1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * Copyright (c) 2016-2025 Christoph Hellwig. 5 * All Rights Reserved. 6 */ 7 #include "xfs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_trans.h" 15 #include "xfs_iomap.h" 16 #include "xfs_trace.h" 17 #include "xfs_bmap.h" 18 #include "xfs_bmap_util.h" 19 #include "xfs_reflink.h" 20 #include "xfs_errortag.h" 21 #include "xfs_error.h" 22 #include "xfs_icache.h" 23 #include "xfs_zone_alloc.h" 24 #include "xfs_rtgroup.h" 25 26 struct xfs_writepage_ctx { 27 struct iomap_writepage_ctx ctx; 28 unsigned int data_seq; 29 unsigned int cow_seq; 30 }; 31 32 static inline struct xfs_writepage_ctx * 33 XFS_WPC(struct iomap_writepage_ctx *ctx) 34 { 35 return container_of(ctx, struct xfs_writepage_ctx, ctx); 36 } 37 38 /* 39 * Fast and loose check if this write could update the on-disk inode size. 40 */ 41 static inline bool xfs_ioend_is_append(struct iomap_ioend *ioend) 42 { 43 return ioend->io_offset + ioend->io_size > 44 XFS_I(ioend->io_inode)->i_disk_size; 45 } 46 47 /* 48 * Update on-disk file size now that data has been written to disk. 49 */ 50 int 51 xfs_setfilesize( 52 struct xfs_inode *ip, 53 xfs_off_t offset, 54 size_t size) 55 { 56 struct xfs_mount *mp = ip->i_mount; 57 struct xfs_trans *tp; 58 xfs_fsize_t isize; 59 int error; 60 61 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp); 62 if (error) 63 return error; 64 65 xfs_ilock(ip, XFS_ILOCK_EXCL); 66 isize = xfs_new_eof(ip, offset + size); 67 if (!isize) { 68 xfs_iunlock(ip, XFS_ILOCK_EXCL); 69 xfs_trans_cancel(tp); 70 return 0; 71 } 72 73 trace_xfs_setfilesize(ip, offset, size); 74 75 ip->i_disk_size = isize; 76 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 77 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 78 79 return xfs_trans_commit(tp); 80 } 81 82 static void 83 xfs_ioend_put_open_zones( 84 struct iomap_ioend *ioend) 85 { 86 struct iomap_ioend *tmp; 87 88 /* 89 * Put the open zone for all ioends merged into this one (if any). 90 */ 91 list_for_each_entry(tmp, &ioend->io_list, io_list) 92 xfs_open_zone_put(tmp->io_private); 93 94 /* 95 * The main ioend might not have an open zone if the submission failed 96 * before xfs_zone_alloc_and_submit got called. 97 */ 98 if (ioend->io_private) 99 xfs_open_zone_put(ioend->io_private); 100 } 101 102 /* 103 * IO write completion. 104 */ 105 STATIC void 106 xfs_end_ioend( 107 struct iomap_ioend *ioend) 108 { 109 struct xfs_inode *ip = XFS_I(ioend->io_inode); 110 struct xfs_mount *mp = ip->i_mount; 111 bool is_zoned = xfs_is_zoned_inode(ip); 112 xfs_off_t offset = ioend->io_offset; 113 size_t size = ioend->io_size; 114 unsigned int nofs_flag; 115 int error; 116 117 /* 118 * We can allocate memory here while doing writeback on behalf of 119 * memory reclaim. To avoid memory allocation deadlocks set the 120 * task-wide nofs context for the following operations. 121 */ 122 nofs_flag = memalloc_nofs_save(); 123 124 /* 125 * Just clean up the in-memory structures if the fs has been shut down. 126 */ 127 if (xfs_is_shutdown(mp)) { 128 error = -EIO; 129 goto done; 130 } 131 132 /* 133 * Clean up all COW blocks and underlying data fork delalloc blocks on 134 * I/O error. The delalloc punch is required because this ioend was 135 * mapped to blocks in the COW fork and the associated pages are no 136 * longer dirty. If we don't remove delalloc blocks here, they become 137 * stale and can corrupt free space accounting on unmount. 138 */ 139 error = blk_status_to_errno(ioend->io_bio.bi_status); 140 if (unlikely(error)) { 141 if (ioend->io_flags & IOMAP_IOEND_SHARED) { 142 ASSERT(!is_zoned); 143 xfs_reflink_cancel_cow_range(ip, offset, size, true); 144 xfs_bmap_punch_delalloc_range(ip, XFS_DATA_FORK, offset, 145 offset + size, NULL); 146 } 147 goto done; 148 } 149 150 /* 151 * Success: commit the COW or unwritten blocks if needed. 152 */ 153 if (is_zoned) 154 error = xfs_zoned_end_io(ip, offset, size, ioend->io_sector, 155 ioend->io_private, NULLFSBLOCK); 156 else if (ioend->io_flags & IOMAP_IOEND_SHARED) 157 error = xfs_reflink_end_cow(ip, offset, size); 158 else if (ioend->io_flags & IOMAP_IOEND_UNWRITTEN) 159 error = xfs_iomap_write_unwritten(ip, offset, size, false); 160 161 if (!error && 162 !(ioend->io_flags & IOMAP_IOEND_DIRECT) && 163 xfs_ioend_is_append(ioend)) 164 error = xfs_setfilesize(ip, offset, size); 165 done: 166 if (is_zoned) 167 xfs_ioend_put_open_zones(ioend); 168 iomap_finish_ioends(ioend, error); 169 memalloc_nofs_restore(nofs_flag); 170 } 171 172 /* 173 * Finish all pending IO completions that require transactional modifications. 174 * 175 * We try to merge physical and logically contiguous ioends before completion to 176 * minimise the number of transactions we need to perform during IO completion. 177 * Both unwritten extent conversion and COW remapping need to iterate and modify 178 * one physical extent at a time, so we gain nothing by merging physically 179 * discontiguous extents here. 180 * 181 * The ioend chain length that we can be processing here is largely unbound in 182 * length and we may have to perform significant amounts of work on each ioend 183 * to complete it. Hence we have to be careful about holding the CPU for too 184 * long in this loop. 185 */ 186 void 187 xfs_end_io( 188 struct work_struct *work) 189 { 190 struct xfs_inode *ip = 191 container_of(work, struct xfs_inode, i_ioend_work); 192 struct iomap_ioend *ioend; 193 struct list_head tmp; 194 unsigned long flags; 195 196 spin_lock_irqsave(&ip->i_ioend_lock, flags); 197 list_replace_init(&ip->i_ioend_list, &tmp); 198 spin_unlock_irqrestore(&ip->i_ioend_lock, flags); 199 200 iomap_sort_ioends(&tmp); 201 while ((ioend = list_first_entry_or_null(&tmp, struct iomap_ioend, 202 io_list))) { 203 list_del_init(&ioend->io_list); 204 iomap_ioend_try_merge(ioend, &tmp); 205 xfs_end_ioend(ioend); 206 cond_resched(); 207 } 208 } 209 210 void 211 xfs_end_bio( 212 struct bio *bio) 213 { 214 struct iomap_ioend *ioend = iomap_ioend_from_bio(bio); 215 struct xfs_inode *ip = XFS_I(ioend->io_inode); 216 struct xfs_mount *mp = ip->i_mount; 217 unsigned long flags; 218 219 /* 220 * For Appends record the actually written block number and set the 221 * boundary flag if needed. 222 */ 223 if (IS_ENABLED(CONFIG_XFS_RT) && bio_is_zone_append(bio)) { 224 ioend->io_sector = bio->bi_iter.bi_sector; 225 xfs_mark_rtg_boundary(ioend); 226 } 227 228 spin_lock_irqsave(&ip->i_ioend_lock, flags); 229 if (list_empty(&ip->i_ioend_list)) 230 WARN_ON_ONCE(!queue_work(mp->m_unwritten_workqueue, 231 &ip->i_ioend_work)); 232 list_add_tail(&ioend->io_list, &ip->i_ioend_list); 233 spin_unlock_irqrestore(&ip->i_ioend_lock, flags); 234 } 235 236 /* 237 * Fast revalidation of the cached writeback mapping. Return true if the current 238 * mapping is valid, false otherwise. 239 */ 240 static bool 241 xfs_imap_valid( 242 struct iomap_writepage_ctx *wpc, 243 struct xfs_inode *ip, 244 loff_t offset) 245 { 246 if (offset < wpc->iomap.offset || 247 offset >= wpc->iomap.offset + wpc->iomap.length) 248 return false; 249 /* 250 * If this is a COW mapping, it is sufficient to check that the mapping 251 * covers the offset. Be careful to check this first because the caller 252 * can revalidate a COW mapping without updating the data seqno. 253 */ 254 if (wpc->iomap.flags & IOMAP_F_SHARED) 255 return true; 256 257 /* 258 * This is not a COW mapping. Check the sequence number of the data fork 259 * because concurrent changes could have invalidated the extent. Check 260 * the COW fork because concurrent changes since the last time we 261 * checked (and found nothing at this offset) could have added 262 * overlapping blocks. 263 */ 264 if (XFS_WPC(wpc)->data_seq != READ_ONCE(ip->i_df.if_seq)) { 265 trace_xfs_wb_data_iomap_invalid(ip, &wpc->iomap, 266 XFS_WPC(wpc)->data_seq, XFS_DATA_FORK); 267 return false; 268 } 269 if (xfs_inode_has_cow_data(ip) && 270 XFS_WPC(wpc)->cow_seq != READ_ONCE(ip->i_cowfp->if_seq)) { 271 trace_xfs_wb_cow_iomap_invalid(ip, &wpc->iomap, 272 XFS_WPC(wpc)->cow_seq, XFS_COW_FORK); 273 return false; 274 } 275 return true; 276 } 277 278 static int 279 xfs_map_blocks( 280 struct iomap_writepage_ctx *wpc, 281 struct inode *inode, 282 loff_t offset, 283 unsigned int len) 284 { 285 struct xfs_inode *ip = XFS_I(inode); 286 struct xfs_mount *mp = ip->i_mount; 287 ssize_t count = i_blocksize(inode); 288 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 289 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count); 290 xfs_fileoff_t cow_fsb; 291 int whichfork; 292 struct xfs_bmbt_irec imap; 293 struct xfs_iext_cursor icur; 294 int retries = 0; 295 int error = 0; 296 unsigned int *seq; 297 298 if (xfs_is_shutdown(mp)) 299 return -EIO; 300 301 XFS_ERRORTAG_DELAY(mp, XFS_ERRTAG_WB_DELAY_MS); 302 303 /* 304 * COW fork blocks can overlap data fork blocks even if the blocks 305 * aren't shared. COW I/O always takes precedent, so we must always 306 * check for overlap on reflink inodes unless the mapping is already a 307 * COW one, or the COW fork hasn't changed from the last time we looked 308 * at it. 309 * 310 * It's safe to check the COW fork if_seq here without the ILOCK because 311 * we've indirectly protected against concurrent updates: writeback has 312 * the page locked, which prevents concurrent invalidations by reflink 313 * and directio and prevents concurrent buffered writes to the same 314 * page. Changes to if_seq always happen under i_lock, which protects 315 * against concurrent updates and provides a memory barrier on the way 316 * out that ensures that we always see the current value. 317 */ 318 if (xfs_imap_valid(wpc, ip, offset)) 319 return 0; 320 321 /* 322 * If we don't have a valid map, now it's time to get a new one for this 323 * offset. This will convert delayed allocations (including COW ones) 324 * into real extents. If we return without a valid map, it means we 325 * landed in a hole and we skip the block. 326 */ 327 retry: 328 cow_fsb = NULLFILEOFF; 329 whichfork = XFS_DATA_FORK; 330 xfs_ilock(ip, XFS_ILOCK_SHARED); 331 ASSERT(!xfs_need_iread_extents(&ip->i_df)); 332 333 /* 334 * Check if this is offset is covered by a COW extents, and if yes use 335 * it directly instead of looking up anything in the data fork. 336 */ 337 if (xfs_inode_has_cow_data(ip) && 338 xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap)) 339 cow_fsb = imap.br_startoff; 340 if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) { 341 XFS_WPC(wpc)->cow_seq = READ_ONCE(ip->i_cowfp->if_seq); 342 xfs_iunlock(ip, XFS_ILOCK_SHARED); 343 344 whichfork = XFS_COW_FORK; 345 goto allocate_blocks; 346 } 347 348 /* 349 * No COW extent overlap. Revalidate now that we may have updated 350 * ->cow_seq. If the data mapping is still valid, we're done. 351 */ 352 if (xfs_imap_valid(wpc, ip, offset)) { 353 xfs_iunlock(ip, XFS_ILOCK_SHARED); 354 return 0; 355 } 356 357 /* 358 * If we don't have a valid map, now it's time to get a new one for this 359 * offset. This will convert delayed allocations (including COW ones) 360 * into real extents. 361 */ 362 if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap)) 363 imap.br_startoff = end_fsb; /* fake a hole past EOF */ 364 XFS_WPC(wpc)->data_seq = READ_ONCE(ip->i_df.if_seq); 365 xfs_iunlock(ip, XFS_ILOCK_SHARED); 366 367 /* landed in a hole or beyond EOF? */ 368 if (imap.br_startoff > offset_fsb) { 369 imap.br_blockcount = imap.br_startoff - offset_fsb; 370 imap.br_startoff = offset_fsb; 371 imap.br_startblock = HOLESTARTBLOCK; 372 imap.br_state = XFS_EXT_NORM; 373 } 374 375 /* 376 * Truncate to the next COW extent if there is one. This is the only 377 * opportunity to do this because we can skip COW fork lookups for the 378 * subsequent blocks in the mapping; however, the requirement to treat 379 * the COW range separately remains. 380 */ 381 if (cow_fsb != NULLFILEOFF && 382 cow_fsb < imap.br_startoff + imap.br_blockcount) 383 imap.br_blockcount = cow_fsb - imap.br_startoff; 384 385 /* got a delalloc extent? */ 386 if (imap.br_startblock != HOLESTARTBLOCK && 387 isnullstartblock(imap.br_startblock)) 388 goto allocate_blocks; 389 390 xfs_bmbt_to_iomap(ip, &wpc->iomap, &imap, 0, 0, XFS_WPC(wpc)->data_seq); 391 trace_xfs_map_blocks_found(ip, offset, count, whichfork, &imap); 392 return 0; 393 allocate_blocks: 394 /* 395 * Convert a dellalloc extent to a real one. The current page is held 396 * locked so nothing could have removed the block backing offset_fsb, 397 * although it could have moved from the COW to the data fork by another 398 * thread. 399 */ 400 if (whichfork == XFS_COW_FORK) 401 seq = &XFS_WPC(wpc)->cow_seq; 402 else 403 seq = &XFS_WPC(wpc)->data_seq; 404 405 error = xfs_bmapi_convert_delalloc(ip, whichfork, offset, 406 &wpc->iomap, seq); 407 if (error) { 408 /* 409 * If we failed to find the extent in the COW fork we might have 410 * raced with a COW to data fork conversion or truncate. 411 * Restart the lookup to catch the extent in the data fork for 412 * the former case, but prevent additional retries to avoid 413 * looping forever for the latter case. 414 */ 415 if (error == -EAGAIN && whichfork == XFS_COW_FORK && !retries++) 416 goto retry; 417 ASSERT(error != -EAGAIN); 418 return error; 419 } 420 421 /* 422 * Due to merging the return real extent might be larger than the 423 * original delalloc one. Trim the return extent to the next COW 424 * boundary again to force a re-lookup. 425 */ 426 if (whichfork != XFS_COW_FORK && cow_fsb != NULLFILEOFF) { 427 loff_t cow_offset = XFS_FSB_TO_B(mp, cow_fsb); 428 429 if (cow_offset < wpc->iomap.offset + wpc->iomap.length) 430 wpc->iomap.length = cow_offset - wpc->iomap.offset; 431 } 432 433 ASSERT(wpc->iomap.offset <= offset); 434 ASSERT(wpc->iomap.offset + wpc->iomap.length > offset); 435 trace_xfs_map_blocks_alloc(ip, offset, count, whichfork, &imap); 436 return 0; 437 } 438 439 static int 440 xfs_submit_ioend( 441 struct iomap_writepage_ctx *wpc, 442 int status) 443 { 444 struct iomap_ioend *ioend = wpc->ioend; 445 unsigned int nofs_flag; 446 447 /* 448 * We can allocate memory here while doing writeback on behalf of 449 * memory reclaim. To avoid memory allocation deadlocks set the 450 * task-wide nofs context for the following operations. 451 */ 452 nofs_flag = memalloc_nofs_save(); 453 454 /* Convert CoW extents to regular */ 455 if (!status && (ioend->io_flags & IOMAP_IOEND_SHARED)) { 456 status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode), 457 ioend->io_offset, ioend->io_size); 458 } 459 460 memalloc_nofs_restore(nofs_flag); 461 462 /* send ioends that might require a transaction to the completion wq */ 463 if (xfs_ioend_is_append(ioend) || 464 (ioend->io_flags & (IOMAP_IOEND_UNWRITTEN | IOMAP_IOEND_SHARED))) 465 ioend->io_bio.bi_end_io = xfs_end_bio; 466 467 if (status) 468 return status; 469 submit_bio(&ioend->io_bio); 470 return 0; 471 } 472 473 /* 474 * If the folio has delalloc blocks on it, the caller is asking us to punch them 475 * out. If we don't, we can leave a stale delalloc mapping covered by a clean 476 * page that needs to be dirtied again before the delalloc mapping can be 477 * converted. This stale delalloc mapping can trip up a later direct I/O read 478 * operation on the same region. 479 * 480 * We prevent this by truncating away the delalloc regions on the folio. Because 481 * they are delalloc, we can do this without needing a transaction. Indeed - if 482 * we get ENOSPC errors, we have to be able to do this truncation without a 483 * transaction as there is no space left for block reservation (typically why 484 * we see a ENOSPC in writeback). 485 */ 486 static void 487 xfs_discard_folio( 488 struct folio *folio, 489 loff_t pos) 490 { 491 struct xfs_inode *ip = XFS_I(folio->mapping->host); 492 struct xfs_mount *mp = ip->i_mount; 493 494 if (xfs_is_shutdown(mp)) 495 return; 496 497 xfs_alert_ratelimited(mp, 498 "page discard on page "PTR_FMT", inode 0x%llx, pos %llu.", 499 folio, ip->i_ino, pos); 500 501 /* 502 * The end of the punch range is always the offset of the first 503 * byte of the next folio. Hence the end offset is only dependent on the 504 * folio itself and not the start offset that is passed in. 505 */ 506 xfs_bmap_punch_delalloc_range(ip, XFS_DATA_FORK, pos, 507 folio_pos(folio) + folio_size(folio), NULL); 508 } 509 510 static const struct iomap_writeback_ops xfs_writeback_ops = { 511 .map_blocks = xfs_map_blocks, 512 .submit_ioend = xfs_submit_ioend, 513 .discard_folio = xfs_discard_folio, 514 }; 515 516 struct xfs_zoned_writepage_ctx { 517 struct iomap_writepage_ctx ctx; 518 struct xfs_open_zone *open_zone; 519 }; 520 521 static inline struct xfs_zoned_writepage_ctx * 522 XFS_ZWPC(struct iomap_writepage_ctx *ctx) 523 { 524 return container_of(ctx, struct xfs_zoned_writepage_ctx, ctx); 525 } 526 527 static int 528 xfs_zoned_map_blocks( 529 struct iomap_writepage_ctx *wpc, 530 struct inode *inode, 531 loff_t offset, 532 unsigned int len) 533 { 534 struct xfs_inode *ip = XFS_I(inode); 535 struct xfs_mount *mp = ip->i_mount; 536 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 537 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + len); 538 xfs_filblks_t count_fsb; 539 struct xfs_bmbt_irec imap, del; 540 struct xfs_iext_cursor icur; 541 542 if (xfs_is_shutdown(mp)) 543 return -EIO; 544 545 XFS_ERRORTAG_DELAY(mp, XFS_ERRTAG_WB_DELAY_MS); 546 547 /* 548 * All dirty data must be covered by delalloc extents. But truncate can 549 * remove delalloc extents underneath us or reduce their size. 550 * Returning a hole tells iomap to not write back any data from this 551 * range, which is the right thing to do in that case. 552 * 553 * Otherwise just tell iomap to treat ranges previously covered by a 554 * delalloc extent as mapped. The actual block allocation will be done 555 * just before submitting the bio. 556 * 557 * This implies we never map outside folios that are locked or marked 558 * as under writeback, and thus there is no need check the fork sequence 559 * count here. 560 */ 561 xfs_ilock(ip, XFS_ILOCK_EXCL); 562 if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap)) 563 imap.br_startoff = end_fsb; /* fake a hole past EOF */ 564 if (imap.br_startoff > offset_fsb) { 565 imap.br_blockcount = imap.br_startoff - offset_fsb; 566 imap.br_startoff = offset_fsb; 567 imap.br_startblock = HOLESTARTBLOCK; 568 imap.br_state = XFS_EXT_NORM; 569 xfs_iunlock(ip, XFS_ILOCK_EXCL); 570 xfs_bmbt_to_iomap(ip, &wpc->iomap, &imap, 0, 0, 0); 571 return 0; 572 } 573 end_fsb = min(end_fsb, imap.br_startoff + imap.br_blockcount); 574 count_fsb = end_fsb - offset_fsb; 575 576 del = imap; 577 xfs_trim_extent(&del, offset_fsb, count_fsb); 578 xfs_bmap_del_extent_delay(ip, XFS_COW_FORK, &icur, &imap, &del, 579 XFS_BMAPI_REMAP); 580 xfs_iunlock(ip, XFS_ILOCK_EXCL); 581 582 wpc->iomap.type = IOMAP_MAPPED; 583 wpc->iomap.flags = IOMAP_F_DIRTY; 584 wpc->iomap.bdev = mp->m_rtdev_targp->bt_bdev; 585 wpc->iomap.offset = offset; 586 wpc->iomap.length = XFS_FSB_TO_B(mp, count_fsb); 587 wpc->iomap.flags = IOMAP_F_ANON_WRITE; 588 589 trace_xfs_zoned_map_blocks(ip, offset, wpc->iomap.length); 590 return 0; 591 } 592 593 static int 594 xfs_zoned_submit_ioend( 595 struct iomap_writepage_ctx *wpc, 596 int status) 597 { 598 wpc->ioend->io_bio.bi_end_io = xfs_end_bio; 599 if (status) 600 return status; 601 xfs_zone_alloc_and_submit(wpc->ioend, &XFS_ZWPC(wpc)->open_zone); 602 return 0; 603 } 604 605 static const struct iomap_writeback_ops xfs_zoned_writeback_ops = { 606 .map_blocks = xfs_zoned_map_blocks, 607 .submit_ioend = xfs_zoned_submit_ioend, 608 .discard_folio = xfs_discard_folio, 609 }; 610 611 STATIC int 612 xfs_vm_writepages( 613 struct address_space *mapping, 614 struct writeback_control *wbc) 615 { 616 struct xfs_inode *ip = XFS_I(mapping->host); 617 618 xfs_iflags_clear(ip, XFS_ITRUNCATED); 619 620 if (xfs_is_zoned_inode(ip)) { 621 struct xfs_zoned_writepage_ctx xc = { }; 622 int error; 623 624 error = iomap_writepages(mapping, wbc, &xc.ctx, 625 &xfs_zoned_writeback_ops); 626 if (xc.open_zone) 627 xfs_open_zone_put(xc.open_zone); 628 return error; 629 } else { 630 struct xfs_writepage_ctx wpc = { }; 631 632 return iomap_writepages(mapping, wbc, &wpc.ctx, 633 &xfs_writeback_ops); 634 } 635 } 636 637 STATIC int 638 xfs_dax_writepages( 639 struct address_space *mapping, 640 struct writeback_control *wbc) 641 { 642 struct xfs_inode *ip = XFS_I(mapping->host); 643 644 xfs_iflags_clear(ip, XFS_ITRUNCATED); 645 return dax_writeback_mapping_range(mapping, 646 xfs_inode_buftarg(ip)->bt_daxdev, wbc); 647 } 648 649 STATIC sector_t 650 xfs_vm_bmap( 651 struct address_space *mapping, 652 sector_t block) 653 { 654 struct xfs_inode *ip = XFS_I(mapping->host); 655 656 trace_xfs_vm_bmap(ip); 657 658 /* 659 * The swap code (ab-)uses ->bmap to get a block mapping and then 660 * bypasses the file system for actual I/O. We really can't allow 661 * that on reflinks inodes, so we have to skip out here. And yes, 662 * 0 is the magic code for a bmap error. 663 * 664 * Since we don't pass back blockdev info, we can't return bmap 665 * information for rt files either. 666 */ 667 if (xfs_is_cow_inode(ip) || XFS_IS_REALTIME_INODE(ip)) 668 return 0; 669 return iomap_bmap(mapping, block, &xfs_read_iomap_ops); 670 } 671 672 STATIC int 673 xfs_vm_read_folio( 674 struct file *unused, 675 struct folio *folio) 676 { 677 return iomap_read_folio(folio, &xfs_read_iomap_ops); 678 } 679 680 STATIC void 681 xfs_vm_readahead( 682 struct readahead_control *rac) 683 { 684 iomap_readahead(rac, &xfs_read_iomap_ops); 685 } 686 687 static int 688 xfs_vm_swap_activate( 689 struct swap_info_struct *sis, 690 struct file *swap_file, 691 sector_t *span) 692 { 693 struct xfs_inode *ip = XFS_I(file_inode(swap_file)); 694 695 /* 696 * Swap file activation can race against concurrent shared extent 697 * removal in files that have been cloned. If this happens, 698 * iomap_swapfile_iter() can fail because it encountered a shared 699 * extent even though an operation is in progress to remove those 700 * shared extents. 701 * 702 * This race becomes problematic when we defer extent removal 703 * operations beyond the end of a syscall (i.e. use async background 704 * processing algorithms). Users think the extents are no longer 705 * shared, but iomap_swapfile_iter() still sees them as shared 706 * because the refcountbt entries for the extents being removed have 707 * not yet been updated. Hence the swapon call fails unexpectedly. 708 * 709 * The race condition is currently most obvious from the unlink() 710 * operation as extent removal is deferred until after the last 711 * reference to the inode goes away. We then process the extent 712 * removal asynchronously, hence triggers the "syscall completed but 713 * work not done" condition mentioned above. To close this race 714 * window, we need to flush any pending inodegc operations to ensure 715 * they have updated the refcountbt records before we try to map the 716 * swapfile. 717 */ 718 xfs_inodegc_flush(ip->i_mount); 719 720 /* 721 * Direct the swap code to the correct block device when this file 722 * sits on the RT device. 723 */ 724 sis->bdev = xfs_inode_buftarg(ip)->bt_bdev; 725 726 return iomap_swapfile_activate(sis, swap_file, span, 727 &xfs_read_iomap_ops); 728 } 729 730 const struct address_space_operations xfs_address_space_operations = { 731 .read_folio = xfs_vm_read_folio, 732 .readahead = xfs_vm_readahead, 733 .writepages = xfs_vm_writepages, 734 .dirty_folio = iomap_dirty_folio, 735 .release_folio = iomap_release_folio, 736 .invalidate_folio = iomap_invalidate_folio, 737 .bmap = xfs_vm_bmap, 738 .migrate_folio = filemap_migrate_folio, 739 .is_partially_uptodate = iomap_is_partially_uptodate, 740 .error_remove_folio = generic_error_remove_folio, 741 .swap_activate = xfs_vm_swap_activate, 742 }; 743 744 const struct address_space_operations xfs_dax_aops = { 745 .writepages = xfs_dax_writepages, 746 .dirty_folio = noop_dirty_folio, 747 .swap_activate = xfs_vm_swap_activate, 748 }; 749