1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_shared.h" 20 #include "xfs_format.h" 21 #include "xfs_log_format.h" 22 #include "xfs_trans_resv.h" 23 #include "xfs_mount.h" 24 #include "xfs_inode.h" 25 #include "xfs_trans.h" 26 #include "xfs_inode_item.h" 27 #include "xfs_alloc.h" 28 #include "xfs_error.h" 29 #include "xfs_iomap.h" 30 #include "xfs_trace.h" 31 #include "xfs_bmap.h" 32 #include "xfs_bmap_util.h" 33 #include "xfs_bmap_btree.h" 34 #include <linux/aio.h> 35 #include <linux/gfp.h> 36 #include <linux/mpage.h> 37 #include <linux/pagevec.h> 38 #include <linux/writeback.h> 39 40 void 41 xfs_count_page_state( 42 struct page *page, 43 int *delalloc, 44 int *unwritten) 45 { 46 struct buffer_head *bh, *head; 47 48 *delalloc = *unwritten = 0; 49 50 bh = head = page_buffers(page); 51 do { 52 if (buffer_unwritten(bh)) 53 (*unwritten) = 1; 54 else if (buffer_delay(bh)) 55 (*delalloc) = 1; 56 } while ((bh = bh->b_this_page) != head); 57 } 58 59 STATIC struct block_device * 60 xfs_find_bdev_for_inode( 61 struct inode *inode) 62 { 63 struct xfs_inode *ip = XFS_I(inode); 64 struct xfs_mount *mp = ip->i_mount; 65 66 if (XFS_IS_REALTIME_INODE(ip)) 67 return mp->m_rtdev_targp->bt_bdev; 68 else 69 return mp->m_ddev_targp->bt_bdev; 70 } 71 72 /* 73 * We're now finished for good with this ioend structure. 74 * Update the page state via the associated buffer_heads, 75 * release holds on the inode and bio, and finally free 76 * up memory. Do not use the ioend after this. 77 */ 78 STATIC void 79 xfs_destroy_ioend( 80 xfs_ioend_t *ioend) 81 { 82 struct buffer_head *bh, *next; 83 84 for (bh = ioend->io_buffer_head; bh; bh = next) { 85 next = bh->b_private; 86 bh->b_end_io(bh, !ioend->io_error); 87 } 88 89 mempool_free(ioend, xfs_ioend_pool); 90 } 91 92 /* 93 * Fast and loose check if this write could update the on-disk inode size. 94 */ 95 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend) 96 { 97 return ioend->io_offset + ioend->io_size > 98 XFS_I(ioend->io_inode)->i_d.di_size; 99 } 100 101 STATIC int 102 xfs_setfilesize_trans_alloc( 103 struct xfs_ioend *ioend) 104 { 105 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount; 106 struct xfs_trans *tp; 107 int error; 108 109 tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS); 110 111 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0); 112 if (error) { 113 xfs_trans_cancel(tp, 0); 114 return error; 115 } 116 117 ioend->io_append_trans = tp; 118 119 /* 120 * We may pass freeze protection with a transaction. So tell lockdep 121 * we released it. 122 */ 123 rwsem_release(&ioend->io_inode->i_sb->s_writers.lock_map[SB_FREEZE_FS-1], 124 1, _THIS_IP_); 125 /* 126 * We hand off the transaction to the completion thread now, so 127 * clear the flag here. 128 */ 129 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS); 130 return 0; 131 } 132 133 /* 134 * Update on-disk file size now that data has been written to disk. 135 */ 136 STATIC int 137 xfs_setfilesize( 138 struct xfs_inode *ip, 139 struct xfs_trans *tp, 140 xfs_off_t offset, 141 size_t size) 142 { 143 xfs_fsize_t isize; 144 145 xfs_ilock(ip, XFS_ILOCK_EXCL); 146 isize = xfs_new_eof(ip, offset + size); 147 if (!isize) { 148 xfs_iunlock(ip, XFS_ILOCK_EXCL); 149 xfs_trans_cancel(tp, 0); 150 return 0; 151 } 152 153 trace_xfs_setfilesize(ip, offset, size); 154 155 ip->i_d.di_size = isize; 156 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 157 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 158 159 return xfs_trans_commit(tp, 0); 160 } 161 162 STATIC int 163 xfs_setfilesize_ioend( 164 struct xfs_ioend *ioend) 165 { 166 struct xfs_inode *ip = XFS_I(ioend->io_inode); 167 struct xfs_trans *tp = ioend->io_append_trans; 168 169 /* 170 * The transaction may have been allocated in the I/O submission thread, 171 * thus we need to mark ourselves as being in a transaction manually. 172 * Similarly for freeze protection. 173 */ 174 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS); 175 rwsem_acquire_read(&VFS_I(ip)->i_sb->s_writers.lock_map[SB_FREEZE_FS-1], 176 0, 1, _THIS_IP_); 177 178 return xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size); 179 } 180 181 /* 182 * Schedule IO completion handling on the final put of an ioend. 183 * 184 * If there is no work to do we might as well call it a day and free the 185 * ioend right now. 186 */ 187 STATIC void 188 xfs_finish_ioend( 189 struct xfs_ioend *ioend) 190 { 191 if (atomic_dec_and_test(&ioend->io_remaining)) { 192 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount; 193 194 if (ioend->io_type == XFS_IO_UNWRITTEN) 195 queue_work(mp->m_unwritten_workqueue, &ioend->io_work); 196 else if (ioend->io_append_trans) 197 queue_work(mp->m_data_workqueue, &ioend->io_work); 198 else 199 xfs_destroy_ioend(ioend); 200 } 201 } 202 203 /* 204 * IO write completion. 205 */ 206 STATIC void 207 xfs_end_io( 208 struct work_struct *work) 209 { 210 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work); 211 struct xfs_inode *ip = XFS_I(ioend->io_inode); 212 int error = 0; 213 214 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { 215 ioend->io_error = -EIO; 216 goto done; 217 } 218 if (ioend->io_error) 219 goto done; 220 221 /* 222 * For unwritten extents we need to issue transactions to convert a 223 * range to normal written extens after the data I/O has finished. 224 */ 225 if (ioend->io_type == XFS_IO_UNWRITTEN) { 226 error = xfs_iomap_write_unwritten(ip, ioend->io_offset, 227 ioend->io_size); 228 } else if (ioend->io_append_trans) { 229 error = xfs_setfilesize_ioend(ioend); 230 } else { 231 ASSERT(!xfs_ioend_is_append(ioend)); 232 } 233 234 done: 235 if (error) 236 ioend->io_error = error; 237 xfs_destroy_ioend(ioend); 238 } 239 240 /* 241 * Allocate and initialise an IO completion structure. 242 * We need to track unwritten extent write completion here initially. 243 * We'll need to extend this for updating the ondisk inode size later 244 * (vs. incore size). 245 */ 246 STATIC xfs_ioend_t * 247 xfs_alloc_ioend( 248 struct inode *inode, 249 unsigned int type) 250 { 251 xfs_ioend_t *ioend; 252 253 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS); 254 255 /* 256 * Set the count to 1 initially, which will prevent an I/O 257 * completion callback from happening before we have started 258 * all the I/O from calling the completion routine too early. 259 */ 260 atomic_set(&ioend->io_remaining, 1); 261 ioend->io_error = 0; 262 ioend->io_list = NULL; 263 ioend->io_type = type; 264 ioend->io_inode = inode; 265 ioend->io_buffer_head = NULL; 266 ioend->io_buffer_tail = NULL; 267 ioend->io_offset = 0; 268 ioend->io_size = 0; 269 ioend->io_append_trans = NULL; 270 271 INIT_WORK(&ioend->io_work, xfs_end_io); 272 return ioend; 273 } 274 275 STATIC int 276 xfs_map_blocks( 277 struct inode *inode, 278 loff_t offset, 279 struct xfs_bmbt_irec *imap, 280 int type, 281 int nonblocking) 282 { 283 struct xfs_inode *ip = XFS_I(inode); 284 struct xfs_mount *mp = ip->i_mount; 285 ssize_t count = 1 << inode->i_blkbits; 286 xfs_fileoff_t offset_fsb, end_fsb; 287 int error = 0; 288 int bmapi_flags = XFS_BMAPI_ENTIRE; 289 int nimaps = 1; 290 291 if (XFS_FORCED_SHUTDOWN(mp)) 292 return -EIO; 293 294 if (type == XFS_IO_UNWRITTEN) 295 bmapi_flags |= XFS_BMAPI_IGSTATE; 296 297 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) { 298 if (nonblocking) 299 return -EAGAIN; 300 xfs_ilock(ip, XFS_ILOCK_SHARED); 301 } 302 303 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 304 (ip->i_df.if_flags & XFS_IFEXTENTS)); 305 ASSERT(offset <= mp->m_super->s_maxbytes); 306 307 if (offset + count > mp->m_super->s_maxbytes) 308 count = mp->m_super->s_maxbytes - offset; 309 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count); 310 offset_fsb = XFS_B_TO_FSBT(mp, offset); 311 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, 312 imap, &nimaps, bmapi_flags); 313 xfs_iunlock(ip, XFS_ILOCK_SHARED); 314 315 if (error) 316 return error; 317 318 if (type == XFS_IO_DELALLOC && 319 (!nimaps || isnullstartblock(imap->br_startblock))) { 320 error = xfs_iomap_write_allocate(ip, offset, imap); 321 if (!error) 322 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap); 323 return error; 324 } 325 326 #ifdef DEBUG 327 if (type == XFS_IO_UNWRITTEN) { 328 ASSERT(nimaps); 329 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 330 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 331 } 332 #endif 333 if (nimaps) 334 trace_xfs_map_blocks_found(ip, offset, count, type, imap); 335 return 0; 336 } 337 338 STATIC int 339 xfs_imap_valid( 340 struct inode *inode, 341 struct xfs_bmbt_irec *imap, 342 xfs_off_t offset) 343 { 344 offset >>= inode->i_blkbits; 345 346 return offset >= imap->br_startoff && 347 offset < imap->br_startoff + imap->br_blockcount; 348 } 349 350 /* 351 * BIO completion handler for buffered IO. 352 */ 353 STATIC void 354 xfs_end_bio( 355 struct bio *bio, 356 int error) 357 { 358 xfs_ioend_t *ioend = bio->bi_private; 359 360 ASSERT(atomic_read(&bio->bi_cnt) >= 1); 361 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error; 362 363 /* Toss bio and pass work off to an xfsdatad thread */ 364 bio->bi_private = NULL; 365 bio->bi_end_io = NULL; 366 bio_put(bio); 367 368 xfs_finish_ioend(ioend); 369 } 370 371 STATIC void 372 xfs_submit_ioend_bio( 373 struct writeback_control *wbc, 374 xfs_ioend_t *ioend, 375 struct bio *bio) 376 { 377 atomic_inc(&ioend->io_remaining); 378 bio->bi_private = ioend; 379 bio->bi_end_io = xfs_end_bio; 380 submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio); 381 } 382 383 STATIC struct bio * 384 xfs_alloc_ioend_bio( 385 struct buffer_head *bh) 386 { 387 int nvecs = bio_get_nr_vecs(bh->b_bdev); 388 struct bio *bio = bio_alloc(GFP_NOIO, nvecs); 389 390 ASSERT(bio->bi_private == NULL); 391 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 392 bio->bi_bdev = bh->b_bdev; 393 return bio; 394 } 395 396 STATIC void 397 xfs_start_buffer_writeback( 398 struct buffer_head *bh) 399 { 400 ASSERT(buffer_mapped(bh)); 401 ASSERT(buffer_locked(bh)); 402 ASSERT(!buffer_delay(bh)); 403 ASSERT(!buffer_unwritten(bh)); 404 405 mark_buffer_async_write(bh); 406 set_buffer_uptodate(bh); 407 clear_buffer_dirty(bh); 408 } 409 410 STATIC void 411 xfs_start_page_writeback( 412 struct page *page, 413 int clear_dirty, 414 int buffers) 415 { 416 ASSERT(PageLocked(page)); 417 ASSERT(!PageWriteback(page)); 418 419 /* 420 * if the page was not fully cleaned, we need to ensure that the higher 421 * layers come back to it correctly. That means we need to keep the page 422 * dirty, and for WB_SYNC_ALL writeback we need to ensure the 423 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to 424 * write this page in this writeback sweep will be made. 425 */ 426 if (clear_dirty) { 427 clear_page_dirty_for_io(page); 428 set_page_writeback(page); 429 } else 430 set_page_writeback_keepwrite(page); 431 432 unlock_page(page); 433 434 /* If no buffers on the page are to be written, finish it here */ 435 if (!buffers) 436 end_page_writeback(page); 437 } 438 439 static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh) 440 { 441 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); 442 } 443 444 /* 445 * Submit all of the bios for all of the ioends we have saved up, covering the 446 * initial writepage page and also any probed pages. 447 * 448 * Because we may have multiple ioends spanning a page, we need to start 449 * writeback on all the buffers before we submit them for I/O. If we mark the 450 * buffers as we got, then we can end up with a page that only has buffers 451 * marked async write and I/O complete on can occur before we mark the other 452 * buffers async write. 453 * 454 * The end result of this is that we trip a bug in end_page_writeback() because 455 * we call it twice for the one page as the code in end_buffer_async_write() 456 * assumes that all buffers on the page are started at the same time. 457 * 458 * The fix is two passes across the ioend list - one to start writeback on the 459 * buffer_heads, and then submit them for I/O on the second pass. 460 * 461 * If @fail is non-zero, it means that we have a situation where some part of 462 * the submission process has failed after we have marked paged for writeback 463 * and unlocked them. In this situation, we need to fail the ioend chain rather 464 * than submit it to IO. This typically only happens on a filesystem shutdown. 465 */ 466 STATIC void 467 xfs_submit_ioend( 468 struct writeback_control *wbc, 469 xfs_ioend_t *ioend, 470 int fail) 471 { 472 xfs_ioend_t *head = ioend; 473 xfs_ioend_t *next; 474 struct buffer_head *bh; 475 struct bio *bio; 476 sector_t lastblock = 0; 477 478 /* Pass 1 - start writeback */ 479 do { 480 next = ioend->io_list; 481 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) 482 xfs_start_buffer_writeback(bh); 483 } while ((ioend = next) != NULL); 484 485 /* Pass 2 - submit I/O */ 486 ioend = head; 487 do { 488 next = ioend->io_list; 489 bio = NULL; 490 491 /* 492 * If we are failing the IO now, just mark the ioend with an 493 * error and finish it. This will run IO completion immediately 494 * as there is only one reference to the ioend at this point in 495 * time. 496 */ 497 if (fail) { 498 ioend->io_error = fail; 499 xfs_finish_ioend(ioend); 500 continue; 501 } 502 503 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) { 504 505 if (!bio) { 506 retry: 507 bio = xfs_alloc_ioend_bio(bh); 508 } else if (bh->b_blocknr != lastblock + 1) { 509 xfs_submit_ioend_bio(wbc, ioend, bio); 510 goto retry; 511 } 512 513 if (xfs_bio_add_buffer(bio, bh) != bh->b_size) { 514 xfs_submit_ioend_bio(wbc, ioend, bio); 515 goto retry; 516 } 517 518 lastblock = bh->b_blocknr; 519 } 520 if (bio) 521 xfs_submit_ioend_bio(wbc, ioend, bio); 522 xfs_finish_ioend(ioend); 523 } while ((ioend = next) != NULL); 524 } 525 526 /* 527 * Cancel submission of all buffer_heads so far in this endio. 528 * Toss the endio too. Only ever called for the initial page 529 * in a writepage request, so only ever one page. 530 */ 531 STATIC void 532 xfs_cancel_ioend( 533 xfs_ioend_t *ioend) 534 { 535 xfs_ioend_t *next; 536 struct buffer_head *bh, *next_bh; 537 538 do { 539 next = ioend->io_list; 540 bh = ioend->io_buffer_head; 541 do { 542 next_bh = bh->b_private; 543 clear_buffer_async_write(bh); 544 /* 545 * The unwritten flag is cleared when added to the 546 * ioend. We're not submitting for I/O so mark the 547 * buffer unwritten again for next time around. 548 */ 549 if (ioend->io_type == XFS_IO_UNWRITTEN) 550 set_buffer_unwritten(bh); 551 unlock_buffer(bh); 552 } while ((bh = next_bh) != NULL); 553 554 mempool_free(ioend, xfs_ioend_pool); 555 } while ((ioend = next) != NULL); 556 } 557 558 /* 559 * Test to see if we've been building up a completion structure for 560 * earlier buffers -- if so, we try to append to this ioend if we 561 * can, otherwise we finish off any current ioend and start another. 562 * Return true if we've finished the given ioend. 563 */ 564 STATIC void 565 xfs_add_to_ioend( 566 struct inode *inode, 567 struct buffer_head *bh, 568 xfs_off_t offset, 569 unsigned int type, 570 xfs_ioend_t **result, 571 int need_ioend) 572 { 573 xfs_ioend_t *ioend = *result; 574 575 if (!ioend || need_ioend || type != ioend->io_type) { 576 xfs_ioend_t *previous = *result; 577 578 ioend = xfs_alloc_ioend(inode, type); 579 ioend->io_offset = offset; 580 ioend->io_buffer_head = bh; 581 ioend->io_buffer_tail = bh; 582 if (previous) 583 previous->io_list = ioend; 584 *result = ioend; 585 } else { 586 ioend->io_buffer_tail->b_private = bh; 587 ioend->io_buffer_tail = bh; 588 } 589 590 bh->b_private = NULL; 591 ioend->io_size += bh->b_size; 592 } 593 594 STATIC void 595 xfs_map_buffer( 596 struct inode *inode, 597 struct buffer_head *bh, 598 struct xfs_bmbt_irec *imap, 599 xfs_off_t offset) 600 { 601 sector_t bn; 602 struct xfs_mount *m = XFS_I(inode)->i_mount; 603 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff); 604 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock); 605 606 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 607 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 608 609 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) + 610 ((offset - iomap_offset) >> inode->i_blkbits); 611 612 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode))); 613 614 bh->b_blocknr = bn; 615 set_buffer_mapped(bh); 616 } 617 618 STATIC void 619 xfs_map_at_offset( 620 struct inode *inode, 621 struct buffer_head *bh, 622 struct xfs_bmbt_irec *imap, 623 xfs_off_t offset) 624 { 625 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 626 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 627 628 xfs_map_buffer(inode, bh, imap, offset); 629 set_buffer_mapped(bh); 630 clear_buffer_delay(bh); 631 clear_buffer_unwritten(bh); 632 } 633 634 /* 635 * Test if a given page contains at least one buffer of a given @type. 636 * If @check_all_buffers is true, then we walk all the buffers in the page to 637 * try to find one of the type passed in. If it is not set, then the caller only 638 * needs to check the first buffer on the page for a match. 639 */ 640 STATIC bool 641 xfs_check_page_type( 642 struct page *page, 643 unsigned int type, 644 bool check_all_buffers) 645 { 646 struct buffer_head *bh; 647 struct buffer_head *head; 648 649 if (PageWriteback(page)) 650 return false; 651 if (!page->mapping) 652 return false; 653 if (!page_has_buffers(page)) 654 return false; 655 656 bh = head = page_buffers(page); 657 do { 658 if (buffer_unwritten(bh)) { 659 if (type == XFS_IO_UNWRITTEN) 660 return true; 661 } else if (buffer_delay(bh)) { 662 if (type == XFS_IO_DELALLOC) 663 return true; 664 } else if (buffer_dirty(bh) && buffer_mapped(bh)) { 665 if (type == XFS_IO_OVERWRITE) 666 return true; 667 } 668 669 /* If we are only checking the first buffer, we are done now. */ 670 if (!check_all_buffers) 671 break; 672 } while ((bh = bh->b_this_page) != head); 673 674 return false; 675 } 676 677 /* 678 * Allocate & map buffers for page given the extent map. Write it out. 679 * except for the original page of a writepage, this is called on 680 * delalloc/unwritten pages only, for the original page it is possible 681 * that the page has no mapping at all. 682 */ 683 STATIC int 684 xfs_convert_page( 685 struct inode *inode, 686 struct page *page, 687 loff_t tindex, 688 struct xfs_bmbt_irec *imap, 689 xfs_ioend_t **ioendp, 690 struct writeback_control *wbc) 691 { 692 struct buffer_head *bh, *head; 693 xfs_off_t end_offset; 694 unsigned long p_offset; 695 unsigned int type; 696 int len, page_dirty; 697 int count = 0, done = 0, uptodate = 1; 698 xfs_off_t offset = page_offset(page); 699 700 if (page->index != tindex) 701 goto fail; 702 if (!trylock_page(page)) 703 goto fail; 704 if (PageWriteback(page)) 705 goto fail_unlock_page; 706 if (page->mapping != inode->i_mapping) 707 goto fail_unlock_page; 708 if (!xfs_check_page_type(page, (*ioendp)->io_type, false)) 709 goto fail_unlock_page; 710 711 /* 712 * page_dirty is initially a count of buffers on the page before 713 * EOF and is decremented as we move each into a cleanable state. 714 * 715 * Derivation: 716 * 717 * End offset is the highest offset that this page should represent. 718 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1)) 719 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and 720 * hence give us the correct page_dirty count. On any other page, 721 * it will be zero and in that case we need page_dirty to be the 722 * count of buffers on the page. 723 */ 724 end_offset = min_t(unsigned long long, 725 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, 726 i_size_read(inode)); 727 728 /* 729 * If the current map does not span the entire page we are about to try 730 * to write, then give up. The only way we can write a page that spans 731 * multiple mappings in a single writeback iteration is via the 732 * xfs_vm_writepage() function. Data integrity writeback requires the 733 * entire page to be written in a single attempt, otherwise the part of 734 * the page we don't write here doesn't get written as part of the data 735 * integrity sync. 736 * 737 * For normal writeback, we also don't attempt to write partial pages 738 * here as it simply means that write_cache_pages() will see it under 739 * writeback and ignore the page until some point in the future, at 740 * which time this will be the only page in the file that needs 741 * writeback. Hence for more optimal IO patterns, we should always 742 * avoid partial page writeback due to multiple mappings on a page here. 743 */ 744 if (!xfs_imap_valid(inode, imap, end_offset)) 745 goto fail_unlock_page; 746 747 len = 1 << inode->i_blkbits; 748 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1), 749 PAGE_CACHE_SIZE); 750 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE; 751 page_dirty = p_offset / len; 752 753 /* 754 * The moment we find a buffer that doesn't match our current type 755 * specification or can't be written, abort the loop and start 756 * writeback. As per the above xfs_imap_valid() check, only 757 * xfs_vm_writepage() can handle partial page writeback fully - we are 758 * limited here to the buffers that are contiguous with the current 759 * ioend, and hence a buffer we can't write breaks that contiguity and 760 * we have to defer the rest of the IO to xfs_vm_writepage(). 761 */ 762 bh = head = page_buffers(page); 763 do { 764 if (offset >= end_offset) 765 break; 766 if (!buffer_uptodate(bh)) 767 uptodate = 0; 768 if (!(PageUptodate(page) || buffer_uptodate(bh))) { 769 done = 1; 770 break; 771 } 772 773 if (buffer_unwritten(bh) || buffer_delay(bh) || 774 buffer_mapped(bh)) { 775 if (buffer_unwritten(bh)) 776 type = XFS_IO_UNWRITTEN; 777 else if (buffer_delay(bh)) 778 type = XFS_IO_DELALLOC; 779 else 780 type = XFS_IO_OVERWRITE; 781 782 /* 783 * imap should always be valid because of the above 784 * partial page end_offset check on the imap. 785 */ 786 ASSERT(xfs_imap_valid(inode, imap, offset)); 787 788 lock_buffer(bh); 789 if (type != XFS_IO_OVERWRITE) 790 xfs_map_at_offset(inode, bh, imap, offset); 791 xfs_add_to_ioend(inode, bh, offset, type, 792 ioendp, done); 793 794 page_dirty--; 795 count++; 796 } else { 797 done = 1; 798 break; 799 } 800 } while (offset += len, (bh = bh->b_this_page) != head); 801 802 if (uptodate && bh == head) 803 SetPageUptodate(page); 804 805 if (count) { 806 if (--wbc->nr_to_write <= 0 && 807 wbc->sync_mode == WB_SYNC_NONE) 808 done = 1; 809 } 810 xfs_start_page_writeback(page, !page_dirty, count); 811 812 return done; 813 fail_unlock_page: 814 unlock_page(page); 815 fail: 816 return 1; 817 } 818 819 /* 820 * Convert & write out a cluster of pages in the same extent as defined 821 * by mp and following the start page. 822 */ 823 STATIC void 824 xfs_cluster_write( 825 struct inode *inode, 826 pgoff_t tindex, 827 struct xfs_bmbt_irec *imap, 828 xfs_ioend_t **ioendp, 829 struct writeback_control *wbc, 830 pgoff_t tlast) 831 { 832 struct pagevec pvec; 833 int done = 0, i; 834 835 pagevec_init(&pvec, 0); 836 while (!done && tindex <= tlast) { 837 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1); 838 839 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len)) 840 break; 841 842 for (i = 0; i < pagevec_count(&pvec); i++) { 843 done = xfs_convert_page(inode, pvec.pages[i], tindex++, 844 imap, ioendp, wbc); 845 if (done) 846 break; 847 } 848 849 pagevec_release(&pvec); 850 cond_resched(); 851 } 852 } 853 854 STATIC void 855 xfs_vm_invalidatepage( 856 struct page *page, 857 unsigned int offset, 858 unsigned int length) 859 { 860 trace_xfs_invalidatepage(page->mapping->host, page, offset, 861 length); 862 block_invalidatepage(page, offset, length); 863 } 864 865 /* 866 * If the page has delalloc buffers on it, we need to punch them out before we 867 * invalidate the page. If we don't, we leave a stale delalloc mapping on the 868 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read 869 * is done on that same region - the delalloc extent is returned when none is 870 * supposed to be there. 871 * 872 * We prevent this by truncating away the delalloc regions on the page before 873 * invalidating it. Because they are delalloc, we can do this without needing a 874 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this 875 * truncation without a transaction as there is no space left for block 876 * reservation (typically why we see a ENOSPC in writeback). 877 * 878 * This is not a performance critical path, so for now just do the punching a 879 * buffer head at a time. 880 */ 881 STATIC void 882 xfs_aops_discard_page( 883 struct page *page) 884 { 885 struct inode *inode = page->mapping->host; 886 struct xfs_inode *ip = XFS_I(inode); 887 struct buffer_head *bh, *head; 888 loff_t offset = page_offset(page); 889 890 if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true)) 891 goto out_invalidate; 892 893 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 894 goto out_invalidate; 895 896 xfs_alert(ip->i_mount, 897 "page discard on page %p, inode 0x%llx, offset %llu.", 898 page, ip->i_ino, offset); 899 900 xfs_ilock(ip, XFS_ILOCK_EXCL); 901 bh = head = page_buffers(page); 902 do { 903 int error; 904 xfs_fileoff_t start_fsb; 905 906 if (!buffer_delay(bh)) 907 goto next_buffer; 908 909 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset); 910 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1); 911 if (error) { 912 /* something screwed, just bail */ 913 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { 914 xfs_alert(ip->i_mount, 915 "page discard unable to remove delalloc mapping."); 916 } 917 break; 918 } 919 next_buffer: 920 offset += 1 << inode->i_blkbits; 921 922 } while ((bh = bh->b_this_page) != head); 923 924 xfs_iunlock(ip, XFS_ILOCK_EXCL); 925 out_invalidate: 926 xfs_vm_invalidatepage(page, 0, PAGE_CACHE_SIZE); 927 return; 928 } 929 930 /* 931 * Write out a dirty page. 932 * 933 * For delalloc space on the page we need to allocate space and flush it. 934 * For unwritten space on the page we need to start the conversion to 935 * regular allocated space. 936 * For any other dirty buffer heads on the page we should flush them. 937 */ 938 STATIC int 939 xfs_vm_writepage( 940 struct page *page, 941 struct writeback_control *wbc) 942 { 943 struct inode *inode = page->mapping->host; 944 struct buffer_head *bh, *head; 945 struct xfs_bmbt_irec imap; 946 xfs_ioend_t *ioend = NULL, *iohead = NULL; 947 loff_t offset; 948 unsigned int type; 949 __uint64_t end_offset; 950 pgoff_t end_index, last_index; 951 ssize_t len; 952 int err, imap_valid = 0, uptodate = 1; 953 int count = 0; 954 int nonblocking = 0; 955 956 trace_xfs_writepage(inode, page, 0, 0); 957 958 ASSERT(page_has_buffers(page)); 959 960 /* 961 * Refuse to write the page out if we are called from reclaim context. 962 * 963 * This avoids stack overflows when called from deeply used stacks in 964 * random callers for direct reclaim or memcg reclaim. We explicitly 965 * allow reclaim from kswapd as the stack usage there is relatively low. 966 * 967 * This should never happen except in the case of a VM regression so 968 * warn about it. 969 */ 970 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == 971 PF_MEMALLOC)) 972 goto redirty; 973 974 /* 975 * Given that we do not allow direct reclaim to call us, we should 976 * never be called while in a filesystem transaction. 977 */ 978 if (WARN_ON_ONCE(current->flags & PF_FSTRANS)) 979 goto redirty; 980 981 /* Is this page beyond the end of the file? */ 982 offset = i_size_read(inode); 983 end_index = offset >> PAGE_CACHE_SHIFT; 984 last_index = (offset - 1) >> PAGE_CACHE_SHIFT; 985 986 /* 987 * The page index is less than the end_index, adjust the end_offset 988 * to the highest offset that this page should represent. 989 * ----------------------------------------------------- 990 * | file mapping | <EOF> | 991 * ----------------------------------------------------- 992 * | Page ... | Page N-2 | Page N-1 | Page N | | 993 * ^--------------------------------^----------|-------- 994 * | desired writeback range | see else | 995 * ---------------------------------^------------------| 996 */ 997 if (page->index < end_index) 998 end_offset = (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT; 999 else { 1000 /* 1001 * Check whether the page to write out is beyond or straddles 1002 * i_size or not. 1003 * ------------------------------------------------------- 1004 * | file mapping | <EOF> | 1005 * ------------------------------------------------------- 1006 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond | 1007 * ^--------------------------------^-----------|--------- 1008 * | | Straddles | 1009 * ---------------------------------^-----------|--------| 1010 */ 1011 unsigned offset_into_page = offset & (PAGE_CACHE_SIZE - 1); 1012 1013 /* 1014 * Skip the page if it is fully outside i_size, e.g. due to a 1015 * truncate operation that is in progress. We must redirty the 1016 * page so that reclaim stops reclaiming it. Otherwise 1017 * xfs_vm_releasepage() is called on it and gets confused. 1018 * 1019 * Note that the end_index is unsigned long, it would overflow 1020 * if the given offset is greater than 16TB on 32-bit system 1021 * and if we do check the page is fully outside i_size or not 1022 * via "if (page->index >= end_index + 1)" as "end_index + 1" 1023 * will be evaluated to 0. Hence this page will be redirtied 1024 * and be written out repeatedly which would result in an 1025 * infinite loop, the user program that perform this operation 1026 * will hang. Instead, we can verify this situation by checking 1027 * if the page to write is totally beyond the i_size or if it's 1028 * offset is just equal to the EOF. 1029 */ 1030 if (page->index > end_index || 1031 (page->index == end_index && offset_into_page == 0)) 1032 goto redirty; 1033 1034 /* 1035 * The page straddles i_size. It must be zeroed out on each 1036 * and every writepage invocation because it may be mmapped. 1037 * "A file is mapped in multiples of the page size. For a file 1038 * that is not a multiple of the page size, the remaining 1039 * memory is zeroed when mapped, and writes to that region are 1040 * not written out to the file." 1041 */ 1042 zero_user_segment(page, offset_into_page, PAGE_CACHE_SIZE); 1043 1044 /* Adjust the end_offset to the end of file */ 1045 end_offset = offset; 1046 } 1047 1048 len = 1 << inode->i_blkbits; 1049 1050 bh = head = page_buffers(page); 1051 offset = page_offset(page); 1052 type = XFS_IO_OVERWRITE; 1053 1054 if (wbc->sync_mode == WB_SYNC_NONE) 1055 nonblocking = 1; 1056 1057 do { 1058 int new_ioend = 0; 1059 1060 if (offset >= end_offset) 1061 break; 1062 if (!buffer_uptodate(bh)) 1063 uptodate = 0; 1064 1065 /* 1066 * set_page_dirty dirties all buffers in a page, independent 1067 * of their state. The dirty state however is entirely 1068 * meaningless for holes (!mapped && uptodate), so skip 1069 * buffers covering holes here. 1070 */ 1071 if (!buffer_mapped(bh) && buffer_uptodate(bh)) { 1072 imap_valid = 0; 1073 continue; 1074 } 1075 1076 if (buffer_unwritten(bh)) { 1077 if (type != XFS_IO_UNWRITTEN) { 1078 type = XFS_IO_UNWRITTEN; 1079 imap_valid = 0; 1080 } 1081 } else if (buffer_delay(bh)) { 1082 if (type != XFS_IO_DELALLOC) { 1083 type = XFS_IO_DELALLOC; 1084 imap_valid = 0; 1085 } 1086 } else if (buffer_uptodate(bh)) { 1087 if (type != XFS_IO_OVERWRITE) { 1088 type = XFS_IO_OVERWRITE; 1089 imap_valid = 0; 1090 } 1091 } else { 1092 if (PageUptodate(page)) 1093 ASSERT(buffer_mapped(bh)); 1094 /* 1095 * This buffer is not uptodate and will not be 1096 * written to disk. Ensure that we will put any 1097 * subsequent writeable buffers into a new 1098 * ioend. 1099 */ 1100 imap_valid = 0; 1101 continue; 1102 } 1103 1104 if (imap_valid) 1105 imap_valid = xfs_imap_valid(inode, &imap, offset); 1106 if (!imap_valid) { 1107 /* 1108 * If we didn't have a valid mapping then we need to 1109 * put the new mapping into a separate ioend structure. 1110 * This ensures non-contiguous extents always have 1111 * separate ioends, which is particularly important 1112 * for unwritten extent conversion at I/O completion 1113 * time. 1114 */ 1115 new_ioend = 1; 1116 err = xfs_map_blocks(inode, offset, &imap, type, 1117 nonblocking); 1118 if (err) 1119 goto error; 1120 imap_valid = xfs_imap_valid(inode, &imap, offset); 1121 } 1122 if (imap_valid) { 1123 lock_buffer(bh); 1124 if (type != XFS_IO_OVERWRITE) 1125 xfs_map_at_offset(inode, bh, &imap, offset); 1126 xfs_add_to_ioend(inode, bh, offset, type, &ioend, 1127 new_ioend); 1128 count++; 1129 } 1130 1131 if (!iohead) 1132 iohead = ioend; 1133 1134 } while (offset += len, ((bh = bh->b_this_page) != head)); 1135 1136 if (uptodate && bh == head) 1137 SetPageUptodate(page); 1138 1139 xfs_start_page_writeback(page, 1, count); 1140 1141 /* if there is no IO to be submitted for this page, we are done */ 1142 if (!ioend) 1143 return 0; 1144 1145 ASSERT(iohead); 1146 1147 /* 1148 * Any errors from this point onwards need tobe reported through the IO 1149 * completion path as we have marked the initial page as under writeback 1150 * and unlocked it. 1151 */ 1152 if (imap_valid) { 1153 xfs_off_t end_index; 1154 1155 end_index = imap.br_startoff + imap.br_blockcount; 1156 1157 /* to bytes */ 1158 end_index <<= inode->i_blkbits; 1159 1160 /* to pages */ 1161 end_index = (end_index - 1) >> PAGE_CACHE_SHIFT; 1162 1163 /* check against file size */ 1164 if (end_index > last_index) 1165 end_index = last_index; 1166 1167 xfs_cluster_write(inode, page->index + 1, &imap, &ioend, 1168 wbc, end_index); 1169 } 1170 1171 1172 /* 1173 * Reserve log space if we might write beyond the on-disk inode size. 1174 */ 1175 err = 0; 1176 if (ioend->io_type != XFS_IO_UNWRITTEN && xfs_ioend_is_append(ioend)) 1177 err = xfs_setfilesize_trans_alloc(ioend); 1178 1179 xfs_submit_ioend(wbc, iohead, err); 1180 1181 return 0; 1182 1183 error: 1184 if (iohead) 1185 xfs_cancel_ioend(iohead); 1186 1187 if (err == -EAGAIN) 1188 goto redirty; 1189 1190 xfs_aops_discard_page(page); 1191 ClearPageUptodate(page); 1192 unlock_page(page); 1193 return err; 1194 1195 redirty: 1196 redirty_page_for_writepage(wbc, page); 1197 unlock_page(page); 1198 return 0; 1199 } 1200 1201 STATIC int 1202 xfs_vm_writepages( 1203 struct address_space *mapping, 1204 struct writeback_control *wbc) 1205 { 1206 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED); 1207 return generic_writepages(mapping, wbc); 1208 } 1209 1210 /* 1211 * Called to move a page into cleanable state - and from there 1212 * to be released. The page should already be clean. We always 1213 * have buffer heads in this call. 1214 * 1215 * Returns 1 if the page is ok to release, 0 otherwise. 1216 */ 1217 STATIC int 1218 xfs_vm_releasepage( 1219 struct page *page, 1220 gfp_t gfp_mask) 1221 { 1222 int delalloc, unwritten; 1223 1224 trace_xfs_releasepage(page->mapping->host, page, 0, 0); 1225 1226 xfs_count_page_state(page, &delalloc, &unwritten); 1227 1228 if (WARN_ON_ONCE(delalloc)) 1229 return 0; 1230 if (WARN_ON_ONCE(unwritten)) 1231 return 0; 1232 1233 return try_to_free_buffers(page); 1234 } 1235 1236 STATIC int 1237 __xfs_get_blocks( 1238 struct inode *inode, 1239 sector_t iblock, 1240 struct buffer_head *bh_result, 1241 int create, 1242 int direct) 1243 { 1244 struct xfs_inode *ip = XFS_I(inode); 1245 struct xfs_mount *mp = ip->i_mount; 1246 xfs_fileoff_t offset_fsb, end_fsb; 1247 int error = 0; 1248 int lockmode = 0; 1249 struct xfs_bmbt_irec imap; 1250 int nimaps = 1; 1251 xfs_off_t offset; 1252 ssize_t size; 1253 int new = 0; 1254 1255 if (XFS_FORCED_SHUTDOWN(mp)) 1256 return -EIO; 1257 1258 offset = (xfs_off_t)iblock << inode->i_blkbits; 1259 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits)); 1260 size = bh_result->b_size; 1261 1262 if (!create && direct && offset >= i_size_read(inode)) 1263 return 0; 1264 1265 /* 1266 * Direct I/O is usually done on preallocated files, so try getting 1267 * a block mapping without an exclusive lock first. For buffered 1268 * writes we already have the exclusive iolock anyway, so avoiding 1269 * a lock roundtrip here by taking the ilock exclusive from the 1270 * beginning is a useful micro optimization. 1271 */ 1272 if (create && !direct) { 1273 lockmode = XFS_ILOCK_EXCL; 1274 xfs_ilock(ip, lockmode); 1275 } else { 1276 lockmode = xfs_ilock_data_map_shared(ip); 1277 } 1278 1279 ASSERT(offset <= mp->m_super->s_maxbytes); 1280 if (offset + size > mp->m_super->s_maxbytes) 1281 size = mp->m_super->s_maxbytes - offset; 1282 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size); 1283 offset_fsb = XFS_B_TO_FSBT(mp, offset); 1284 1285 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, 1286 &imap, &nimaps, XFS_BMAPI_ENTIRE); 1287 if (error) 1288 goto out_unlock; 1289 1290 if (create && 1291 (!nimaps || 1292 (imap.br_startblock == HOLESTARTBLOCK || 1293 imap.br_startblock == DELAYSTARTBLOCK))) { 1294 if (direct || xfs_get_extsz_hint(ip)) { 1295 /* 1296 * Drop the ilock in preparation for starting the block 1297 * allocation transaction. It will be retaken 1298 * exclusively inside xfs_iomap_write_direct for the 1299 * actual allocation. 1300 */ 1301 xfs_iunlock(ip, lockmode); 1302 error = xfs_iomap_write_direct(ip, offset, size, 1303 &imap, nimaps); 1304 if (error) 1305 return error; 1306 new = 1; 1307 } else { 1308 /* 1309 * Delalloc reservations do not require a transaction, 1310 * we can go on without dropping the lock here. If we 1311 * are allocating a new delalloc block, make sure that 1312 * we set the new flag so that we mark the buffer new so 1313 * that we know that it is newly allocated if the write 1314 * fails. 1315 */ 1316 if (nimaps && imap.br_startblock == HOLESTARTBLOCK) 1317 new = 1; 1318 error = xfs_iomap_write_delay(ip, offset, size, &imap); 1319 if (error) 1320 goto out_unlock; 1321 1322 xfs_iunlock(ip, lockmode); 1323 } 1324 1325 trace_xfs_get_blocks_alloc(ip, offset, size, 0, &imap); 1326 } else if (nimaps) { 1327 trace_xfs_get_blocks_found(ip, offset, size, 0, &imap); 1328 xfs_iunlock(ip, lockmode); 1329 } else { 1330 trace_xfs_get_blocks_notfound(ip, offset, size); 1331 goto out_unlock; 1332 } 1333 1334 if (imap.br_startblock != HOLESTARTBLOCK && 1335 imap.br_startblock != DELAYSTARTBLOCK) { 1336 /* 1337 * For unwritten extents do not report a disk address on 1338 * the read case (treat as if we're reading into a hole). 1339 */ 1340 if (create || !ISUNWRITTEN(&imap)) 1341 xfs_map_buffer(inode, bh_result, &imap, offset); 1342 if (create && ISUNWRITTEN(&imap)) { 1343 if (direct) { 1344 bh_result->b_private = inode; 1345 set_buffer_defer_completion(bh_result); 1346 } 1347 set_buffer_unwritten(bh_result); 1348 } 1349 } 1350 1351 /* 1352 * If this is a realtime file, data may be on a different device. 1353 * to that pointed to from the buffer_head b_bdev currently. 1354 */ 1355 bh_result->b_bdev = xfs_find_bdev_for_inode(inode); 1356 1357 /* 1358 * If we previously allocated a block out beyond eof and we are now 1359 * coming back to use it then we will need to flag it as new even if it 1360 * has a disk address. 1361 * 1362 * With sub-block writes into unwritten extents we also need to mark 1363 * the buffer as new so that the unwritten parts of the buffer gets 1364 * correctly zeroed. 1365 */ 1366 if (create && 1367 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) || 1368 (offset >= i_size_read(inode)) || 1369 (new || ISUNWRITTEN(&imap)))) 1370 set_buffer_new(bh_result); 1371 1372 if (imap.br_startblock == DELAYSTARTBLOCK) { 1373 BUG_ON(direct); 1374 if (create) { 1375 set_buffer_uptodate(bh_result); 1376 set_buffer_mapped(bh_result); 1377 set_buffer_delay(bh_result); 1378 } 1379 } 1380 1381 /* 1382 * If this is O_DIRECT or the mpage code calling tell them how large 1383 * the mapping is, so that we can avoid repeated get_blocks calls. 1384 * 1385 * If the mapping spans EOF, then we have to break the mapping up as the 1386 * mapping for blocks beyond EOF must be marked new so that sub block 1387 * regions can be correctly zeroed. We can't do this for mappings within 1388 * EOF unless the mapping was just allocated or is unwritten, otherwise 1389 * the callers would overwrite existing data with zeros. Hence we have 1390 * to split the mapping into a range up to and including EOF, and a 1391 * second mapping for beyond EOF. 1392 */ 1393 if (direct || size > (1 << inode->i_blkbits)) { 1394 xfs_off_t mapping_size; 1395 1396 mapping_size = imap.br_startoff + imap.br_blockcount - iblock; 1397 mapping_size <<= inode->i_blkbits; 1398 1399 ASSERT(mapping_size > 0); 1400 if (mapping_size > size) 1401 mapping_size = size; 1402 if (offset < i_size_read(inode) && 1403 offset + mapping_size >= i_size_read(inode)) { 1404 /* limit mapping to block that spans EOF */ 1405 mapping_size = roundup_64(i_size_read(inode) - offset, 1406 1 << inode->i_blkbits); 1407 } 1408 if (mapping_size > LONG_MAX) 1409 mapping_size = LONG_MAX; 1410 1411 bh_result->b_size = mapping_size; 1412 } 1413 1414 return 0; 1415 1416 out_unlock: 1417 xfs_iunlock(ip, lockmode); 1418 return error; 1419 } 1420 1421 int 1422 xfs_get_blocks( 1423 struct inode *inode, 1424 sector_t iblock, 1425 struct buffer_head *bh_result, 1426 int create) 1427 { 1428 return __xfs_get_blocks(inode, iblock, bh_result, create, 0); 1429 } 1430 1431 STATIC int 1432 xfs_get_blocks_direct( 1433 struct inode *inode, 1434 sector_t iblock, 1435 struct buffer_head *bh_result, 1436 int create) 1437 { 1438 return __xfs_get_blocks(inode, iblock, bh_result, create, 1); 1439 } 1440 1441 /* 1442 * Complete a direct I/O write request. 1443 * 1444 * If the private argument is non-NULL __xfs_get_blocks signals us that we 1445 * need to issue a transaction to convert the range from unwritten to written 1446 * extents. 1447 */ 1448 STATIC void 1449 xfs_end_io_direct_write( 1450 struct kiocb *iocb, 1451 loff_t offset, 1452 ssize_t size, 1453 void *private) 1454 { 1455 struct inode *inode = file_inode(iocb->ki_filp); 1456 struct xfs_inode *ip = XFS_I(inode); 1457 struct xfs_mount *mp = ip->i_mount; 1458 1459 if (XFS_FORCED_SHUTDOWN(mp)) 1460 return; 1461 1462 /* 1463 * While the generic direct I/O code updates the inode size, it does 1464 * so only after the end_io handler is called, which means our 1465 * end_io handler thinks the on-disk size is outside the in-core 1466 * size. To prevent this just update it a little bit earlier here. 1467 */ 1468 if (offset + size > i_size_read(inode)) 1469 i_size_write(inode, offset + size); 1470 1471 /* 1472 * For direct I/O we do not know if we need to allocate blocks or not, 1473 * so we can't preallocate an append transaction, as that results in 1474 * nested reservations and log space deadlocks. Hence allocate the 1475 * transaction here. While this is sub-optimal and can block IO 1476 * completion for some time, we're stuck with doing it this way until 1477 * we can pass the ioend to the direct IO allocation callbacks and 1478 * avoid nesting that way. 1479 */ 1480 if (private && size > 0) { 1481 xfs_iomap_write_unwritten(ip, offset, size); 1482 } else if (offset + size > ip->i_d.di_size) { 1483 struct xfs_trans *tp; 1484 int error; 1485 1486 tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS); 1487 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0); 1488 if (error) { 1489 xfs_trans_cancel(tp, 0); 1490 return; 1491 } 1492 1493 xfs_setfilesize(ip, tp, offset, size); 1494 } 1495 } 1496 1497 STATIC ssize_t 1498 xfs_vm_direct_IO( 1499 int rw, 1500 struct kiocb *iocb, 1501 struct iov_iter *iter, 1502 loff_t offset) 1503 { 1504 struct inode *inode = iocb->ki_filp->f_mapping->host; 1505 struct block_device *bdev = xfs_find_bdev_for_inode(inode); 1506 1507 if (rw & WRITE) { 1508 return __blockdev_direct_IO(rw, iocb, inode, bdev, iter, 1509 offset, xfs_get_blocks_direct, 1510 xfs_end_io_direct_write, NULL, 1511 DIO_ASYNC_EXTEND); 1512 } 1513 return __blockdev_direct_IO(rw, iocb, inode, bdev, iter, 1514 offset, xfs_get_blocks_direct, 1515 NULL, NULL, 0); 1516 } 1517 1518 /* 1519 * Punch out the delalloc blocks we have already allocated. 1520 * 1521 * Don't bother with xfs_setattr given that nothing can have made it to disk yet 1522 * as the page is still locked at this point. 1523 */ 1524 STATIC void 1525 xfs_vm_kill_delalloc_range( 1526 struct inode *inode, 1527 loff_t start, 1528 loff_t end) 1529 { 1530 struct xfs_inode *ip = XFS_I(inode); 1531 xfs_fileoff_t start_fsb; 1532 xfs_fileoff_t end_fsb; 1533 int error; 1534 1535 start_fsb = XFS_B_TO_FSB(ip->i_mount, start); 1536 end_fsb = XFS_B_TO_FSB(ip->i_mount, end); 1537 if (end_fsb <= start_fsb) 1538 return; 1539 1540 xfs_ilock(ip, XFS_ILOCK_EXCL); 1541 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1542 end_fsb - start_fsb); 1543 if (error) { 1544 /* something screwed, just bail */ 1545 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { 1546 xfs_alert(ip->i_mount, 1547 "xfs_vm_write_failed: unable to clean up ino %lld", 1548 ip->i_ino); 1549 } 1550 } 1551 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1552 } 1553 1554 STATIC void 1555 xfs_vm_write_failed( 1556 struct inode *inode, 1557 struct page *page, 1558 loff_t pos, 1559 unsigned len) 1560 { 1561 loff_t block_offset; 1562 loff_t block_start; 1563 loff_t block_end; 1564 loff_t from = pos & (PAGE_CACHE_SIZE - 1); 1565 loff_t to = from + len; 1566 struct buffer_head *bh, *head; 1567 1568 /* 1569 * The request pos offset might be 32 or 64 bit, this is all fine 1570 * on 64-bit platform. However, for 64-bit pos request on 32-bit 1571 * platform, the high 32-bit will be masked off if we evaluate the 1572 * block_offset via (pos & PAGE_MASK) because the PAGE_MASK is 1573 * 0xfffff000 as an unsigned long, hence the result is incorrect 1574 * which could cause the following ASSERT failed in most cases. 1575 * In order to avoid this, we can evaluate the block_offset of the 1576 * start of the page by using shifts rather than masks the mismatch 1577 * problem. 1578 */ 1579 block_offset = (pos >> PAGE_CACHE_SHIFT) << PAGE_CACHE_SHIFT; 1580 1581 ASSERT(block_offset + from == pos); 1582 1583 head = page_buffers(page); 1584 block_start = 0; 1585 for (bh = head; bh != head || !block_start; 1586 bh = bh->b_this_page, block_start = block_end, 1587 block_offset += bh->b_size) { 1588 block_end = block_start + bh->b_size; 1589 1590 /* skip buffers before the write */ 1591 if (block_end <= from) 1592 continue; 1593 1594 /* if the buffer is after the write, we're done */ 1595 if (block_start >= to) 1596 break; 1597 1598 if (!buffer_delay(bh)) 1599 continue; 1600 1601 if (!buffer_new(bh) && block_offset < i_size_read(inode)) 1602 continue; 1603 1604 xfs_vm_kill_delalloc_range(inode, block_offset, 1605 block_offset + bh->b_size); 1606 1607 /* 1608 * This buffer does not contain data anymore. make sure anyone 1609 * who finds it knows that for certain. 1610 */ 1611 clear_buffer_delay(bh); 1612 clear_buffer_uptodate(bh); 1613 clear_buffer_mapped(bh); 1614 clear_buffer_new(bh); 1615 clear_buffer_dirty(bh); 1616 } 1617 1618 } 1619 1620 /* 1621 * This used to call block_write_begin(), but it unlocks and releases the page 1622 * on error, and we need that page to be able to punch stale delalloc blocks out 1623 * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at 1624 * the appropriate point. 1625 */ 1626 STATIC int 1627 xfs_vm_write_begin( 1628 struct file *file, 1629 struct address_space *mapping, 1630 loff_t pos, 1631 unsigned len, 1632 unsigned flags, 1633 struct page **pagep, 1634 void **fsdata) 1635 { 1636 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 1637 struct page *page; 1638 int status; 1639 1640 ASSERT(len <= PAGE_CACHE_SIZE); 1641 1642 page = grab_cache_page_write_begin(mapping, index, flags); 1643 if (!page) 1644 return -ENOMEM; 1645 1646 status = __block_write_begin(page, pos, len, xfs_get_blocks); 1647 if (unlikely(status)) { 1648 struct inode *inode = mapping->host; 1649 size_t isize = i_size_read(inode); 1650 1651 xfs_vm_write_failed(inode, page, pos, len); 1652 unlock_page(page); 1653 1654 /* 1655 * If the write is beyond EOF, we only want to kill blocks 1656 * allocated in this write, not blocks that were previously 1657 * written successfully. 1658 */ 1659 if (pos + len > isize) { 1660 ssize_t start = max_t(ssize_t, pos, isize); 1661 1662 truncate_pagecache_range(inode, start, pos + len); 1663 } 1664 1665 page_cache_release(page); 1666 page = NULL; 1667 } 1668 1669 *pagep = page; 1670 return status; 1671 } 1672 1673 /* 1674 * On failure, we only need to kill delalloc blocks beyond EOF in the range of 1675 * this specific write because they will never be written. Previous writes 1676 * beyond EOF where block allocation succeeded do not need to be trashed, so 1677 * only new blocks from this write should be trashed. For blocks within 1678 * EOF, generic_write_end() zeros them so they are safe to leave alone and be 1679 * written with all the other valid data. 1680 */ 1681 STATIC int 1682 xfs_vm_write_end( 1683 struct file *file, 1684 struct address_space *mapping, 1685 loff_t pos, 1686 unsigned len, 1687 unsigned copied, 1688 struct page *page, 1689 void *fsdata) 1690 { 1691 int ret; 1692 1693 ASSERT(len <= PAGE_CACHE_SIZE); 1694 1695 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata); 1696 if (unlikely(ret < len)) { 1697 struct inode *inode = mapping->host; 1698 size_t isize = i_size_read(inode); 1699 loff_t to = pos + len; 1700 1701 if (to > isize) { 1702 /* only kill blocks in this write beyond EOF */ 1703 if (pos > isize) 1704 isize = pos; 1705 xfs_vm_kill_delalloc_range(inode, isize, to); 1706 truncate_pagecache_range(inode, isize, to); 1707 } 1708 } 1709 return ret; 1710 } 1711 1712 STATIC sector_t 1713 xfs_vm_bmap( 1714 struct address_space *mapping, 1715 sector_t block) 1716 { 1717 struct inode *inode = (struct inode *)mapping->host; 1718 struct xfs_inode *ip = XFS_I(inode); 1719 1720 trace_xfs_vm_bmap(XFS_I(inode)); 1721 xfs_ilock(ip, XFS_IOLOCK_SHARED); 1722 filemap_write_and_wait(mapping); 1723 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 1724 return generic_block_bmap(mapping, block, xfs_get_blocks); 1725 } 1726 1727 STATIC int 1728 xfs_vm_readpage( 1729 struct file *unused, 1730 struct page *page) 1731 { 1732 return mpage_readpage(page, xfs_get_blocks); 1733 } 1734 1735 STATIC int 1736 xfs_vm_readpages( 1737 struct file *unused, 1738 struct address_space *mapping, 1739 struct list_head *pages, 1740 unsigned nr_pages) 1741 { 1742 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks); 1743 } 1744 1745 /* 1746 * This is basically a copy of __set_page_dirty_buffers() with one 1747 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them 1748 * dirty, we'll never be able to clean them because we don't write buffers 1749 * beyond EOF, and that means we can't invalidate pages that span EOF 1750 * that have been marked dirty. Further, the dirty state can leak into 1751 * the file interior if the file is extended, resulting in all sorts of 1752 * bad things happening as the state does not match the underlying data. 1753 * 1754 * XXX: this really indicates that bufferheads in XFS need to die. Warts like 1755 * this only exist because of bufferheads and how the generic code manages them. 1756 */ 1757 STATIC int 1758 xfs_vm_set_page_dirty( 1759 struct page *page) 1760 { 1761 struct address_space *mapping = page->mapping; 1762 struct inode *inode = mapping->host; 1763 loff_t end_offset; 1764 loff_t offset; 1765 int newly_dirty; 1766 1767 if (unlikely(!mapping)) 1768 return !TestSetPageDirty(page); 1769 1770 end_offset = i_size_read(inode); 1771 offset = page_offset(page); 1772 1773 spin_lock(&mapping->private_lock); 1774 if (page_has_buffers(page)) { 1775 struct buffer_head *head = page_buffers(page); 1776 struct buffer_head *bh = head; 1777 1778 do { 1779 if (offset < end_offset) 1780 set_buffer_dirty(bh); 1781 bh = bh->b_this_page; 1782 offset += 1 << inode->i_blkbits; 1783 } while (bh != head); 1784 } 1785 newly_dirty = !TestSetPageDirty(page); 1786 spin_unlock(&mapping->private_lock); 1787 1788 if (newly_dirty) { 1789 /* sigh - __set_page_dirty() is static, so copy it here, too */ 1790 unsigned long flags; 1791 1792 spin_lock_irqsave(&mapping->tree_lock, flags); 1793 if (page->mapping) { /* Race with truncate? */ 1794 WARN_ON_ONCE(!PageUptodate(page)); 1795 account_page_dirtied(page, mapping); 1796 radix_tree_tag_set(&mapping->page_tree, 1797 page_index(page), PAGECACHE_TAG_DIRTY); 1798 } 1799 spin_unlock_irqrestore(&mapping->tree_lock, flags); 1800 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1801 } 1802 return newly_dirty; 1803 } 1804 1805 const struct address_space_operations xfs_address_space_operations = { 1806 .readpage = xfs_vm_readpage, 1807 .readpages = xfs_vm_readpages, 1808 .writepage = xfs_vm_writepage, 1809 .writepages = xfs_vm_writepages, 1810 .set_page_dirty = xfs_vm_set_page_dirty, 1811 .releasepage = xfs_vm_releasepage, 1812 .invalidatepage = xfs_vm_invalidatepage, 1813 .write_begin = xfs_vm_write_begin, 1814 .write_end = xfs_vm_write_end, 1815 .bmap = xfs_vm_bmap, 1816 .direct_IO = xfs_vm_direct_IO, 1817 .migratepage = buffer_migrate_page, 1818 .is_partially_uptodate = block_is_partially_uptodate, 1819 .error_remove_page = generic_error_remove_page, 1820 }; 1821