trans.h" 26 #include "xfs_inode_item.h" 27 #include "xfs_alloc.h" 28 #include "xfs_error.h" 29 #include "xfs_iomap.h" 30 #include "xfs_trace.h" 31 #include "xfs_bmap.h" 32 #include "xfs_bmap_util.h" 33 #include "xfs_bmap_btree.h" 34 #include "xfs_reflink.h" 35 #include <linux/gfp.h> 36 #include <linux/mpage.h> 37 #include <linux/pagevec.h> 38 #include <linux/writeback.h> 39 40 /* 41 * structure owned by writepages passed to individual writepage calls 42 */ 43 struct xfs_writepage_ctx { 44 struct xfs_bmbt_irec imap; 45 bool imap_valid; 46 unsigned int io_type; 47 struct xfs_ioend *ioend; 48 sector_t last_block; 49 }; 50 51 void 52 xfs_count_page_state( 53 struct page *page, 54 int *delalloc, 55 int *unwritten) 56 { 57 struct buffer_head *bh, *head; 58 59 *delalloc = *unwritten = 0; 60 61 bh = head = page_buffers(page); 62 do { 63 if (buffer_unwritten(bh)) 64 (*unwritten) = 1; 65 else if (buffer_delay(bh)) 66 (*delalloc) = 1; 67 } while ((bh = bh->b_this_page) != head); 68 } 69 70 struct block_device * 71 xfs_find_bdev_for_inode( 72 struct inode *inode) 73 { 74 struct xfs_inode *ip = XFS_I(inode); 75 struct xfs_mount *mp = ip->i_mount; 76 77 if (XFS_IS_REALTIME_INODE(ip)) 78 return mp->m_rtdev_targp->bt_bdev; 79 else 80 return mp->m_ddev_targp->bt_bdev; 81 } 82 83 struct dax_device * 84 xfs_find_daxdev_for_inode( 85 struct inode *inode) 86 { 87 struct xfs_inode *ip = XFS_I(inode); 88 struct xfs_mount *mp = ip->i_mount; 89 90 if (XFS_IS_REALTIME_INODE(ip)) 91 return mp->m_rtdev_targp->bt_daxdev; 92 else 93 return mp->m_ddev_targp->bt_daxdev; 94 } 95 96 /* 97 * We're now finished for good with this page. Update the page state via the 98 * associated buffer_heads, paying attention to the start and end offsets that 99 * we need to process on the page. 100 * 101 * Note that we open code the action in end_buffer_async_write here so that we 102 * only have to iterate over the buffers attached to the page once. This is not 103 * only more efficient, but also ensures that we only calls end_page_writeback 104 * at the end of the iteration, and thus avoids the pitfall of having the page 105 * and buffers potentially freed after every call to end_buffer_async_write. 106 */ 107 static void 108 xfs_finish_page_writeback( 109 struct inode *inode, 110 struct bio_vec *bvec, 111 int error) 112 { 113 struct buffer_head *head = page_buffers(bvec->bv_page), *bh = head; 114 bool busy = false; 115 unsigned int off = 0; 116 unsigned long flags; 117 118 ASSERT(bvec->bv_offset < PAGE_SIZE); 119 ASSERT((bvec->bv_offset & (i_blocksize(inode) - 1)) == 0); 120 ASSERT(bvec->bv_offset + bvec->bv_len <= PAGE_SIZE); 121 ASSERT((bvec->bv_len & (i_blocksize(inode) - 1)) == 0); 122 123 local_irq_save(flags); 124 bit_spin_lock(BH_Uptodate_Lock, &head->b_state); 125 do { 126 if (off >= bvec->bv_offset && 127 off < bvec->bv_offset + bvec->bv_len) { 128 ASSERT(buffer_async_write(bh)); 129 ASSERT(bh->b_end_io == NULL); 130 131 if (error) { 132 mark_buffer_write_io_error(bh); 133 clear_buffer_uptodate(bh); 134 SetPageError(bvec->bv_page); 135 } else { 136 set_buffer_uptodate(bh); 137 } 138 clear_buffer_async_write(bh); 139 unlock_buffer(bh); 140 } else if (buffer_async_write(bh)) { 141 ASSERT(buffer_locked(bh)); 142 busy = true; 143 } 144 off += bh->b_size; 145 } while ((bh = bh->b_this_page) != head); 146 bit_spin_unlock(BH_Uptodate_Lock, &head->b_state); 147 local_irq_restore(flags); 148 149 if (!busy) 150 end_page_writeback(bvec->bv_page); 151 } 152 153 /* 154 * We're now finished for good with this ioend structure. Update the page 155 * state, release holds on bios, and finally free up memory. Do not use the 156 * ioend after this. 157 */ 158 STATIC void 159 xfs_destroy_ioend( 160 struct xfs_ioend *ioend, 161 int error) 162 { 163 struct inode *inode = ioend->io_inode; 164 struct bio *bio = &ioend->io_inline_bio; 165 struct bio *last = ioend->io_bio, *next; 166 u64 start = bio->bi_iter.bi_sector; 167 bool quiet = bio_flagged(bio, BIO_QUIET); 168 169 for (bio = &ioend->io_inline_bio; bio; bio = next) { 170 struct bio_vec *bvec; 171 int i; 172 173 /* 174 * For the last bio, bi_private points to the ioend, so we 175 * need to explicitly end the iteration here. 176 */ 177 if (bio == last) 178 next = NULL; 179 else 180 next = bio->bi_private; 181 182 /* walk each page on bio, ending page IO on them */ 183 bio_for_each_segment_all(bvec, bio, i) 184 xfs_finish_page_writeback(inode, bvec, error); 185 186 bio_put(bio); 187 } 188 189 if (unlikely(error && !quiet)) { 190 xfs_err_ratelimited(XFS_I(inode)->i_mount, 191 "writeback error on sector %llu", start); 192 } 193 } 194 195 /* 196 * Fast and loose check if this write could update the on-disk inode size. 197 */ 198 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend) 199 { 200 return ioend->io_offset + ioend->io_size > 201 XFS_I(ioend->io_inode)->i_d.di_size; 202 } 203 204 STATIC int 205 xfs_setfilesize_trans_alloc( 206 struct xfs_ioend *ioend) 207 { 208 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount; 209 struct xfs_trans *tp; 210 int error; 211 212 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp); 213 if (error) 214 return error; 215 216 ioend->io_append_trans = tp; 217 218 /* 219 * We may pass freeze protection with a transaction. So tell lockdep 220 * we released it. 221 */ 222 __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS); 223 /* 224 * We hand off the transaction to the completion thread now, so 225 * clear the flag here. 226 */ 227 current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS); 228 return 0; 229 } 230 231 /* 232 * Update on-disk file size now that data has been written to disk. 233 */ 234 STATIC int 235 __xfs_setfilesize( 236 struct xfs_inode *ip, 237 struct xfs_trans *tp, 238 xfs_off_t offset, 239 size_t size) 240 { 241 xfs_fsize_t isize; 242 243 xfs_ilock(ip, XFS_ILOCK_EXCL); 244 isize = xfs_new_eof(ip, offset + size); 245 if (!isize) { 246 xfs_iunlock(ip, XFS_ILOCK_EXCL); 247 xfs_trans_cancel(tp); 248 return 0; 249 } 250 251 trace_xfs_setfilesize(ip, offset, size); 252 253 ip->i_d.di_size = isize; 254 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 255 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 256 257 return xfs_trans_commit(tp); 258 } 259 260 int 261 xfs_setfilesize( 262 struct xfs_inode *ip, 263 xfs_off_t offset, 264 size_t size) 265 { 266 struct xfs_mount *mp = ip->i_mount; 267 struct xfs_trans *tp; 268 int error; 269 270 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp); 271 if (error) 272 return error; 273 274 return __xfs_setfilesize(ip, tp, offset, size); 275 } 276 277 STATIC int 278 xfs_setfilesize_ioend( 279 struct xfs_ioend *ioend, 280 int error) 281 { 282 struct xfs_inode *ip = XFS_I(ioend->io_inode); 283 struct xfs_trans *tp = ioend->io_append_trans; 284 285 /* 286 * The transaction may have been allocated in the I/O submission thread, 287 * thus we need to mark ourselves as being in a transaction manually. 288 * Similarly for freeze protection. 289 */ 290 current_set_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS); 291 __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS); 292 293 /* we abort the update if there was an IO error */ 294 if (error) { 295 xfs_trans_cancel(tp); 296 return error; 297 } 298 299 return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size); 300 } 301 302 /* 303 * IO write completion. 304 */ 305 STATIC void 306 xfs_end_io( 307 struct work_struct *work) 308 { 309 struct xfs_ioend *ioend = 310 container_of(work, struct xfs_ioend, io_work); 311 struct xfs_inode *ip = XFS_I(ioend->io_inode); 312 xfs_off_t offset = ioend->io_offset; 313 size_t size = ioend->io_size; 314 int error; 315 316 /* 317 * Just clean up the in-memory strutures if the fs has been shut down. 318 */ 319 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { 320 error = -EIO; 321 goto done; 322 } 323 324 /* 325 * Clean up any COW blocks on an I/O error. 326 */ 327 error = blk_status_to_errno(ioend->io_bio->bi_status); 328 if (unlikely(error)) { 329 switch (ioend->io_type) { 330 case XFS_IO_COW: 331 xfs_reflink_cancel_cow_range(ip, offset, size, true); 332 break; 333 } 334 335 goto done; 336 } 337 338 /* 339 * Success: commit the COW or unwritten blocks if needed. 340 */ 341 switch (ioend->io_type) { 342 case XFS_IO_COW: 343 error = xfs_reflink_end_cow(ip, offset, size); 344 break; 345 case XFS_IO_UNWRITTEN: 346 /* writeback should never update isize */ 347 error = xfs_iomap_write_unwritten(ip, offset, size, false); 348 break; 349 default: 350 ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_append_trans); 351 break; 352 } 353 354 done: 355 if (ioend->io_append_trans) 356 error = xfs_setfilesize_ioend(ioend, error); 357 xfs_destroy_ioend(ioend, error); 358 } 359 360 STATIC void 361 xfs_end_bio( 362 struct bio *bio) 363 { 364 struct xfs_ioend *ioend = bio->bi_private; 365 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount; 366 367 if (ioend->io_type == XFS_IO_UNWRITTEN || ioend->io_type == XFS_IO_COW) 368 queue_work(mp->m_unwritten_workqueue, &ioend->io_work); 369 else if (ioend->io_append_trans) 370 queue_work(mp->m_data_workqueue, &ioend->io_work); 371 else 372 xfs_destroy_ioend(ioend, blk_status_to_errno(bio->bi_status)); 373 } 374 375 STATIC int 376 xfs_map_blocks( 377 struct inode *inode, 378 loff_t offset, 379 struct xfs_bmbt_irec *imap, 380 int type) 381 { 382 struct xfs_inode *ip = XFS_I(inode); 383 struct xfs_mount *mp = ip->i_mount; 384 ssize_t count = i_blocksize(inode); 385 xfs_fileoff_t offset_fsb, end_fsb; 386 int error = 0; 387 int bmapi_flags = XFS_BMAPI_ENTIRE; 388 int nimaps = 1; 389 390 if (XFS_FORCED_SHUTDOWN(mp)) 391 return -EIO; 392 393 ASSERT(type != XFS_IO_COW); 394 if (type == XFS_IO_UNWRITTEN) 395 bmapi_flags |= XFS_BMAPI_IGSTATE; 396 397 xfs_ilock(ip, XFS_ILOCK_SHARED); 398 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 399 (ip->i_df.if_flags & XFS_IFEXTENTS)); 400 ASSERT(offset <= mp->m_super->s_maxbytes); 401 402 if ((xfs_ufsize_t)offset + count > mp->m_super->s_maxbytes) 403 count = mp->m_super->s_maxbytes - offset; 404 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count); 405 offset_fsb = XFS_B_TO_FSBT(mp, offset); 406 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, 407 imap, &nimaps, bmapi_flags); 408 /* 409 * Truncate an overwrite extent if there's a pending CoW 410 * reservation before the end of this extent. This forces us 411 * to come back to writepage to take care of the CoW. 412 */ 413 if (nimaps && type == XFS_IO_OVERWRITE) 414 xfs_reflink_trim_irec_to_next_cow(ip, offset_fsb, imap); 415 xfs_iunlock(ip, XFS_ILOCK_SHARED); 416 417 if (error) 418 return error; 419 420 if (type == XFS_IO_DELALLOC && 421 (!nimaps || isnullstartblock(imap->br_startblock))) { 422 error = xfs_iomap_write_allocate(ip, XFS_DATA_FORK, offset, 423 imap); 424 if (!error) 425 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap); 426 return error; 427 } 428 429 #ifdef DEBUG 430 if (type == XFS_IO_UNWRITTEN) { 431 ASSERT(nimaps); 432 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 433 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 434 } 435 #endif 436 if (nimaps) 437 trace_xfs_map_blocks_found(ip, offset, count, type, imap); 438 return 0; 439 } 440 441 STATIC bool 442 xfs_imap_valid( 443 struct inode *inode, 444 struct xfs_bmbt_irec *imap, 445 xfs_off_t offset) 446 { 447 offset >>= inode->i_blkbits; 448 449 /* 450 * We have to make sure the cached mapping is within EOF to protect 451 * against eofblocks trimming on file release leaving us with a stale 452 * mapping. Otherwise, a page for a subsequent file extending buffered 453 * write could get picked up by this writeback cycle and written to the 454 * wrong blocks. 455 * 456 * Note that what we really want here is a generic mapping invalidation 457 * mechanism to protect us from arbitrary extent modifying contexts, not 458 * just eofblocks. 459 */ 460 xfs_trim_extent_eof(imap, XFS_I(inode)); 461 462 return offset >= imap->br_startoff && 463 offset < imap->br_startoff + imap->br_blockcount; 464 } 465 466 STATIC void 467 xfs_start_buffer_writeback( 468 struct buffer_head *bh) 469 { 470 ASSERT(buffer_mapped(bh)); 471 ASSERT(buffer_locked(bh)); 472 ASSERT(!buffer_delay(bh)); 473 ASSERT(!buffer_unwritten(bh)); 474 475 bh->b_end_io = NULL; 476 set_buffer_async_write(bh); 477 set_buffer_uptodate(bh); 478 clear_buffer_dirty(bh); 479 } 480 481 STATIC void 482 xfs_start_page_writeback( 483 struct page *page, 484 int clear_dirty) 485 { 486 ASSERT(PageLocked(page)); 487 ASSERT(!PageWriteback(page)); 488 489 /* 490 * if the page was not fully cleaned, we need to ensure that the higher 491 * layers come back to it correctly. That means we need to keep the page 492 * dirty, and for WB_SYNC_ALL writeback we need to ensure the 493 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to 494 * write this page in this writeback sweep will be made. 495 */ 496 if (clear_dirty) { 497 clear_page_dirty_for_io(page); 498 set_page_writeback(page); 499 } else 500 set_page_writeback_keepwrite(page); 501 502 unlock_page(page); 503 } 504 505 static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh) 506 { 507 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); 508 } 509 510 /* 511 * Submit the bio for an ioend. We are passed an ioend with a bio attached to 512 * it, and we submit that bio. The ioend may be used for multiple bio 513 * submissions, so we only want to allocate an append transaction for the ioend 514 * once. In the case of multiple bio submission, each bio will take an IO 515 * reference to the ioend to ensure that the ioend completion is only done once 516 * all bios have been submitted and the ioend is really done. 517 * 518 * If @fail is non-zero, it means that we have a situation where some part of 519 * the submission process has failed after we have marked paged for writeback 520 * and unlocked them. In this situation, we need to fail the bio and ioend 521 * rather than submit it to IO. This typically only happens on a filesystem 522 * shutdown. 523 */ 524 STATIC int 525 xfs_submit_ioend( 526 struct writeback_control *wbc, 527 struct xfs_ioend *ioend, 528 int status) 529 { 530 /* Convert CoW extents to regular */ 531 if (!status && ioend->io_type == XFS_IO_COW) { 532 status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode), 533 ioend->io_offset, ioend->io_size); 534 } 535 536 /* Reserve log space if we might write beyond the on-disk inode size. */ 537 if (!status && 538 ioend->io_type != XFS_IO_UNWRITTEN && 539 xfs_ioend_is_append(ioend) && 540 !ioend->io_append_trans) 541 status = xfs_setfilesize_trans_alloc(ioend); 542 543 ioend->io_bio->bi_private = ioend; 544 ioend->io_bio->bi_end_io = xfs_end_bio; 545 ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc); 546 547 /* 548 * If we are failing the IO now, just mark the ioend with an 549 * error and finish it. This will run IO completion immediately 550 * as there is only one reference to the ioend at this point in 551 * time. 552 */ 553 if (status) { 554 ioend->io_bio->bi_status = errno_to_blk_status(status); 555 bio_endio(ioend->io_bio); 556 return status; 557 } 558 559 ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint; 560 submit_bio(ioend->io_bio); 561 return 0; 562 } 563 564 static void 565 xfs_init_bio_from_bh( 566 struct bio *bio, 567 struct buffer_head *bh) 568 { 569 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 570 bio_set_dev(bio, bh->b_bdev); 571 } 572 573 static struct xfs_ioend * 574 xfs_alloc_ioend( 575 struct inode *inode, 576 unsigned int type, 577 xfs_off_t offset, 578 struct buffer_head *bh) 579 { 580 struct xfs_ioend *ioend; 581 struct bio *bio; 582 583 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, xfs_ioend_bioset); 584 xfs_init_bio_from_bh(bio, bh); 585 586 ioend = container_of(bio, struct xfs_ioend, io_inline_bio); 587 INIT_LIST_HEAD(&ioend->io_list); 588 ioend->io_type = type; 589 ioend->io_inode = inode; 590 ioend->io_size = 0; 591 ioend->io_offset = offset; 592 INIT_WORK(&ioend->io_work, xfs_end_io); 593 ioend->io_append_trans = NULL; 594 ioend->io_bio = bio; 595 return ioend; 596 } 597 598 /* 599 * Allocate a new bio, and chain the old bio to the new one. 600 * 601 * Note that we have to do perform the chaining in this unintuitive order 602 * so that the bi_private linkage is set up in the right direction for the 603 * traversal in xfs_destroy_ioend(). 604 */ 605 static void 606 xfs_chain_bio( 607 struct xfs_ioend *ioend, 608 struct writeback_control *wbc, 609 struct buffer_head *bh) 610 { 611 struct bio *new; 612 613 new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES); 614 xfs_init_bio_from_bh(new, bh); 615 616 bio_chain(ioend->io_bio, new); 617 bio_get(ioend->io_bio); /* for xfs_destroy_ioend */ 618 ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc); 619 ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint; 620 submit_bio(ioend->io_bio); 621 ioend->io_bio = new; 622 } 623 624 /* 625 * Test to see if we've been building up a completion structure for 626 * earlier buffers -- if so, we try to append to this ioend if we 627 * can, otherwise we finish off any current ioend and start another. 628 * Return the ioend we finished off so that the caller can submit it 629 * once it has finished processing the dirty page. 630 */ 631 STATIC void 632 xfs_add_to_ioend( 633 struct inode *inode, 634 struct buffer_head *bh, 635 xfs_off_t offset, 636 struct xfs_writepage_ctx *wpc, 637 struct writeback_control *wbc, 638 struct list_head *iolist) 639 { 640 if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type || 641 bh->b_blocknr != wpc->last_block + 1 || 642 offset != wpc->ioend->io_offset + wpc->ioend->io_size) { 643 if (wpc->ioend) 644 list_add(&wpc->ioend->io_list, iolist); 645 wpc->ioend = xfs_alloc_ioend(inode, wpc->io_type, offset, bh); 646 } 647 648 /* 649 * If the buffer doesn't fit into the bio we need to allocate a new 650 * one. This shouldn't happen more than once for a given buffer. 651 */ 652 while (xfs_bio_add_buffer(wpc->ioend->io_bio, bh) != bh->b_size) 653 xfs_chain_bio(wpc->ioend, wbc, bh); 654 655 wpc->ioend->io_size += bh->b_size; 656 wpc->last_block = bh->b_blocknr; 657 xfs_start_buffer_writeback(bh); 658 } 659 660 STATIC void 661 xfs_map_buffer( 662 struct inode *inode, 663 struct buffer_head *bh, 664 struct xfs_bmbt_irec *imap, 665 xfs_off_t offset) 666 { 667 sector_t bn; 668 struct xfs_mount *m = XFS_I(inode)->i_mount; 669 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff); 670 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock); 671 672 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 673 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 674 675 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) + 676 ((offset - iomap_offset) >> inode->i_blkbits); 677 678 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode))); 679 680 bh->b_blocknr = bn; 681 set_buffer_mapped(bh); 682 } 683 684 STATIC void 685 xfs_map_at_offset( 686 struct inode *inode, 687 struct buffer_head *bh, 688 struct xfs_bmbt_irec *imap, 689 xfs_off_t offset) 690 { 691 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 692 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 693 694 xfs_map_buffer(inode, bh, imap, offset); 695 set_buffer_mapped(bh); 696 clear_buffer_delay(bh); 697 clear_buffer_unwritten(bh); 698 } 699 700 /* 701 * Test if a given page contains at least one buffer of a given @type. 702 * If @check_all_buffers is true, then we walk all the buffers in the page to 703 * try to find one of the type passed in. If it is not set, then the caller only 704 * needs to check the first buffer on the page for a match. 705 */ 706 STATIC bool 707 xfs_check_page_type( 708 struct page *page, 709 unsigned int type, 710 bool check_all_buffers) 711 { 712 struct buffer_head *bh; 713 struct buffer_head *head; 714 715 if (PageWriteback(page)) 716 return false; 717 if (!page->mapping) 718 return false; 719 if (!page_has_buffers(page)) 720 return false; 721 722 bh = head = page_buffers(page); 723 do { 724 if (buffer_unwritten(bh)) { 725 if (type == XFS_IO_UNWRITTEN) 726 return true; 727 } else if (buffer_delay(bh)) { 728 if (type == XFS_IO_DELALLOC) 729 return true; 730 } else if (buffer_dirty(bh) && buffer_mapped(bh)) { 731 if (type == XFS_IO_OVERWRITE) 732 return true; 733 } 734 735 /* If we are only checking the first buffer, we are done now. */ 736 if (!check_all_buffers) 737 break; 738 } while ((bh = bh->b_this_page) != head); 739 740 return false; 741 } 742 743 STATIC void 744 xfs_vm_invalidatepage( 745 struct page *page, 746 unsigned int offset, 747 unsigned int length) 748 { 749 trace_xfs_invalidatepage(page->mapping->host, page, offset, 750 length); 751 752 /* 753 * If we are invalidating the entire page, clear the dirty state from it 754 * so that we can check for attempts to release dirty cached pages in 755 * xfs_vm_releasepage(). 756 */ 757 if (offset == 0 && length >= PAGE_SIZE) 758 cancel_dirty_page(page); 759 block_invalidatepage(page, offset, length); 760 } 761 762 /* 763 * If the page has delalloc buffers on it, we need to punch them out before we 764 * invalidate the page. If we don't, we leave a stale delalloc mapping on the 765 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read 766 * is done on that same region - the delalloc extent is returned when none is 767 * supposed to be there. 768 * 769 * We prevent this by truncating away the delalloc regions on the page before 770 * invalidating it. Because they are delalloc, we can do this without needing a 771 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this 772 * truncation without a transaction as there is no space left for block 773 * reservation (typically why we see a ENOSPC in writeback). 774 * 775 * This is not a performance critical path, so for now just do the punching a 776 * buffer head at a time. 777 */ 778 STATIC void 779 xfs_aops_discard_page( 780 struct page *page) 781 { 782 struct inode *inode = page->mapping->host; 783 struct xfs_inode *ip = XFS_I(inode); 784 struct buffer_head *bh, *head; 785 loff_t offset = page_offset(page); 786 787 if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true)) 788 goto out_invalidate; 789 790 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 791 goto out_invalidate; 792 793 xfs_alert(ip->i_mount, 794 "page discard on page %p, inode 0x%llx, offset %llu.", 795 page, ip->i_ino, offset); 796 797 xfs_ilock(ip, XFS_ILOCK_EXCL); 798 bh = head = page_buffers(page); 799 do { 800 int error; 801 xfs_fileoff_t start_fsb; 802 803 if (!buffer_delay(bh)) 804 goto next_buffer; 805 806 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset); 807 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1); 808 if (error) { 809 /* something screwed, just bail */ 810 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { 811 xfs_alert(ip->i_mount, 812 "page discard unable to remove delalloc mapping."); 813 } 814 break; 815 } 816 next_buffer: 817 offset += i_blocksize(inode); 818 819 } while ((bh = bh->b_this_page) != head); 820 821 xfs_iunlock(ip, XFS_ILOCK_EXCL); 822 out_invalidate: 823 xfs_vm_invalidatepage(page, 0, PAGE_SIZE); 824 return; 825 } 826 827 static int 828 xfs_map_cow( 829 struct xfs_writepage_ctx *wpc, 830 struct inode *inode, 831 loff_t offset, 832 unsigned int *new_type) 833 { 834 struct xfs_inode *ip = XFS_I(inode); 835 struct xfs_bmbt_irec imap; 836 bool is_cow = false; 837 int error; 838 839 /* 840 * If we already have a valid COW mapping keep using it. 841 */ 842 if (wpc->io_type == XFS_IO_COW) { 843 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, offset); 844 if (wpc->imap_valid) { 845 *new_type = XFS_IO_COW; 846 return 0; 847 } 848 } 849 850 /* 851 * Else we need to check if there is a COW mapping at this offset. 852 */ 853 xfs_ilock(ip, XFS_ILOCK_SHARED); 854 is_cow = xfs_reflink_find_cow_mapping(ip, offset, &imap); 855 xfs_iunlock(ip, XFS_ILOCK_SHARED); 856 857 if (!is_cow) 858 return 0; 859 860 /* 861 * And if the COW mapping has a delayed extent here we need to 862 * allocate real space for it now. 863 */ 864 if (isnullstartblock(imap.br_startblock)) { 865 error = xfs_iomap_write_allocate(ip, XFS_COW_FORK, offset, 866 &imap); 867 if (error) 868 return error; 869 } 870 871 wpc->io_type = *new_type = XFS_IO_COW; 872 wpc->imap_valid = true; 873 wpc->imap = imap; 874 return 0; 875 } 876 877 /* 878 * We implement an immediate ioend submission policy here to avoid needing to 879 * chain multiple ioends and hence nest mempool allocations which can violate 880 * forward progress guarantees we need to provide. The current ioend we are 881 * adding buffers to is cached on the writepage context, and if the new buffer 882 * does not append to the cached ioend it will create a new ioend and cache that 883 * instead. 884 * 885 * If a new ioend is created and cached, the old ioend is returned and queued 886 * locally for submission once the entire page is processed or an error has been 887 * detected. While ioends are submitted immediately after they are completed, 888 * batching optimisations are provided by higher level block plugging. 889 * 890 * At the end of a writeback pass, there will be a cached ioend remaining on the 891 * writepage context that the caller will need to submit. 892 */ 893 static int 894 xfs_writepage_map( 895 struct xfs_writepage_ctx *wpc, 896 struct writeback_control *wbc, 897 struct inode *inode, 898 struct page *page, 899 uint64_t end_offset) 900 { 901 LIST_HEAD(submit_list); 902 struct xfs_ioend *ioend, *next; 903 struct buffer_head *bh, *head; 904 ssize_t len = i_blocksize(inode); 905 uint64_t offset; 906 int error = 0; 907 int count = 0; 908 int uptodate = 1; 909 unsigned int new_type; 910 911 bh = head = page_buffers(page); 912 offset = page_offset(page); 913 do { 914 if (offset >= end_offset) 915 break; 916 if (!buffer_uptodate(bh)) 917 uptodate = 0; 918 919 /* 920 * set_page_dirty dirties all buffers in a page, independent 921 * of their state. The dirty state however is entirely 922 * meaningless for holes (!mapped && uptodate), so skip 923 * buffers covering holes here. 924 */ 925 if (!buffer_mapped(bh) && buffer_uptodate(bh)) { 926 wpc->imap_valid = false; 927 continue; 928 } 929 930 if (buffer_unwritten(bh)) 931 new_type = XFS_IO_UNWRITTEN; 932 else if (buffer_delay(bh)) 933 new_type = XFS_IO_DELALLOC; 934 else if (buffer_uptodate(bh)) 935 new_type = XFS_IO_OVERWRITE; 936 else { 937 if (PageUptodate(page)) 938 ASSERT(buffer_mapped(bh)); 939 /* 940 * This buffer is not uptodate and will not be 941 * written to disk. Ensure that we will put any 942 * subsequent writeable buffers into a new 943 * ioend. 944 */ 945 wpc->imap_valid = false; 946 continue; 947 } 948 949 if (xfs_is_reflink_inode(XFS_I(inode))) { 950 error = xfs_map_cow(wpc, inode, offset, &new_type); 951 if (error) 952 goto out; 953 } 954 955 if (wpc->io_type != new_type) { 956 wpc->io_type = new_type; 957 wpc->imap_valid = false; 958 } 959 960 if (wpc->imap_valid) 961 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, 962 offset); 963 if (!wpc->imap_valid) { 964 error = xfs_map_blocks(inode, offset, &wpc->imap, 965 wpc->io_type); 966 if (error) 967 goto out; 968 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, 969 offset); 970 } 971 if (wpc->imap_valid) { 972 lock_buffer(bh); 973 if (wpc->io_type != XFS_IO_OVERWRITE) 974 xfs_map_at_offset(inode, bh, &wpc->imap, offset); 975 xfs_add_to_ioend(inode, bh, offset, wpc, wbc, &submit_list); 976 count++; 977 } 978 979 } while (offset += len, ((bh = bh->b_this_page) != head)); 980 981 if (uptodate && bh == head) 982 SetPageUptodate(page); 983 984 ASSERT(wpc->ioend || list_empty(&submit_list)); 985 986 out: 987 /* 988 * On error, we have to fail the ioend here because we have locked 989 * buffers in the ioend. If we don't do this, we'll deadlock 990 * invalidating the page as that tries to lock the buffers on the page. 991 * Also, because we may have set pages under writeback, we have to make 992 * sure we run IO completion to mark the error state of the IO 993 * appropriately, so we can't cancel the ioend directly here. That means 994 * we have to mark this page as under writeback if we included any 995 * buffers from it in the ioend chain so that completion treats it 996 * correctly. 997 * 998 * If we didn't include the page in the ioend, the on error we can 999 * simply discard and unlock it as there are no other users of the page 1000 * or it's buffers right now. The caller will still need to trigger 1001 * submission of outstanding ioends on the writepage context so they are 1002 * treated correctly on error. 1003 */ 1004 if (count) { 1005 xfs_start_page_writeback(page, !error); 1006 1007 /* 1008 * Preserve the original error if there was one, otherwise catch 1009 * submission errors here and propagate into subsequent ioend 1010 * submissions. 1011 */ 1012 list_for_each_entry_safe(ioend, next, &submit_list, io_list) { 1013 int error2; 1014 1015 list_del_init(&ioend->io_list); 1016 error2 = xfs_submit_ioend(wbc, ioend, error); 1017 if (error2 && !error) 1018 error = error2; 1019 } 1020 } else if (error) { 1021 xfs_aops_discard_page(page); 1022 ClearPageUptodate(page); 1023 unlock_page(page); 1024 } else { 1025 /* 1026 * We can end up here with no error and nothing to write if we 1027 * race with a partial page truncate on a sub-page block sized 1028 * filesystem. In that case we need to mark the page clean. 1029 */ 1030 xfs_start_page_writeback(page, 1); 1031 end_page_writeback(page); 1032 } 1033 1034 mapping_set_error(page->mapping, error); 1035 return error; 1036 } 1037 1038 /* 1039 * Write out a dirty page. 1040 * 1041 * For delalloc space on the page we need to allocate space and flush it. 1042 * For unwritten space on the page we need to start the conversion to 1043 * regular allocated space. 1044 * For any other dirty buffer heads on the page we should flush them. 1045 */ 1046 STATIC int 1047 xfs_do_writepage( 1048 struct page *page, 1049 struct writeback_control *wbc, 1050 void *data) 1051 { 1052 struct xfs_writepage_ctx *wpc = data; 1053 struct inode *inode = page->mapping->host; 1054 loff_t offset; 1055 uint64_t end_offset; 1056 pgoff_t end_index; 1057 1058 trace_xfs_writepage(inode, page, 0, 0); 1059 1060 ASSERT(page_has_buffers(page)); 1061 1062 /* 1063 * Refuse to write the page out if we are called from reclaim context. 1064 * 1065 * This avoids stack overflows when called from deeply used stacks in 1066 * random callers for direct reclaim or memcg reclaim. We explicitly 1067 * allow reclaim from kswapd as the stack usage there is relatively low. 1068 * 1069 * This should never happen except in the case of a VM regression so 1070 * warn about it. 1071 */ 1072 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == 1073 PF_MEMALLOC)) 1074 goto redirty; 1075 1076 /* 1077 * Given that we do not allow direct reclaim to call us, we should 1078 * never be called while in a filesystem transaction. 1079 */ 1080 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS)) 1081 goto redirty; 1082 1083 /* 1084 * Is this page beyond the end of the file? 1085 * 1086 * The page index is less than the end_index, adjust the end_offset 1087 * to the highest offset that this page should represent. 1088 * ----------------------------------------------------- 1089 * | file mapping | <EOF> | 1090 * ----------------------------------------------------- 1091 * | Page ... | Page N-2 | Page N-1 | Page N | | 1092 * ^--------------------------------^----------|-------- 1093 * | desired writeback range | see else | 1094 * ---------------------------------^------------------| 1095 */ 1096 offset = i_size_read(inode); 1097 end_index = offset >> PAGE_SHIFT; 1098 if (page->index < end_index) 1099 end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT; 1100 else { 1101 /* 1102 * Check whether the page to write out is beyond or straddles 1103 * i_size or not. 1104 * ------------------------------------------------------- 1105 * | file mapping | <EOF> | 1106 * ------------------------------------------------------- 1107 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond | 1108 * ^--------------------------------^-----------|--------- 1109 * | | Straddles | 1110 * ---------------------------------^-----------|--------| 1111 */ 1112 unsigned offset_into_page = offset & (PAGE_SIZE - 1); 1113 1114 /* 1115 * Skip the page if it is fully outside i_size, e.g. due to a 1116 * truncate operation that is in progress. We must redirty the 1117 * page so that reclaim stops reclaiming it. Otherwise 1118 * xfs_vm_releasepage() is called on it and gets confused. 1119 * 1120 * Note that the end_index is unsigned long, it would overflow 1121 * if the given offset is greater than 16TB on 32-bit system 1122 * and if we do check the page is fully outside i_size or not 1123 * via "if (page->index >= end_index + 1)" as "end_index + 1" 1124 * will be evaluated to 0. Hence this page will be redirtied 1125 * and be written out repeatedly which would result in an 1126 * infinite loop, the user program that perform this operation 1127 * will hang. Instead, we can verify this situation by checking 1128 * if the page to write is totally beyond the i_size or if it's 1129 * offset is just equal to the EOF. 1130 */ 1131 if (page->index > end_index || 1132 (page->index == end_index && offset_into_page == 0)) 1133 goto redirty; 1134 1135 /* 1136 * The page straddles i_size. It must be zeroed out on each 1137 * and every writepage invocation because it may be mmapped. 1138 * "A file is mapped in multiples of the page size. For a file 1139 * that is not a multiple of the page size, the remaining 1140 * memory is zeroed when mapped, and writes to that region are 1141 * not written out to the file." 1142 */ 1143 zero_user_segment(page, offset_into_page, PAGE_SIZE); 1144 1145 /* Adjust the end_offset to the end of file */ 1146 end_offset = offset; 1147 } 1148 1149 return xfs_writepage_map(wpc, wbc, inode, page, end_offset); 1150 1151 redirty: 1152 redirty_page_for_writepage(wbc, page); 1153 unlock_page(page); 1154 return 0; 1155 } 1156 1157 STATIC int 1158 xfs_vm_writepage( 1159 struct page *page, 1160 struct writeback_control *wbc) 1161 { 1162 struct xfs_writepage_ctx wpc = { 1163 .io_type = XFS_IO_INVALID, 1164 }; 1165 int ret; 1166 1167 ret = xfs_do_writepage(page, wbc, &wpc); 1168 if (wpc.ioend) 1169 ret = xfs_submit_ioend(wbc, wpc.ioend, ret); 1170 return ret; 1171 } 1172 1173 STATIC int 1174 xfs_vm_writepages( 1175 struct address_space *mapping, 1176 struct writeback_control *wbc) 1177 { 1178 struct xfs_writepage_ctx wpc = { 1179 .io_type = XFS_IO_INVALID, 1180 }; 1181 int ret; 1182 1183 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED); 1184 if (dax_mapping(mapping)) 1185 return dax_writeback_mapping_range(mapping, 1186 xfs_find_bdev_for_inode(mapping->host), wbc); 1187 1188 ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc); 1189 if (wpc.ioend) 1190 ret = xfs_submit_ioend(wbc, wpc.ioend, ret); 1191 return ret; 1192 } 1193 1194 /* 1195 * Called to move a page into cleanable state - and from there 1196 * to be released. The page should already be clean. We always 1197 * have buffer heads in this call. 1198 * 1199 * Returns 1 if the page is ok to release, 0 otherwise. 1200 */ 1201 STATIC int 1202 xfs_vm_releasepage( 1203 struct page *page, 1204 gfp_t gfp_mask) 1205 { 1206 int delalloc, unwritten; 1207 1208 trace_xfs_releasepage(page->mapping->host, page, 0, 0); 1209 1210 /* 1211 * mm accommodates an old ext3 case where clean pages might not have had 1212 * the dirty bit cleared. Thus, it can send actual dirty pages to 1213 * ->releasepage() via shrink_active_list(). Conversely, 1214 * block_invalidatepage() can send pages that are still marked dirty but 1215 * otherwise have invalidated buffers. 1216 * 1217 * We want to release the latter to avoid unnecessary buildup of the 1218 * LRU, so xfs_vm_invalidatepage() clears the page dirty flag on pages 1219 * that are entirely invalidated and need to be released. Hence the 1220 * only time we should get dirty pages here is through 1221 * shrink_active_list() and so we can simply skip those now. 1222 * 1223 * warn if we've left any lingering delalloc/unwritten buffers on clean 1224 * or invalidated pages we are about to release. 1225 */ 1226 if (PageDirty(page)) 1227 return 0; 1228 1229 xfs_count_page_state(page, &delalloc, &unwritten); 1230 1231 if (WARN_ON_ONCE(delalloc)) 1232 return 0; 1233 if (WARN_ON_ONCE(unwritten)) 1234 return 0; 1235 1236 return try_to_free_buffers(page); 1237 } 1238 1239 /* 1240 * If this is O_DIRECT or the mpage code calling tell them how large the mapping 1241 * is, so that we can avoid repeated get_blocks calls. 1242 * 1243 * If the mapping spans EOF, then we have to break the mapping up as the mapping 1244 * for blocks beyond EOF must be marked new so that sub block regions can be 1245 * correctly zeroed. We can't do this for mappings within EOF unless the mapping 1246 * was just allocated or is unwritten, otherwise the callers would overwrite 1247 * existing data with zeros. Hence we have to split the mapping into a range up 1248 * to and including EOF, and a second mapping for beyond EOF. 1249 */ 1250 static void 1251 xfs_map_trim_size( 1252 struct inode *inode, 1253 sector_t iblock, 1254 struct buffer_head *bh_result, 1255 struct xfs_bmbt_irec *imap, 1256 xfs_off_t offset, 1257 ssize_t size) 1258 { 1259 xfs_off_t mapping_size; 1260 1261 mapping_size = imap->br_startoff + imap->br_blockcount - iblock; 1262 mapping_size <<= inode->i_blkbits; 1263 1264 ASSERT(mapping_size > 0); 1265 if (mapping_size > size) 1266 mapping_size = size; 1267 if (offset < i_size_read(inode) && 1268 (xfs_ufsize_t)offset + mapping_size >= i_size_read(inode)) { 1269 /* limit mapping to block that spans EOF */ 1270 mapping_size = roundup_64(i_size_read(inode) - offset, 1271 i_blocksize(inode)); 1272 } 1273 if (mapping_size > LONG_MAX) 1274 mapping_size = LONG_MAX; 1275 1276 bh_result->b_size = mapping_size; 1277 } 1278 1279 static int 1280 xfs_get_blocks( 1281 struct inode *inode, 1282 sector_t iblock, 1283 struct buffer_head *bh_result, 1284 int create) 1285 { 1286 struct xfs_inode *ip = XFS_I(inode); 1287 struct xfs_mount *mp = ip->i_mount; 1288 xfs_fileoff_t offset_fsb, end_fsb; 1289 int error = 0; 1290 int lockmode = 0; 1291 struct xfs_bmbt_irec imap; 1292 int nimaps = 1; 1293 xfs_off_t offset; 1294 ssize_t size; 1295 1296 BUG_ON(create); 1297 1298 if (XFS_FORCED_SHUTDOWN(mp)) 1299 return -EIO; 1300 1301 offset = (xfs_off_t)iblock << inode->i_blkbits; 1302 ASSERT(bh_result->b_size >= i_blocksize(inode)); 1303 size = bh_result->b_size; 1304 1305 if (offset >= i_size_read(inode)) 1306 return 0; 1307 1308 /* 1309 * Direct I/O is usually done on preallocated files, so try getting 1310 * a block mapping without an exclusive lock first. 1311 */ 1312 lockmode = xfs_ilock_data_map_shared(ip); 1313 1314 ASSERT(offset <= mp->m_super->s_maxbytes); 1315 if ((xfs_ufsize_t)offset + size > mp->m_super->s_maxbytes) 1316 size = mp->m_super->s_maxbytes - offset; 1317 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size); 1318 offset_fsb = XFS_B_TO_FSBT(mp, offset); 1319 1320 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, 1321 &imap, &nimaps, XFS_BMAPI_ENTIRE); 1322 if (error) 1323 goto out_unlock; 1324 1325 if (nimaps) { 1326 trace_xfs_get_blocks_found(ip, offset, size, 1327 imap.br_state == XFS_EXT_UNWRITTEN ? 1328 XFS_IO_UNWRITTEN : XFS_IO_OVERWRITE, &imap); 1329 xfs_iunlock(ip, lockmode); 1330 } else { 1331 trace_xfs_get_blocks_notfound(ip, offset, size); 1332 goto out_unlock; 1333 } 1334 1335 /* trim mapping down to size requested */ 1336 xfs_map_trim_size(inode, iblock, bh_result, &imap, offset, size); 1337 1338 /* 1339 * For unwritten extents do not report a disk address in the buffered 1340 * read case (treat as if we're reading into a hole). 1341 */ 1342 if (xfs_bmap_is_real_extent(&imap)) 1343 xfs_map_buffer(inode, bh_result, &imap, offset); 1344 1345 /* 1346 * If this is a realtime file, data may be on a different device. 1347 * to that pointed to from the buffer_head b_bdev currently. 1348 */ 1349 bh_result->b_bdev = xfs_find_bdev_for_inode(inode); 1350 return 0; 1351 1352 out_unlock: 1353 xfs_iunlock(ip, lockmode); 1354 return error; 1355 } 1356 1357 STATIC ssize_t 1358 xfs_vm_direct_IO( 1359 struct kiocb *iocb, 1360 struct iov_iter *iter) 1361 { 1362 /* 1363 * We just need the method present so that open/fcntl allow direct I/O. 1364 */ 1365 return -EINVAL; 1366 } 1367 1368 STATIC sector_t 1369 xfs_vm_bmap( 1370 struct address_space *mapping, 1371 sector_t block) 1372 { 1373 struct inode *inode = (struct inode *)mapping->host; 1374 struct xfs_inode *ip = XFS_I(inode); 1375 1376 trace_xfs_vm_bmap(XFS_I(inode)); 1377 1378 /* 1379 * The swap code (ab-)uses ->bmap to get a block mapping and then 1380 * bypasseѕ the file system for actual I/O. We really can't allow 1381 * that on reflinks inodes, so we have to skip out here. And yes, 1382 * 0 is the magic code for a bmap error. 1383 * 1384 * Since we don't pass back blockdev info, we can't return bmap 1385 * information for rt files either. 1386 */ 1387 if (xfs_is_reflink_inode(ip) || XFS_IS_REALTIME_INODE(ip)) 1388 return 0; 1389 1390 filemap_write_and_wait(mapping); 1391 return generic_block_bmap(mapping, block, xfs_get_blocks); 1392 } 1393 1394 STATIC int 1395 xfs_vm_readpage( 1396 struct file *unused, 1397 struct page *page) 1398 { 1399 trace_xfs_vm_readpage(page->mapping->host, 1); 1400 return mpage_readpage(page, xfs_get_blocks); 1401 } 1402 1403 STATIC int 1404 xfs_vm_readpages( 1405 struct file *unused, 1406 struct address_space *mapping, 1407 struct list_head *pages, 1408 unsigned nr_pages) 1409 { 1410 trace_xfs_vm_readpages(mapping->host, nr_pages); 1411 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks); 1412 } 1413 1414 /* 1415 * This is basically a copy of __set_page_dirty_buffers() with one 1416 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them 1417 * dirty, we'll never be able to clean them because we don't write buffers 1418 * beyond EOF, and that means we can't invalidate pages that span EOF 1419 * that have been marked dirty. Further, the dirty state can leak into 1420 * the file interior if the file is extended, resulting in all sorts of 1421 * bad things happening as the state does not match the underlying data. 1422 * 1423 * XXX: this really indicates that bufferheads in XFS need to die. Warts like 1424 * this only exist because of bufferheads and how the generic code manages them. 1425 */ 1426 STATIC int 1427 xfs_vm_set_page_dirty( 1428 struct page *page) 1429 { 1430 struct address_space *mapping = page->mapping; 1431 struct inode *inode = mapping->host; 1432 loff_t end_offset; 1433 loff_t offset; 1434 int newly_dirty; 1435 1436 if (unlikely(!mapping)) 1437 return !TestSetPageDirty(page); 1438 1439 end_offset = i_size_read(inode); 1440 offset = page_offset(page); 1441 1442 spin_lock(&mapping->private_lock); 1443 if (page_has_buffers(page)) { 1444 struct buffer_head *head = page_buffers(page); 1445 struct buffer_head *bh = head; 1446 1447 do { 1448 if (offset < end_offset) 1449 set_buffer_dirty(bh); 1450 bh = bh->b_this_page; 1451 offset += i_blocksize(inode); 1452 } while (bh != head); 1453 } 1454 /* 1455 * Lock out page->mem_cgroup migration to keep PageDirty 1456 * synchronized with per-memcg dirty page counters. 1457 */ 1458 lock_page_memcg(page); 1459 newly_dirty = !TestSetPageDirty(page); 1460 spin_unlock(&mapping->private_lock); 1461 1462 if (newly_dirty) { 1463 /* sigh - __set_page_dirty() is static, so copy it here, too */ 1464 unsigned long flags; 1465 1466 spin_lock_irqsave(&mapping->tree_lock, flags); 1467 if (page->mapping) { /* Race with truncate? */ 1468 WARN_ON_ONCE(!PageUptodate(page)); 1469 account_page_dirtied(page, mapping); 1470 radix_tree_tag_set(&mapping->page_tree, 1471 page_index(page), PAGECACHE_TAG_DIRTY); 1472 } 1473 spin_unlock_irqrestore(&mapping->tree_lock, flags); 1474 } 1475 unlock_page_memcg(page); 1476 if (newly_dirty) 1477 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1478 return newly_dirty; 1479 } 1480 1481 const struct address_space_operations xfs_address_space_operations = { 1482 .readpage = xfs_vm_readpage, 1483 .readpages = xfs_vm_readpages, 1484 .writepage = xfs_vm_writepage, 1485 .writepages = xfs_vm_writepages, 1486 .set_page_dirty = xfs_vm_set_page_dirty, 1487 .releasepage = xfs_vm_releasepage, 1488 .invalidatepage = xfs_vm_invalidatepage, 1489 .bmap = xfs_vm_bmap, 1490 .direct_IO = xfs_vm_direct_IO, 1491 .migratepage = buffer_migrate_page, 1492 .is_partially_uptodate = block_is_partially_uptodate, 1493 .error_remove_page = generic_error_remove_page, 1494 }; 1495