xref: /linux/fs/xfs/xfs_aops.c (revision c7e1e3ccfbd153c890240a391f258efaedfa94d0)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_shared.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_mount.h"
24 #include "xfs_inode.h"
25 #include "xfs_trans.h"
26 #include "xfs_inode_item.h"
27 #include "xfs_alloc.h"
28 #include "xfs_error.h"
29 #include "xfs_iomap.h"
30 #include "xfs_trace.h"
31 #include "xfs_bmap.h"
32 #include "xfs_bmap_util.h"
33 #include "xfs_bmap_btree.h"
34 #include <linux/gfp.h>
35 #include <linux/mpage.h>
36 #include <linux/pagevec.h>
37 #include <linux/writeback.h>
38 
39 void
40 xfs_count_page_state(
41 	struct page		*page,
42 	int			*delalloc,
43 	int			*unwritten)
44 {
45 	struct buffer_head	*bh, *head;
46 
47 	*delalloc = *unwritten = 0;
48 
49 	bh = head = page_buffers(page);
50 	do {
51 		if (buffer_unwritten(bh))
52 			(*unwritten) = 1;
53 		else if (buffer_delay(bh))
54 			(*delalloc) = 1;
55 	} while ((bh = bh->b_this_page) != head);
56 }
57 
58 STATIC struct block_device *
59 xfs_find_bdev_for_inode(
60 	struct inode		*inode)
61 {
62 	struct xfs_inode	*ip = XFS_I(inode);
63 	struct xfs_mount	*mp = ip->i_mount;
64 
65 	if (XFS_IS_REALTIME_INODE(ip))
66 		return mp->m_rtdev_targp->bt_bdev;
67 	else
68 		return mp->m_ddev_targp->bt_bdev;
69 }
70 
71 /*
72  * We're now finished for good with this ioend structure.
73  * Update the page state via the associated buffer_heads,
74  * release holds on the inode and bio, and finally free
75  * up memory.  Do not use the ioend after this.
76  */
77 STATIC void
78 xfs_destroy_ioend(
79 	xfs_ioend_t		*ioend)
80 {
81 	struct buffer_head	*bh, *next;
82 
83 	for (bh = ioend->io_buffer_head; bh; bh = next) {
84 		next = bh->b_private;
85 		bh->b_end_io(bh, !ioend->io_error);
86 	}
87 
88 	mempool_free(ioend, xfs_ioend_pool);
89 }
90 
91 /*
92  * Fast and loose check if this write could update the on-disk inode size.
93  */
94 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
95 {
96 	return ioend->io_offset + ioend->io_size >
97 		XFS_I(ioend->io_inode)->i_d.di_size;
98 }
99 
100 STATIC int
101 xfs_setfilesize_trans_alloc(
102 	struct xfs_ioend	*ioend)
103 {
104 	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
105 	struct xfs_trans	*tp;
106 	int			error;
107 
108 	tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
109 
110 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0);
111 	if (error) {
112 		xfs_trans_cancel(tp);
113 		return error;
114 	}
115 
116 	ioend->io_append_trans = tp;
117 
118 	/*
119 	 * We may pass freeze protection with a transaction.  So tell lockdep
120 	 * we released it.
121 	 */
122 	rwsem_release(&ioend->io_inode->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
123 		      1, _THIS_IP_);
124 	/*
125 	 * We hand off the transaction to the completion thread now, so
126 	 * clear the flag here.
127 	 */
128 	current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
129 	return 0;
130 }
131 
132 /*
133  * Update on-disk file size now that data has been written to disk.
134  */
135 STATIC int
136 xfs_setfilesize(
137 	struct xfs_inode	*ip,
138 	struct xfs_trans	*tp,
139 	xfs_off_t		offset,
140 	size_t			size)
141 {
142 	xfs_fsize_t		isize;
143 
144 	xfs_ilock(ip, XFS_ILOCK_EXCL);
145 	isize = xfs_new_eof(ip, offset + size);
146 	if (!isize) {
147 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
148 		xfs_trans_cancel(tp);
149 		return 0;
150 	}
151 
152 	trace_xfs_setfilesize(ip, offset, size);
153 
154 	ip->i_d.di_size = isize;
155 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
156 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
157 
158 	return xfs_trans_commit(tp);
159 }
160 
161 STATIC int
162 xfs_setfilesize_ioend(
163 	struct xfs_ioend	*ioend)
164 {
165 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
166 	struct xfs_trans	*tp = ioend->io_append_trans;
167 
168 	/*
169 	 * The transaction may have been allocated in the I/O submission thread,
170 	 * thus we need to mark ourselves as being in a transaction manually.
171 	 * Similarly for freeze protection.
172 	 */
173 	current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
174 	rwsem_acquire_read(&VFS_I(ip)->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
175 			   0, 1, _THIS_IP_);
176 
177 	return xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
178 }
179 
180 /*
181  * Schedule IO completion handling on the final put of an ioend.
182  *
183  * If there is no work to do we might as well call it a day and free the
184  * ioend right now.
185  */
186 STATIC void
187 xfs_finish_ioend(
188 	struct xfs_ioend	*ioend)
189 {
190 	if (atomic_dec_and_test(&ioend->io_remaining)) {
191 		struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
192 
193 		if (ioend->io_type == XFS_IO_UNWRITTEN)
194 			queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
195 		else if (ioend->io_append_trans)
196 			queue_work(mp->m_data_workqueue, &ioend->io_work);
197 		else
198 			xfs_destroy_ioend(ioend);
199 	}
200 }
201 
202 /*
203  * IO write completion.
204  */
205 STATIC void
206 xfs_end_io(
207 	struct work_struct *work)
208 {
209 	xfs_ioend_t	*ioend = container_of(work, xfs_ioend_t, io_work);
210 	struct xfs_inode *ip = XFS_I(ioend->io_inode);
211 	int		error = 0;
212 
213 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
214 		ioend->io_error = -EIO;
215 		goto done;
216 	}
217 	if (ioend->io_error)
218 		goto done;
219 
220 	/*
221 	 * For unwritten extents we need to issue transactions to convert a
222 	 * range to normal written extens after the data I/O has finished.
223 	 */
224 	if (ioend->io_type == XFS_IO_UNWRITTEN) {
225 		error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
226 						  ioend->io_size);
227 	} else if (ioend->io_append_trans) {
228 		error = xfs_setfilesize_ioend(ioend);
229 	} else {
230 		ASSERT(!xfs_ioend_is_append(ioend));
231 	}
232 
233 done:
234 	if (error)
235 		ioend->io_error = error;
236 	xfs_destroy_ioend(ioend);
237 }
238 
239 /*
240  * Allocate and initialise an IO completion structure.
241  * We need to track unwritten extent write completion here initially.
242  * We'll need to extend this for updating the ondisk inode size later
243  * (vs. incore size).
244  */
245 STATIC xfs_ioend_t *
246 xfs_alloc_ioend(
247 	struct inode		*inode,
248 	unsigned int		type)
249 {
250 	xfs_ioend_t		*ioend;
251 
252 	ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
253 
254 	/*
255 	 * Set the count to 1 initially, which will prevent an I/O
256 	 * completion callback from happening before we have started
257 	 * all the I/O from calling the completion routine too early.
258 	 */
259 	atomic_set(&ioend->io_remaining, 1);
260 	ioend->io_error = 0;
261 	ioend->io_list = NULL;
262 	ioend->io_type = type;
263 	ioend->io_inode = inode;
264 	ioend->io_buffer_head = NULL;
265 	ioend->io_buffer_tail = NULL;
266 	ioend->io_offset = 0;
267 	ioend->io_size = 0;
268 	ioend->io_append_trans = NULL;
269 
270 	INIT_WORK(&ioend->io_work, xfs_end_io);
271 	return ioend;
272 }
273 
274 STATIC int
275 xfs_map_blocks(
276 	struct inode		*inode,
277 	loff_t			offset,
278 	struct xfs_bmbt_irec	*imap,
279 	int			type,
280 	int			nonblocking)
281 {
282 	struct xfs_inode	*ip = XFS_I(inode);
283 	struct xfs_mount	*mp = ip->i_mount;
284 	ssize_t			count = 1 << inode->i_blkbits;
285 	xfs_fileoff_t		offset_fsb, end_fsb;
286 	int			error = 0;
287 	int			bmapi_flags = XFS_BMAPI_ENTIRE;
288 	int			nimaps = 1;
289 
290 	if (XFS_FORCED_SHUTDOWN(mp))
291 		return -EIO;
292 
293 	if (type == XFS_IO_UNWRITTEN)
294 		bmapi_flags |= XFS_BMAPI_IGSTATE;
295 
296 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
297 		if (nonblocking)
298 			return -EAGAIN;
299 		xfs_ilock(ip, XFS_ILOCK_SHARED);
300 	}
301 
302 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
303 	       (ip->i_df.if_flags & XFS_IFEXTENTS));
304 	ASSERT(offset <= mp->m_super->s_maxbytes);
305 
306 	if (offset + count > mp->m_super->s_maxbytes)
307 		count = mp->m_super->s_maxbytes - offset;
308 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
309 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
310 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
311 				imap, &nimaps, bmapi_flags);
312 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
313 
314 	if (error)
315 		return error;
316 
317 	if (type == XFS_IO_DELALLOC &&
318 	    (!nimaps || isnullstartblock(imap->br_startblock))) {
319 		error = xfs_iomap_write_allocate(ip, offset, imap);
320 		if (!error)
321 			trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
322 		return error;
323 	}
324 
325 #ifdef DEBUG
326 	if (type == XFS_IO_UNWRITTEN) {
327 		ASSERT(nimaps);
328 		ASSERT(imap->br_startblock != HOLESTARTBLOCK);
329 		ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
330 	}
331 #endif
332 	if (nimaps)
333 		trace_xfs_map_blocks_found(ip, offset, count, type, imap);
334 	return 0;
335 }
336 
337 STATIC int
338 xfs_imap_valid(
339 	struct inode		*inode,
340 	struct xfs_bmbt_irec	*imap,
341 	xfs_off_t		offset)
342 {
343 	offset >>= inode->i_blkbits;
344 
345 	return offset >= imap->br_startoff &&
346 		offset < imap->br_startoff + imap->br_blockcount;
347 }
348 
349 /*
350  * BIO completion handler for buffered IO.
351  */
352 STATIC void
353 xfs_end_bio(
354 	struct bio		*bio)
355 {
356 	xfs_ioend_t		*ioend = bio->bi_private;
357 
358 	ioend->io_error = bio->bi_error;
359 
360 	/* Toss bio and pass work off to an xfsdatad thread */
361 	bio->bi_private = NULL;
362 	bio->bi_end_io = NULL;
363 	bio_put(bio);
364 
365 	xfs_finish_ioend(ioend);
366 }
367 
368 STATIC void
369 xfs_submit_ioend_bio(
370 	struct writeback_control *wbc,
371 	xfs_ioend_t		*ioend,
372 	struct bio		*bio)
373 {
374 	atomic_inc(&ioend->io_remaining);
375 	bio->bi_private = ioend;
376 	bio->bi_end_io = xfs_end_bio;
377 	submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
378 }
379 
380 STATIC struct bio *
381 xfs_alloc_ioend_bio(
382 	struct buffer_head	*bh)
383 {
384 	struct bio		*bio = bio_alloc(GFP_NOIO, BIO_MAX_PAGES);
385 
386 	ASSERT(bio->bi_private == NULL);
387 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
388 	bio->bi_bdev = bh->b_bdev;
389 	return bio;
390 }
391 
392 STATIC void
393 xfs_start_buffer_writeback(
394 	struct buffer_head	*bh)
395 {
396 	ASSERT(buffer_mapped(bh));
397 	ASSERT(buffer_locked(bh));
398 	ASSERT(!buffer_delay(bh));
399 	ASSERT(!buffer_unwritten(bh));
400 
401 	mark_buffer_async_write(bh);
402 	set_buffer_uptodate(bh);
403 	clear_buffer_dirty(bh);
404 }
405 
406 STATIC void
407 xfs_start_page_writeback(
408 	struct page		*page,
409 	int			clear_dirty,
410 	int			buffers)
411 {
412 	ASSERT(PageLocked(page));
413 	ASSERT(!PageWriteback(page));
414 
415 	/*
416 	 * if the page was not fully cleaned, we need to ensure that the higher
417 	 * layers come back to it correctly. That means we need to keep the page
418 	 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
419 	 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
420 	 * write this page in this writeback sweep will be made.
421 	 */
422 	if (clear_dirty) {
423 		clear_page_dirty_for_io(page);
424 		set_page_writeback(page);
425 	} else
426 		set_page_writeback_keepwrite(page);
427 
428 	unlock_page(page);
429 
430 	/* If no buffers on the page are to be written, finish it here */
431 	if (!buffers)
432 		end_page_writeback(page);
433 }
434 
435 static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
436 {
437 	return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
438 }
439 
440 /*
441  * Submit all of the bios for all of the ioends we have saved up, covering the
442  * initial writepage page and also any probed pages.
443  *
444  * Because we may have multiple ioends spanning a page, we need to start
445  * writeback on all the buffers before we submit them for I/O. If we mark the
446  * buffers as we got, then we can end up with a page that only has buffers
447  * marked async write and I/O complete on can occur before we mark the other
448  * buffers async write.
449  *
450  * The end result of this is that we trip a bug in end_page_writeback() because
451  * we call it twice for the one page as the code in end_buffer_async_write()
452  * assumes that all buffers on the page are started at the same time.
453  *
454  * The fix is two passes across the ioend list - one to start writeback on the
455  * buffer_heads, and then submit them for I/O on the second pass.
456  *
457  * If @fail is non-zero, it means that we have a situation where some part of
458  * the submission process has failed after we have marked paged for writeback
459  * and unlocked them. In this situation, we need to fail the ioend chain rather
460  * than submit it to IO. This typically only happens on a filesystem shutdown.
461  */
462 STATIC void
463 xfs_submit_ioend(
464 	struct writeback_control *wbc,
465 	xfs_ioend_t		*ioend,
466 	int			fail)
467 {
468 	xfs_ioend_t		*head = ioend;
469 	xfs_ioend_t		*next;
470 	struct buffer_head	*bh;
471 	struct bio		*bio;
472 	sector_t		lastblock = 0;
473 
474 	/* Pass 1 - start writeback */
475 	do {
476 		next = ioend->io_list;
477 		for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
478 			xfs_start_buffer_writeback(bh);
479 	} while ((ioend = next) != NULL);
480 
481 	/* Pass 2 - submit I/O */
482 	ioend = head;
483 	do {
484 		next = ioend->io_list;
485 		bio = NULL;
486 
487 		/*
488 		 * If we are failing the IO now, just mark the ioend with an
489 		 * error and finish it. This will run IO completion immediately
490 		 * as there is only one reference to the ioend at this point in
491 		 * time.
492 		 */
493 		if (fail) {
494 			ioend->io_error = fail;
495 			xfs_finish_ioend(ioend);
496 			continue;
497 		}
498 
499 		for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
500 
501 			if (!bio) {
502  retry:
503 				bio = xfs_alloc_ioend_bio(bh);
504 			} else if (bh->b_blocknr != lastblock + 1) {
505 				xfs_submit_ioend_bio(wbc, ioend, bio);
506 				goto retry;
507 			}
508 
509 			if (xfs_bio_add_buffer(bio, bh) != bh->b_size) {
510 				xfs_submit_ioend_bio(wbc, ioend, bio);
511 				goto retry;
512 			}
513 
514 			lastblock = bh->b_blocknr;
515 		}
516 		if (bio)
517 			xfs_submit_ioend_bio(wbc, ioend, bio);
518 		xfs_finish_ioend(ioend);
519 	} while ((ioend = next) != NULL);
520 }
521 
522 /*
523  * Cancel submission of all buffer_heads so far in this endio.
524  * Toss the endio too.  Only ever called for the initial page
525  * in a writepage request, so only ever one page.
526  */
527 STATIC void
528 xfs_cancel_ioend(
529 	xfs_ioend_t		*ioend)
530 {
531 	xfs_ioend_t		*next;
532 	struct buffer_head	*bh, *next_bh;
533 
534 	do {
535 		next = ioend->io_list;
536 		bh = ioend->io_buffer_head;
537 		do {
538 			next_bh = bh->b_private;
539 			clear_buffer_async_write(bh);
540 			/*
541 			 * The unwritten flag is cleared when added to the
542 			 * ioend. We're not submitting for I/O so mark the
543 			 * buffer unwritten again for next time around.
544 			 */
545 			if (ioend->io_type == XFS_IO_UNWRITTEN)
546 				set_buffer_unwritten(bh);
547 			unlock_buffer(bh);
548 		} while ((bh = next_bh) != NULL);
549 
550 		mempool_free(ioend, xfs_ioend_pool);
551 	} while ((ioend = next) != NULL);
552 }
553 
554 /*
555  * Test to see if we've been building up a completion structure for
556  * earlier buffers -- if so, we try to append to this ioend if we
557  * can, otherwise we finish off any current ioend and start another.
558  * Return true if we've finished the given ioend.
559  */
560 STATIC void
561 xfs_add_to_ioend(
562 	struct inode		*inode,
563 	struct buffer_head	*bh,
564 	xfs_off_t		offset,
565 	unsigned int		type,
566 	xfs_ioend_t		**result,
567 	int			need_ioend)
568 {
569 	xfs_ioend_t		*ioend = *result;
570 
571 	if (!ioend || need_ioend || type != ioend->io_type) {
572 		xfs_ioend_t	*previous = *result;
573 
574 		ioend = xfs_alloc_ioend(inode, type);
575 		ioend->io_offset = offset;
576 		ioend->io_buffer_head = bh;
577 		ioend->io_buffer_tail = bh;
578 		if (previous)
579 			previous->io_list = ioend;
580 		*result = ioend;
581 	} else {
582 		ioend->io_buffer_tail->b_private = bh;
583 		ioend->io_buffer_tail = bh;
584 	}
585 
586 	bh->b_private = NULL;
587 	ioend->io_size += bh->b_size;
588 }
589 
590 STATIC void
591 xfs_map_buffer(
592 	struct inode		*inode,
593 	struct buffer_head	*bh,
594 	struct xfs_bmbt_irec	*imap,
595 	xfs_off_t		offset)
596 {
597 	sector_t		bn;
598 	struct xfs_mount	*m = XFS_I(inode)->i_mount;
599 	xfs_off_t		iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
600 	xfs_daddr_t		iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
601 
602 	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
603 	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
604 
605 	bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
606 	      ((offset - iomap_offset) >> inode->i_blkbits);
607 
608 	ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
609 
610 	bh->b_blocknr = bn;
611 	set_buffer_mapped(bh);
612 }
613 
614 STATIC void
615 xfs_map_at_offset(
616 	struct inode		*inode,
617 	struct buffer_head	*bh,
618 	struct xfs_bmbt_irec	*imap,
619 	xfs_off_t		offset)
620 {
621 	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
622 	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
623 
624 	xfs_map_buffer(inode, bh, imap, offset);
625 	set_buffer_mapped(bh);
626 	clear_buffer_delay(bh);
627 	clear_buffer_unwritten(bh);
628 }
629 
630 /*
631  * Test if a given page contains at least one buffer of a given @type.
632  * If @check_all_buffers is true, then we walk all the buffers in the page to
633  * try to find one of the type passed in. If it is not set, then the caller only
634  * needs to check the first buffer on the page for a match.
635  */
636 STATIC bool
637 xfs_check_page_type(
638 	struct page		*page,
639 	unsigned int		type,
640 	bool			check_all_buffers)
641 {
642 	struct buffer_head	*bh;
643 	struct buffer_head	*head;
644 
645 	if (PageWriteback(page))
646 		return false;
647 	if (!page->mapping)
648 		return false;
649 	if (!page_has_buffers(page))
650 		return false;
651 
652 	bh = head = page_buffers(page);
653 	do {
654 		if (buffer_unwritten(bh)) {
655 			if (type == XFS_IO_UNWRITTEN)
656 				return true;
657 		} else if (buffer_delay(bh)) {
658 			if (type == XFS_IO_DELALLOC)
659 				return true;
660 		} else if (buffer_dirty(bh) && buffer_mapped(bh)) {
661 			if (type == XFS_IO_OVERWRITE)
662 				return true;
663 		}
664 
665 		/* If we are only checking the first buffer, we are done now. */
666 		if (!check_all_buffers)
667 			break;
668 	} while ((bh = bh->b_this_page) != head);
669 
670 	return false;
671 }
672 
673 /*
674  * Allocate & map buffers for page given the extent map. Write it out.
675  * except for the original page of a writepage, this is called on
676  * delalloc/unwritten pages only, for the original page it is possible
677  * that the page has no mapping at all.
678  */
679 STATIC int
680 xfs_convert_page(
681 	struct inode		*inode,
682 	struct page		*page,
683 	loff_t			tindex,
684 	struct xfs_bmbt_irec	*imap,
685 	xfs_ioend_t		**ioendp,
686 	struct writeback_control *wbc)
687 {
688 	struct buffer_head	*bh, *head;
689 	xfs_off_t		end_offset;
690 	unsigned long		p_offset;
691 	unsigned int		type;
692 	int			len, page_dirty;
693 	int			count = 0, done = 0, uptodate = 1;
694  	xfs_off_t		offset = page_offset(page);
695 
696 	if (page->index != tindex)
697 		goto fail;
698 	if (!trylock_page(page))
699 		goto fail;
700 	if (PageWriteback(page))
701 		goto fail_unlock_page;
702 	if (page->mapping != inode->i_mapping)
703 		goto fail_unlock_page;
704 	if (!xfs_check_page_type(page, (*ioendp)->io_type, false))
705 		goto fail_unlock_page;
706 
707 	/*
708 	 * page_dirty is initially a count of buffers on the page before
709 	 * EOF and is decremented as we move each into a cleanable state.
710 	 *
711 	 * Derivation:
712 	 *
713 	 * End offset is the highest offset that this page should represent.
714 	 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
715 	 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
716 	 * hence give us the correct page_dirty count. On any other page,
717 	 * it will be zero and in that case we need page_dirty to be the
718 	 * count of buffers on the page.
719 	 */
720 	end_offset = min_t(unsigned long long,
721 			(xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
722 			i_size_read(inode));
723 
724 	/*
725 	 * If the current map does not span the entire page we are about to try
726 	 * to write, then give up. The only way we can write a page that spans
727 	 * multiple mappings in a single writeback iteration is via the
728 	 * xfs_vm_writepage() function. Data integrity writeback requires the
729 	 * entire page to be written in a single attempt, otherwise the part of
730 	 * the page we don't write here doesn't get written as part of the data
731 	 * integrity sync.
732 	 *
733 	 * For normal writeback, we also don't attempt to write partial pages
734 	 * here as it simply means that write_cache_pages() will see it under
735 	 * writeback and ignore the page until some point in the future, at
736 	 * which time this will be the only page in the file that needs
737 	 * writeback.  Hence for more optimal IO patterns, we should always
738 	 * avoid partial page writeback due to multiple mappings on a page here.
739 	 */
740 	if (!xfs_imap_valid(inode, imap, end_offset))
741 		goto fail_unlock_page;
742 
743 	len = 1 << inode->i_blkbits;
744 	p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
745 					PAGE_CACHE_SIZE);
746 	p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
747 	page_dirty = p_offset / len;
748 
749 	/*
750 	 * The moment we find a buffer that doesn't match our current type
751 	 * specification or can't be written, abort the loop and start
752 	 * writeback. As per the above xfs_imap_valid() check, only
753 	 * xfs_vm_writepage() can handle partial page writeback fully - we are
754 	 * limited here to the buffers that are contiguous with the current
755 	 * ioend, and hence a buffer we can't write breaks that contiguity and
756 	 * we have to defer the rest of the IO to xfs_vm_writepage().
757 	 */
758 	bh = head = page_buffers(page);
759 	do {
760 		if (offset >= end_offset)
761 			break;
762 		if (!buffer_uptodate(bh))
763 			uptodate = 0;
764 		if (!(PageUptodate(page) || buffer_uptodate(bh))) {
765 			done = 1;
766 			break;
767 		}
768 
769 		if (buffer_unwritten(bh) || buffer_delay(bh) ||
770 		    buffer_mapped(bh)) {
771 			if (buffer_unwritten(bh))
772 				type = XFS_IO_UNWRITTEN;
773 			else if (buffer_delay(bh))
774 				type = XFS_IO_DELALLOC;
775 			else
776 				type = XFS_IO_OVERWRITE;
777 
778 			/*
779 			 * imap should always be valid because of the above
780 			 * partial page end_offset check on the imap.
781 			 */
782 			ASSERT(xfs_imap_valid(inode, imap, offset));
783 
784 			lock_buffer(bh);
785 			if (type != XFS_IO_OVERWRITE)
786 				xfs_map_at_offset(inode, bh, imap, offset);
787 			xfs_add_to_ioend(inode, bh, offset, type,
788 					 ioendp, done);
789 
790 			page_dirty--;
791 			count++;
792 		} else {
793 			done = 1;
794 			break;
795 		}
796 	} while (offset += len, (bh = bh->b_this_page) != head);
797 
798 	if (uptodate && bh == head)
799 		SetPageUptodate(page);
800 
801 	if (count) {
802 		if (--wbc->nr_to_write <= 0 &&
803 		    wbc->sync_mode == WB_SYNC_NONE)
804 			done = 1;
805 	}
806 	xfs_start_page_writeback(page, !page_dirty, count);
807 
808 	return done;
809  fail_unlock_page:
810 	unlock_page(page);
811  fail:
812 	return 1;
813 }
814 
815 /*
816  * Convert & write out a cluster of pages in the same extent as defined
817  * by mp and following the start page.
818  */
819 STATIC void
820 xfs_cluster_write(
821 	struct inode		*inode,
822 	pgoff_t			tindex,
823 	struct xfs_bmbt_irec	*imap,
824 	xfs_ioend_t		**ioendp,
825 	struct writeback_control *wbc,
826 	pgoff_t			tlast)
827 {
828 	struct pagevec		pvec;
829 	int			done = 0, i;
830 
831 	pagevec_init(&pvec, 0);
832 	while (!done && tindex <= tlast) {
833 		unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
834 
835 		if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
836 			break;
837 
838 		for (i = 0; i < pagevec_count(&pvec); i++) {
839 			done = xfs_convert_page(inode, pvec.pages[i], tindex++,
840 					imap, ioendp, wbc);
841 			if (done)
842 				break;
843 		}
844 
845 		pagevec_release(&pvec);
846 		cond_resched();
847 	}
848 }
849 
850 STATIC void
851 xfs_vm_invalidatepage(
852 	struct page		*page,
853 	unsigned int		offset,
854 	unsigned int		length)
855 {
856 	trace_xfs_invalidatepage(page->mapping->host, page, offset,
857 				 length);
858 	block_invalidatepage(page, offset, length);
859 }
860 
861 /*
862  * If the page has delalloc buffers on it, we need to punch them out before we
863  * invalidate the page. If we don't, we leave a stale delalloc mapping on the
864  * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
865  * is done on that same region - the delalloc extent is returned when none is
866  * supposed to be there.
867  *
868  * We prevent this by truncating away the delalloc regions on the page before
869  * invalidating it. Because they are delalloc, we can do this without needing a
870  * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
871  * truncation without a transaction as there is no space left for block
872  * reservation (typically why we see a ENOSPC in writeback).
873  *
874  * This is not a performance critical path, so for now just do the punching a
875  * buffer head at a time.
876  */
877 STATIC void
878 xfs_aops_discard_page(
879 	struct page		*page)
880 {
881 	struct inode		*inode = page->mapping->host;
882 	struct xfs_inode	*ip = XFS_I(inode);
883 	struct buffer_head	*bh, *head;
884 	loff_t			offset = page_offset(page);
885 
886 	if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
887 		goto out_invalidate;
888 
889 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
890 		goto out_invalidate;
891 
892 	xfs_alert(ip->i_mount,
893 		"page discard on page %p, inode 0x%llx, offset %llu.",
894 			page, ip->i_ino, offset);
895 
896 	xfs_ilock(ip, XFS_ILOCK_EXCL);
897 	bh = head = page_buffers(page);
898 	do {
899 		int		error;
900 		xfs_fileoff_t	start_fsb;
901 
902 		if (!buffer_delay(bh))
903 			goto next_buffer;
904 
905 		start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
906 		error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
907 		if (error) {
908 			/* something screwed, just bail */
909 			if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
910 				xfs_alert(ip->i_mount,
911 			"page discard unable to remove delalloc mapping.");
912 			}
913 			break;
914 		}
915 next_buffer:
916 		offset += 1 << inode->i_blkbits;
917 
918 	} while ((bh = bh->b_this_page) != head);
919 
920 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
921 out_invalidate:
922 	xfs_vm_invalidatepage(page, 0, PAGE_CACHE_SIZE);
923 	return;
924 }
925 
926 /*
927  * Write out a dirty page.
928  *
929  * For delalloc space on the page we need to allocate space and flush it.
930  * For unwritten space on the page we need to start the conversion to
931  * regular allocated space.
932  * For any other dirty buffer heads on the page we should flush them.
933  */
934 STATIC int
935 xfs_vm_writepage(
936 	struct page		*page,
937 	struct writeback_control *wbc)
938 {
939 	struct inode		*inode = page->mapping->host;
940 	struct buffer_head	*bh, *head;
941 	struct xfs_bmbt_irec	imap;
942 	xfs_ioend_t		*ioend = NULL, *iohead = NULL;
943 	loff_t			offset;
944 	unsigned int		type;
945 	__uint64_t              end_offset;
946 	pgoff_t                 end_index, last_index;
947 	ssize_t			len;
948 	int			err, imap_valid = 0, uptodate = 1;
949 	int			count = 0;
950 	int			nonblocking = 0;
951 
952 	trace_xfs_writepage(inode, page, 0, 0);
953 
954 	ASSERT(page_has_buffers(page));
955 
956 	/*
957 	 * Refuse to write the page out if we are called from reclaim context.
958 	 *
959 	 * This avoids stack overflows when called from deeply used stacks in
960 	 * random callers for direct reclaim or memcg reclaim.  We explicitly
961 	 * allow reclaim from kswapd as the stack usage there is relatively low.
962 	 *
963 	 * This should never happen except in the case of a VM regression so
964 	 * warn about it.
965 	 */
966 	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
967 			PF_MEMALLOC))
968 		goto redirty;
969 
970 	/*
971 	 * Given that we do not allow direct reclaim to call us, we should
972 	 * never be called while in a filesystem transaction.
973 	 */
974 	if (WARN_ON_ONCE(current->flags & PF_FSTRANS))
975 		goto redirty;
976 
977 	/* Is this page beyond the end of the file? */
978 	offset = i_size_read(inode);
979 	end_index = offset >> PAGE_CACHE_SHIFT;
980 	last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
981 
982 	/*
983 	 * The page index is less than the end_index, adjust the end_offset
984 	 * to the highest offset that this page should represent.
985 	 * -----------------------------------------------------
986 	 * |			file mapping	       | <EOF> |
987 	 * -----------------------------------------------------
988 	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
989 	 * ^--------------------------------^----------|--------
990 	 * |     desired writeback range    |      see else    |
991 	 * ---------------------------------^------------------|
992 	 */
993 	if (page->index < end_index)
994 		end_offset = (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT;
995 	else {
996 		/*
997 		 * Check whether the page to write out is beyond or straddles
998 		 * i_size or not.
999 		 * -------------------------------------------------------
1000 		 * |		file mapping		        | <EOF>  |
1001 		 * -------------------------------------------------------
1002 		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
1003 		 * ^--------------------------------^-----------|---------
1004 		 * |				    |      Straddles     |
1005 		 * ---------------------------------^-----------|--------|
1006 		 */
1007 		unsigned offset_into_page = offset & (PAGE_CACHE_SIZE - 1);
1008 
1009 		/*
1010 		 * Skip the page if it is fully outside i_size, e.g. due to a
1011 		 * truncate operation that is in progress. We must redirty the
1012 		 * page so that reclaim stops reclaiming it. Otherwise
1013 		 * xfs_vm_releasepage() is called on it and gets confused.
1014 		 *
1015 		 * Note that the end_index is unsigned long, it would overflow
1016 		 * if the given offset is greater than 16TB on 32-bit system
1017 		 * and if we do check the page is fully outside i_size or not
1018 		 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1019 		 * will be evaluated to 0.  Hence this page will be redirtied
1020 		 * and be written out repeatedly which would result in an
1021 		 * infinite loop, the user program that perform this operation
1022 		 * will hang.  Instead, we can verify this situation by checking
1023 		 * if the page to write is totally beyond the i_size or if it's
1024 		 * offset is just equal to the EOF.
1025 		 */
1026 		if (page->index > end_index ||
1027 		    (page->index == end_index && offset_into_page == 0))
1028 			goto redirty;
1029 
1030 		/*
1031 		 * The page straddles i_size.  It must be zeroed out on each
1032 		 * and every writepage invocation because it may be mmapped.
1033 		 * "A file is mapped in multiples of the page size.  For a file
1034 		 * that is not a multiple of the page size, the remaining
1035 		 * memory is zeroed when mapped, and writes to that region are
1036 		 * not written out to the file."
1037 		 */
1038 		zero_user_segment(page, offset_into_page, PAGE_CACHE_SIZE);
1039 
1040 		/* Adjust the end_offset to the end of file */
1041 		end_offset = offset;
1042 	}
1043 
1044 	len = 1 << inode->i_blkbits;
1045 
1046 	bh = head = page_buffers(page);
1047 	offset = page_offset(page);
1048 	type = XFS_IO_OVERWRITE;
1049 
1050 	if (wbc->sync_mode == WB_SYNC_NONE)
1051 		nonblocking = 1;
1052 
1053 	do {
1054 		int new_ioend = 0;
1055 
1056 		if (offset >= end_offset)
1057 			break;
1058 		if (!buffer_uptodate(bh))
1059 			uptodate = 0;
1060 
1061 		/*
1062 		 * set_page_dirty dirties all buffers in a page, independent
1063 		 * of their state.  The dirty state however is entirely
1064 		 * meaningless for holes (!mapped && uptodate), so skip
1065 		 * buffers covering holes here.
1066 		 */
1067 		if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
1068 			imap_valid = 0;
1069 			continue;
1070 		}
1071 
1072 		if (buffer_unwritten(bh)) {
1073 			if (type != XFS_IO_UNWRITTEN) {
1074 				type = XFS_IO_UNWRITTEN;
1075 				imap_valid = 0;
1076 			}
1077 		} else if (buffer_delay(bh)) {
1078 			if (type != XFS_IO_DELALLOC) {
1079 				type = XFS_IO_DELALLOC;
1080 				imap_valid = 0;
1081 			}
1082 		} else if (buffer_uptodate(bh)) {
1083 			if (type != XFS_IO_OVERWRITE) {
1084 				type = XFS_IO_OVERWRITE;
1085 				imap_valid = 0;
1086 			}
1087 		} else {
1088 			if (PageUptodate(page))
1089 				ASSERT(buffer_mapped(bh));
1090 			/*
1091 			 * This buffer is not uptodate and will not be
1092 			 * written to disk.  Ensure that we will put any
1093 			 * subsequent writeable buffers into a new
1094 			 * ioend.
1095 			 */
1096 			imap_valid = 0;
1097 			continue;
1098 		}
1099 
1100 		if (imap_valid)
1101 			imap_valid = xfs_imap_valid(inode, &imap, offset);
1102 		if (!imap_valid) {
1103 			/*
1104 			 * If we didn't have a valid mapping then we need to
1105 			 * put the new mapping into a separate ioend structure.
1106 			 * This ensures non-contiguous extents always have
1107 			 * separate ioends, which is particularly important
1108 			 * for unwritten extent conversion at I/O completion
1109 			 * time.
1110 			 */
1111 			new_ioend = 1;
1112 			err = xfs_map_blocks(inode, offset, &imap, type,
1113 					     nonblocking);
1114 			if (err)
1115 				goto error;
1116 			imap_valid = xfs_imap_valid(inode, &imap, offset);
1117 		}
1118 		if (imap_valid) {
1119 			lock_buffer(bh);
1120 			if (type != XFS_IO_OVERWRITE)
1121 				xfs_map_at_offset(inode, bh, &imap, offset);
1122 			xfs_add_to_ioend(inode, bh, offset, type, &ioend,
1123 					 new_ioend);
1124 			count++;
1125 		}
1126 
1127 		if (!iohead)
1128 			iohead = ioend;
1129 
1130 	} while (offset += len, ((bh = bh->b_this_page) != head));
1131 
1132 	if (uptodate && bh == head)
1133 		SetPageUptodate(page);
1134 
1135 	xfs_start_page_writeback(page, 1, count);
1136 
1137 	/* if there is no IO to be submitted for this page, we are done */
1138 	if (!ioend)
1139 		return 0;
1140 
1141 	ASSERT(iohead);
1142 
1143 	/*
1144 	 * Any errors from this point onwards need tobe reported through the IO
1145 	 * completion path as we have marked the initial page as under writeback
1146 	 * and unlocked it.
1147 	 */
1148 	if (imap_valid) {
1149 		xfs_off_t		end_index;
1150 
1151 		end_index = imap.br_startoff + imap.br_blockcount;
1152 
1153 		/* to bytes */
1154 		end_index <<= inode->i_blkbits;
1155 
1156 		/* to pages */
1157 		end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1158 
1159 		/* check against file size */
1160 		if (end_index > last_index)
1161 			end_index = last_index;
1162 
1163 		xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
1164 				  wbc, end_index);
1165 	}
1166 
1167 
1168 	/*
1169 	 * Reserve log space if we might write beyond the on-disk inode size.
1170 	 */
1171 	err = 0;
1172 	if (ioend->io_type != XFS_IO_UNWRITTEN && xfs_ioend_is_append(ioend))
1173 		err = xfs_setfilesize_trans_alloc(ioend);
1174 
1175 	xfs_submit_ioend(wbc, iohead, err);
1176 
1177 	return 0;
1178 
1179 error:
1180 	if (iohead)
1181 		xfs_cancel_ioend(iohead);
1182 
1183 	if (err == -EAGAIN)
1184 		goto redirty;
1185 
1186 	xfs_aops_discard_page(page);
1187 	ClearPageUptodate(page);
1188 	unlock_page(page);
1189 	return err;
1190 
1191 redirty:
1192 	redirty_page_for_writepage(wbc, page);
1193 	unlock_page(page);
1194 	return 0;
1195 }
1196 
1197 STATIC int
1198 xfs_vm_writepages(
1199 	struct address_space	*mapping,
1200 	struct writeback_control *wbc)
1201 {
1202 	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1203 	return generic_writepages(mapping, wbc);
1204 }
1205 
1206 /*
1207  * Called to move a page into cleanable state - and from there
1208  * to be released. The page should already be clean. We always
1209  * have buffer heads in this call.
1210  *
1211  * Returns 1 if the page is ok to release, 0 otherwise.
1212  */
1213 STATIC int
1214 xfs_vm_releasepage(
1215 	struct page		*page,
1216 	gfp_t			gfp_mask)
1217 {
1218 	int			delalloc, unwritten;
1219 
1220 	trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1221 
1222 	xfs_count_page_state(page, &delalloc, &unwritten);
1223 
1224 	if (WARN_ON_ONCE(delalloc))
1225 		return 0;
1226 	if (WARN_ON_ONCE(unwritten))
1227 		return 0;
1228 
1229 	return try_to_free_buffers(page);
1230 }
1231 
1232 /*
1233  * When we map a DIO buffer, we may need to attach an ioend that describes the
1234  * type of write IO we are doing. This passes to the completion function the
1235  * operations it needs to perform. If the mapping is for an overwrite wholly
1236  * within the EOF then we don't need an ioend and so we don't allocate one.
1237  * This avoids the unnecessary overhead of allocating and freeing ioends for
1238  * workloads that don't require transactions on IO completion.
1239  *
1240  * If we get multiple mappings in a single IO, we might be mapping different
1241  * types. But because the direct IO can only have a single private pointer, we
1242  * need to ensure that:
1243  *
1244  * a) i) the ioend spans the entire region of unwritten mappings; or
1245  *    ii) the ioend spans all the mappings that cross or are beyond EOF; and
1246  * b) if it contains unwritten extents, it is *permanently* marked as such
1247  *
1248  * We could do this by chaining ioends like buffered IO does, but we only
1249  * actually get one IO completion callback from the direct IO, and that spans
1250  * the entire IO regardless of how many mappings and IOs are needed to complete
1251  * the DIO. There is only going to be one reference to the ioend and its life
1252  * cycle is constrained by the DIO completion code. hence we don't need
1253  * reference counting here.
1254  */
1255 static void
1256 xfs_map_direct(
1257 	struct inode		*inode,
1258 	struct buffer_head	*bh_result,
1259 	struct xfs_bmbt_irec	*imap,
1260 	xfs_off_t		offset)
1261 {
1262 	struct xfs_ioend	*ioend;
1263 	xfs_off_t		size = bh_result->b_size;
1264 	int			type;
1265 
1266 	if (ISUNWRITTEN(imap))
1267 		type = XFS_IO_UNWRITTEN;
1268 	else
1269 		type = XFS_IO_OVERWRITE;
1270 
1271 	trace_xfs_gbmap_direct(XFS_I(inode), offset, size, type, imap);
1272 
1273 	if (bh_result->b_private) {
1274 		ioend = bh_result->b_private;
1275 		ASSERT(ioend->io_size > 0);
1276 		ASSERT(offset >= ioend->io_offset);
1277 		if (offset + size > ioend->io_offset + ioend->io_size)
1278 			ioend->io_size = offset - ioend->io_offset + size;
1279 
1280 		if (type == XFS_IO_UNWRITTEN && type != ioend->io_type)
1281 			ioend->io_type = XFS_IO_UNWRITTEN;
1282 
1283 		trace_xfs_gbmap_direct_update(XFS_I(inode), ioend->io_offset,
1284 					      ioend->io_size, ioend->io_type,
1285 					      imap);
1286 	} else if (type == XFS_IO_UNWRITTEN ||
1287 		   offset + size > i_size_read(inode)) {
1288 		ioend = xfs_alloc_ioend(inode, type);
1289 		ioend->io_offset = offset;
1290 		ioend->io_size = size;
1291 
1292 		bh_result->b_private = ioend;
1293 		set_buffer_defer_completion(bh_result);
1294 
1295 		trace_xfs_gbmap_direct_new(XFS_I(inode), offset, size, type,
1296 					   imap);
1297 	} else {
1298 		trace_xfs_gbmap_direct_none(XFS_I(inode), offset, size, type,
1299 					    imap);
1300 	}
1301 }
1302 
1303 /*
1304  * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1305  * is, so that we can avoid repeated get_blocks calls.
1306  *
1307  * If the mapping spans EOF, then we have to break the mapping up as the mapping
1308  * for blocks beyond EOF must be marked new so that sub block regions can be
1309  * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1310  * was just allocated or is unwritten, otherwise the callers would overwrite
1311  * existing data with zeros. Hence we have to split the mapping into a range up
1312  * to and including EOF, and a second mapping for beyond EOF.
1313  */
1314 static void
1315 xfs_map_trim_size(
1316 	struct inode		*inode,
1317 	sector_t		iblock,
1318 	struct buffer_head	*bh_result,
1319 	struct xfs_bmbt_irec	*imap,
1320 	xfs_off_t		offset,
1321 	ssize_t			size)
1322 {
1323 	xfs_off_t		mapping_size;
1324 
1325 	mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
1326 	mapping_size <<= inode->i_blkbits;
1327 
1328 	ASSERT(mapping_size > 0);
1329 	if (mapping_size > size)
1330 		mapping_size = size;
1331 	if (offset < i_size_read(inode) &&
1332 	    offset + mapping_size >= i_size_read(inode)) {
1333 		/* limit mapping to block that spans EOF */
1334 		mapping_size = roundup_64(i_size_read(inode) - offset,
1335 					  1 << inode->i_blkbits);
1336 	}
1337 	if (mapping_size > LONG_MAX)
1338 		mapping_size = LONG_MAX;
1339 
1340 	bh_result->b_size = mapping_size;
1341 }
1342 
1343 STATIC int
1344 __xfs_get_blocks(
1345 	struct inode		*inode,
1346 	sector_t		iblock,
1347 	struct buffer_head	*bh_result,
1348 	int			create,
1349 	bool			direct)
1350 {
1351 	struct xfs_inode	*ip = XFS_I(inode);
1352 	struct xfs_mount	*mp = ip->i_mount;
1353 	xfs_fileoff_t		offset_fsb, end_fsb;
1354 	int			error = 0;
1355 	int			lockmode = 0;
1356 	struct xfs_bmbt_irec	imap;
1357 	int			nimaps = 1;
1358 	xfs_off_t		offset;
1359 	ssize_t			size;
1360 	int			new = 0;
1361 
1362 	if (XFS_FORCED_SHUTDOWN(mp))
1363 		return -EIO;
1364 
1365 	offset = (xfs_off_t)iblock << inode->i_blkbits;
1366 	ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1367 	size = bh_result->b_size;
1368 
1369 	if (!create && direct && offset >= i_size_read(inode))
1370 		return 0;
1371 
1372 	/*
1373 	 * Direct I/O is usually done on preallocated files, so try getting
1374 	 * a block mapping without an exclusive lock first.  For buffered
1375 	 * writes we already have the exclusive iolock anyway, so avoiding
1376 	 * a lock roundtrip here by taking the ilock exclusive from the
1377 	 * beginning is a useful micro optimization.
1378 	 */
1379 	if (create && !direct) {
1380 		lockmode = XFS_ILOCK_EXCL;
1381 		xfs_ilock(ip, lockmode);
1382 	} else {
1383 		lockmode = xfs_ilock_data_map_shared(ip);
1384 	}
1385 
1386 	ASSERT(offset <= mp->m_super->s_maxbytes);
1387 	if (offset + size > mp->m_super->s_maxbytes)
1388 		size = mp->m_super->s_maxbytes - offset;
1389 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1390 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
1391 
1392 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1393 				&imap, &nimaps, XFS_BMAPI_ENTIRE);
1394 	if (error)
1395 		goto out_unlock;
1396 
1397 	if (create &&
1398 	    (!nimaps ||
1399 	     (imap.br_startblock == HOLESTARTBLOCK ||
1400 	      imap.br_startblock == DELAYSTARTBLOCK))) {
1401 		if (direct || xfs_get_extsz_hint(ip)) {
1402 			/*
1403 			 * Drop the ilock in preparation for starting the block
1404 			 * allocation transaction.  It will be retaken
1405 			 * exclusively inside xfs_iomap_write_direct for the
1406 			 * actual allocation.
1407 			 */
1408 			xfs_iunlock(ip, lockmode);
1409 			error = xfs_iomap_write_direct(ip, offset, size,
1410 						       &imap, nimaps);
1411 			if (error)
1412 				return error;
1413 			new = 1;
1414 
1415 		} else {
1416 			/*
1417 			 * Delalloc reservations do not require a transaction,
1418 			 * we can go on without dropping the lock here. If we
1419 			 * are allocating a new delalloc block, make sure that
1420 			 * we set the new flag so that we mark the buffer new so
1421 			 * that we know that it is newly allocated if the write
1422 			 * fails.
1423 			 */
1424 			if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
1425 				new = 1;
1426 			error = xfs_iomap_write_delay(ip, offset, size, &imap);
1427 			if (error)
1428 				goto out_unlock;
1429 
1430 			xfs_iunlock(ip, lockmode);
1431 		}
1432 		trace_xfs_get_blocks_alloc(ip, offset, size,
1433 				ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1434 						   : XFS_IO_DELALLOC, &imap);
1435 	} else if (nimaps) {
1436 		trace_xfs_get_blocks_found(ip, offset, size,
1437 				ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1438 						   : XFS_IO_OVERWRITE, &imap);
1439 		xfs_iunlock(ip, lockmode);
1440 	} else {
1441 		trace_xfs_get_blocks_notfound(ip, offset, size);
1442 		goto out_unlock;
1443 	}
1444 
1445 	/* trim mapping down to size requested */
1446 	if (direct || size > (1 << inode->i_blkbits))
1447 		xfs_map_trim_size(inode, iblock, bh_result,
1448 				  &imap, offset, size);
1449 
1450 	/*
1451 	 * For unwritten extents do not report a disk address in the buffered
1452 	 * read case (treat as if we're reading into a hole).
1453 	 */
1454 	if (imap.br_startblock != HOLESTARTBLOCK &&
1455 	    imap.br_startblock != DELAYSTARTBLOCK &&
1456 	    (create || !ISUNWRITTEN(&imap))) {
1457 		xfs_map_buffer(inode, bh_result, &imap, offset);
1458 		if (ISUNWRITTEN(&imap))
1459 			set_buffer_unwritten(bh_result);
1460 		/* direct IO needs special help */
1461 		if (create && direct)
1462 			xfs_map_direct(inode, bh_result, &imap, offset);
1463 	}
1464 
1465 	/*
1466 	 * If this is a realtime file, data may be on a different device.
1467 	 * to that pointed to from the buffer_head b_bdev currently.
1468 	 */
1469 	bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1470 
1471 	/*
1472 	 * If we previously allocated a block out beyond eof and we are now
1473 	 * coming back to use it then we will need to flag it as new even if it
1474 	 * has a disk address.
1475 	 *
1476 	 * With sub-block writes into unwritten extents we also need to mark
1477 	 * the buffer as new so that the unwritten parts of the buffer gets
1478 	 * correctly zeroed.
1479 	 */
1480 	if (create &&
1481 	    ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1482 	     (offset >= i_size_read(inode)) ||
1483 	     (new || ISUNWRITTEN(&imap))))
1484 		set_buffer_new(bh_result);
1485 
1486 	if (imap.br_startblock == DELAYSTARTBLOCK) {
1487 		BUG_ON(direct);
1488 		if (create) {
1489 			set_buffer_uptodate(bh_result);
1490 			set_buffer_mapped(bh_result);
1491 			set_buffer_delay(bh_result);
1492 		}
1493 	}
1494 
1495 	return 0;
1496 
1497 out_unlock:
1498 	xfs_iunlock(ip, lockmode);
1499 	return error;
1500 }
1501 
1502 int
1503 xfs_get_blocks(
1504 	struct inode		*inode,
1505 	sector_t		iblock,
1506 	struct buffer_head	*bh_result,
1507 	int			create)
1508 {
1509 	return __xfs_get_blocks(inode, iblock, bh_result, create, false);
1510 }
1511 
1512 int
1513 xfs_get_blocks_direct(
1514 	struct inode		*inode,
1515 	sector_t		iblock,
1516 	struct buffer_head	*bh_result,
1517 	int			create)
1518 {
1519 	return __xfs_get_blocks(inode, iblock, bh_result, create, true);
1520 }
1521 
1522 static void
1523 __xfs_end_io_direct_write(
1524 	struct inode		*inode,
1525 	struct xfs_ioend	*ioend,
1526 	loff_t			offset,
1527 	ssize_t			size)
1528 {
1529 	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
1530 
1531 	if (XFS_FORCED_SHUTDOWN(mp) || ioend->io_error)
1532 		goto out_end_io;
1533 
1534 	/*
1535 	 * dio completion end_io functions are only called on writes if more
1536 	 * than 0 bytes was written.
1537 	 */
1538 	ASSERT(size > 0);
1539 
1540 	/*
1541 	 * The ioend only maps whole blocks, while the IO may be sector aligned.
1542 	 * Hence the ioend offset/size may not match the IO offset/size exactly.
1543 	 * Because we don't map overwrites within EOF into the ioend, the offset
1544 	 * may not match, but only if the endio spans EOF.  Either way, write
1545 	 * the IO sizes into the ioend so that completion processing does the
1546 	 * right thing.
1547 	 */
1548 	ASSERT(offset + size <= ioend->io_offset + ioend->io_size);
1549 	ioend->io_size = size;
1550 	ioend->io_offset = offset;
1551 
1552 	/*
1553 	 * The ioend tells us whether we are doing unwritten extent conversion
1554 	 * or an append transaction that updates the on-disk file size. These
1555 	 * cases are the only cases where we should *potentially* be needing
1556 	 * to update the VFS inode size.
1557 	 *
1558 	 * We need to update the in-core inode size here so that we don't end up
1559 	 * with the on-disk inode size being outside the in-core inode size. We
1560 	 * have no other method of updating EOF for AIO, so always do it here
1561 	 * if necessary.
1562 	 *
1563 	 * We need to lock the test/set EOF update as we can be racing with
1564 	 * other IO completions here to update the EOF. Failing to serialise
1565 	 * here can result in EOF moving backwards and Bad Things Happen when
1566 	 * that occurs.
1567 	 */
1568 	spin_lock(&XFS_I(inode)->i_flags_lock);
1569 	if (offset + size > i_size_read(inode))
1570 		i_size_write(inode, offset + size);
1571 	spin_unlock(&XFS_I(inode)->i_flags_lock);
1572 
1573 	/*
1574 	 * If we are doing an append IO that needs to update the EOF on disk,
1575 	 * do the transaction reserve now so we can use common end io
1576 	 * processing. Stashing the error (if there is one) in the ioend will
1577 	 * result in the ioend processing passing on the error if it is
1578 	 * possible as we can't return it from here.
1579 	 */
1580 	if (ioend->io_type == XFS_IO_OVERWRITE)
1581 		ioend->io_error = xfs_setfilesize_trans_alloc(ioend);
1582 
1583 out_end_io:
1584 	xfs_end_io(&ioend->io_work);
1585 	return;
1586 }
1587 
1588 /*
1589  * Complete a direct I/O write request.
1590  *
1591  * The ioend structure is passed from __xfs_get_blocks() to tell us what to do.
1592  * If no ioend exists (i.e. @private == NULL) then the write IO is an overwrite
1593  * wholly within the EOF and so there is nothing for us to do. Note that in this
1594  * case the completion can be called in interrupt context, whereas if we have an
1595  * ioend we will always be called in task context (i.e. from a workqueue).
1596  */
1597 STATIC void
1598 xfs_end_io_direct_write(
1599 	struct kiocb		*iocb,
1600 	loff_t			offset,
1601 	ssize_t			size,
1602 	void			*private)
1603 {
1604 	struct inode		*inode = file_inode(iocb->ki_filp);
1605 	struct xfs_ioend	*ioend = private;
1606 
1607 	trace_xfs_gbmap_direct_endio(XFS_I(inode), offset, size,
1608 				     ioend ? ioend->io_type : 0, NULL);
1609 
1610 	if (!ioend) {
1611 		ASSERT(offset + size <= i_size_read(inode));
1612 		return;
1613 	}
1614 
1615 	__xfs_end_io_direct_write(inode, ioend, offset, size);
1616 }
1617 
1618 /*
1619  * For DAX we need a mapping buffer callback for unwritten extent conversion
1620  * when page faults allocate blocks and then zero them. Note that in this
1621  * case the mapping indicated by the ioend may extend beyond EOF. We most
1622  * definitely do not want to extend EOF here, so we trim back the ioend size to
1623  * EOF.
1624  */
1625 #ifdef CONFIG_FS_DAX
1626 void
1627 xfs_end_io_dax_write(
1628 	struct buffer_head	*bh,
1629 	int			uptodate)
1630 {
1631 	struct xfs_ioend	*ioend = bh->b_private;
1632 	struct inode		*inode = ioend->io_inode;
1633 	ssize_t			size = ioend->io_size;
1634 
1635 	ASSERT(IS_DAX(ioend->io_inode));
1636 
1637 	/* if there was an error zeroing, then don't convert it */
1638 	if (!uptodate)
1639 		ioend->io_error = -EIO;
1640 
1641 	/*
1642 	 * Trim update to EOF, so we don't extend EOF during unwritten extent
1643 	 * conversion of partial EOF blocks.
1644 	 */
1645 	spin_lock(&XFS_I(inode)->i_flags_lock);
1646 	if (ioend->io_offset + size > i_size_read(inode))
1647 		size = i_size_read(inode) - ioend->io_offset;
1648 	spin_unlock(&XFS_I(inode)->i_flags_lock);
1649 
1650 	__xfs_end_io_direct_write(inode, ioend, ioend->io_offset, size);
1651 
1652 }
1653 #else
1654 void xfs_end_io_dax_write(struct buffer_head *bh, int uptodate) { }
1655 #endif
1656 
1657 static inline ssize_t
1658 xfs_vm_do_dio(
1659 	struct inode		*inode,
1660 	struct kiocb		*iocb,
1661 	struct iov_iter		*iter,
1662 	loff_t			offset,
1663 	void			(*endio)(struct kiocb	*iocb,
1664 					 loff_t		offset,
1665 					 ssize_t	size,
1666 					 void		*private),
1667 	int			flags)
1668 {
1669 	struct block_device	*bdev;
1670 
1671 	if (IS_DAX(inode))
1672 		return dax_do_io(iocb, inode, iter, offset,
1673 				 xfs_get_blocks_direct, endio, 0);
1674 
1675 	bdev = xfs_find_bdev_for_inode(inode);
1676 	return  __blockdev_direct_IO(iocb, inode, bdev, iter, offset,
1677 				     xfs_get_blocks_direct, endio, NULL, flags);
1678 }
1679 
1680 STATIC ssize_t
1681 xfs_vm_direct_IO(
1682 	struct kiocb		*iocb,
1683 	struct iov_iter		*iter,
1684 	loff_t			offset)
1685 {
1686 	struct inode		*inode = iocb->ki_filp->f_mapping->host;
1687 
1688 	if (iov_iter_rw(iter) == WRITE)
1689 		return xfs_vm_do_dio(inode, iocb, iter, offset,
1690 				     xfs_end_io_direct_write, DIO_ASYNC_EXTEND);
1691 	return xfs_vm_do_dio(inode, iocb, iter, offset, NULL, 0);
1692 }
1693 
1694 /*
1695  * Punch out the delalloc blocks we have already allocated.
1696  *
1697  * Don't bother with xfs_setattr given that nothing can have made it to disk yet
1698  * as the page is still locked at this point.
1699  */
1700 STATIC void
1701 xfs_vm_kill_delalloc_range(
1702 	struct inode		*inode,
1703 	loff_t			start,
1704 	loff_t			end)
1705 {
1706 	struct xfs_inode	*ip = XFS_I(inode);
1707 	xfs_fileoff_t		start_fsb;
1708 	xfs_fileoff_t		end_fsb;
1709 	int			error;
1710 
1711 	start_fsb = XFS_B_TO_FSB(ip->i_mount, start);
1712 	end_fsb = XFS_B_TO_FSB(ip->i_mount, end);
1713 	if (end_fsb <= start_fsb)
1714 		return;
1715 
1716 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1717 	error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1718 						end_fsb - start_fsb);
1719 	if (error) {
1720 		/* something screwed, just bail */
1721 		if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1722 			xfs_alert(ip->i_mount,
1723 		"xfs_vm_write_failed: unable to clean up ino %lld",
1724 					ip->i_ino);
1725 		}
1726 	}
1727 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1728 }
1729 
1730 STATIC void
1731 xfs_vm_write_failed(
1732 	struct inode		*inode,
1733 	struct page		*page,
1734 	loff_t			pos,
1735 	unsigned		len)
1736 {
1737 	loff_t			block_offset;
1738 	loff_t			block_start;
1739 	loff_t			block_end;
1740 	loff_t			from = pos & (PAGE_CACHE_SIZE - 1);
1741 	loff_t			to = from + len;
1742 	struct buffer_head	*bh, *head;
1743 
1744 	/*
1745 	 * The request pos offset might be 32 or 64 bit, this is all fine
1746 	 * on 64-bit platform.  However, for 64-bit pos request on 32-bit
1747 	 * platform, the high 32-bit will be masked off if we evaluate the
1748 	 * block_offset via (pos & PAGE_MASK) because the PAGE_MASK is
1749 	 * 0xfffff000 as an unsigned long, hence the result is incorrect
1750 	 * which could cause the following ASSERT failed in most cases.
1751 	 * In order to avoid this, we can evaluate the block_offset of the
1752 	 * start of the page by using shifts rather than masks the mismatch
1753 	 * problem.
1754 	 */
1755 	block_offset = (pos >> PAGE_CACHE_SHIFT) << PAGE_CACHE_SHIFT;
1756 
1757 	ASSERT(block_offset + from == pos);
1758 
1759 	head = page_buffers(page);
1760 	block_start = 0;
1761 	for (bh = head; bh != head || !block_start;
1762 	     bh = bh->b_this_page, block_start = block_end,
1763 				   block_offset += bh->b_size) {
1764 		block_end = block_start + bh->b_size;
1765 
1766 		/* skip buffers before the write */
1767 		if (block_end <= from)
1768 			continue;
1769 
1770 		/* if the buffer is after the write, we're done */
1771 		if (block_start >= to)
1772 			break;
1773 
1774 		if (!buffer_delay(bh))
1775 			continue;
1776 
1777 		if (!buffer_new(bh) && block_offset < i_size_read(inode))
1778 			continue;
1779 
1780 		xfs_vm_kill_delalloc_range(inode, block_offset,
1781 					   block_offset + bh->b_size);
1782 
1783 		/*
1784 		 * This buffer does not contain data anymore. make sure anyone
1785 		 * who finds it knows that for certain.
1786 		 */
1787 		clear_buffer_delay(bh);
1788 		clear_buffer_uptodate(bh);
1789 		clear_buffer_mapped(bh);
1790 		clear_buffer_new(bh);
1791 		clear_buffer_dirty(bh);
1792 	}
1793 
1794 }
1795 
1796 /*
1797  * This used to call block_write_begin(), but it unlocks and releases the page
1798  * on error, and we need that page to be able to punch stale delalloc blocks out
1799  * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
1800  * the appropriate point.
1801  */
1802 STATIC int
1803 xfs_vm_write_begin(
1804 	struct file		*file,
1805 	struct address_space	*mapping,
1806 	loff_t			pos,
1807 	unsigned		len,
1808 	unsigned		flags,
1809 	struct page		**pagep,
1810 	void			**fsdata)
1811 {
1812 	pgoff_t			index = pos >> PAGE_CACHE_SHIFT;
1813 	struct page		*page;
1814 	int			status;
1815 
1816 	ASSERT(len <= PAGE_CACHE_SIZE);
1817 
1818 	page = grab_cache_page_write_begin(mapping, index, flags);
1819 	if (!page)
1820 		return -ENOMEM;
1821 
1822 	status = __block_write_begin(page, pos, len, xfs_get_blocks);
1823 	if (unlikely(status)) {
1824 		struct inode	*inode = mapping->host;
1825 		size_t		isize = i_size_read(inode);
1826 
1827 		xfs_vm_write_failed(inode, page, pos, len);
1828 		unlock_page(page);
1829 
1830 		/*
1831 		 * If the write is beyond EOF, we only want to kill blocks
1832 		 * allocated in this write, not blocks that were previously
1833 		 * written successfully.
1834 		 */
1835 		if (pos + len > isize) {
1836 			ssize_t start = max_t(ssize_t, pos, isize);
1837 
1838 			truncate_pagecache_range(inode, start, pos + len);
1839 		}
1840 
1841 		page_cache_release(page);
1842 		page = NULL;
1843 	}
1844 
1845 	*pagep = page;
1846 	return status;
1847 }
1848 
1849 /*
1850  * On failure, we only need to kill delalloc blocks beyond EOF in the range of
1851  * this specific write because they will never be written. Previous writes
1852  * beyond EOF where block allocation succeeded do not need to be trashed, so
1853  * only new blocks from this write should be trashed. For blocks within
1854  * EOF, generic_write_end() zeros them so they are safe to leave alone and be
1855  * written with all the other valid data.
1856  */
1857 STATIC int
1858 xfs_vm_write_end(
1859 	struct file		*file,
1860 	struct address_space	*mapping,
1861 	loff_t			pos,
1862 	unsigned		len,
1863 	unsigned		copied,
1864 	struct page		*page,
1865 	void			*fsdata)
1866 {
1867 	int			ret;
1868 
1869 	ASSERT(len <= PAGE_CACHE_SIZE);
1870 
1871 	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
1872 	if (unlikely(ret < len)) {
1873 		struct inode	*inode = mapping->host;
1874 		size_t		isize = i_size_read(inode);
1875 		loff_t		to = pos + len;
1876 
1877 		if (to > isize) {
1878 			/* only kill blocks in this write beyond EOF */
1879 			if (pos > isize)
1880 				isize = pos;
1881 			xfs_vm_kill_delalloc_range(inode, isize, to);
1882 			truncate_pagecache_range(inode, isize, to);
1883 		}
1884 	}
1885 	return ret;
1886 }
1887 
1888 STATIC sector_t
1889 xfs_vm_bmap(
1890 	struct address_space	*mapping,
1891 	sector_t		block)
1892 {
1893 	struct inode		*inode = (struct inode *)mapping->host;
1894 	struct xfs_inode	*ip = XFS_I(inode);
1895 
1896 	trace_xfs_vm_bmap(XFS_I(inode));
1897 	xfs_ilock(ip, XFS_IOLOCK_SHARED);
1898 	filemap_write_and_wait(mapping);
1899 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1900 	return generic_block_bmap(mapping, block, xfs_get_blocks);
1901 }
1902 
1903 STATIC int
1904 xfs_vm_readpage(
1905 	struct file		*unused,
1906 	struct page		*page)
1907 {
1908 	return mpage_readpage(page, xfs_get_blocks);
1909 }
1910 
1911 STATIC int
1912 xfs_vm_readpages(
1913 	struct file		*unused,
1914 	struct address_space	*mapping,
1915 	struct list_head	*pages,
1916 	unsigned		nr_pages)
1917 {
1918 	return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1919 }
1920 
1921 /*
1922  * This is basically a copy of __set_page_dirty_buffers() with one
1923  * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1924  * dirty, we'll never be able to clean them because we don't write buffers
1925  * beyond EOF, and that means we can't invalidate pages that span EOF
1926  * that have been marked dirty. Further, the dirty state can leak into
1927  * the file interior if the file is extended, resulting in all sorts of
1928  * bad things happening as the state does not match the underlying data.
1929  *
1930  * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1931  * this only exist because of bufferheads and how the generic code manages them.
1932  */
1933 STATIC int
1934 xfs_vm_set_page_dirty(
1935 	struct page		*page)
1936 {
1937 	struct address_space	*mapping = page->mapping;
1938 	struct inode		*inode = mapping->host;
1939 	loff_t			end_offset;
1940 	loff_t			offset;
1941 	int			newly_dirty;
1942 	struct mem_cgroup	*memcg;
1943 
1944 	if (unlikely(!mapping))
1945 		return !TestSetPageDirty(page);
1946 
1947 	end_offset = i_size_read(inode);
1948 	offset = page_offset(page);
1949 
1950 	spin_lock(&mapping->private_lock);
1951 	if (page_has_buffers(page)) {
1952 		struct buffer_head *head = page_buffers(page);
1953 		struct buffer_head *bh = head;
1954 
1955 		do {
1956 			if (offset < end_offset)
1957 				set_buffer_dirty(bh);
1958 			bh = bh->b_this_page;
1959 			offset += 1 << inode->i_blkbits;
1960 		} while (bh != head);
1961 	}
1962 	/*
1963 	 * Use mem_group_begin_page_stat() to keep PageDirty synchronized with
1964 	 * per-memcg dirty page counters.
1965 	 */
1966 	memcg = mem_cgroup_begin_page_stat(page);
1967 	newly_dirty = !TestSetPageDirty(page);
1968 	spin_unlock(&mapping->private_lock);
1969 
1970 	if (newly_dirty) {
1971 		/* sigh - __set_page_dirty() is static, so copy it here, too */
1972 		unsigned long flags;
1973 
1974 		spin_lock_irqsave(&mapping->tree_lock, flags);
1975 		if (page->mapping) {	/* Race with truncate? */
1976 			WARN_ON_ONCE(!PageUptodate(page));
1977 			account_page_dirtied(page, mapping, memcg);
1978 			radix_tree_tag_set(&mapping->page_tree,
1979 					page_index(page), PAGECACHE_TAG_DIRTY);
1980 		}
1981 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1982 	}
1983 	mem_cgroup_end_page_stat(memcg);
1984 	if (newly_dirty)
1985 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1986 	return newly_dirty;
1987 }
1988 
1989 const struct address_space_operations xfs_address_space_operations = {
1990 	.readpage		= xfs_vm_readpage,
1991 	.readpages		= xfs_vm_readpages,
1992 	.writepage		= xfs_vm_writepage,
1993 	.writepages		= xfs_vm_writepages,
1994 	.set_page_dirty		= xfs_vm_set_page_dirty,
1995 	.releasepage		= xfs_vm_releasepage,
1996 	.invalidatepage		= xfs_vm_invalidatepage,
1997 	.write_begin		= xfs_vm_write_begin,
1998 	.write_end		= xfs_vm_write_end,
1999 	.bmap			= xfs_vm_bmap,
2000 	.direct_IO		= xfs_vm_direct_IO,
2001 	.migratepage		= buffer_migrate_page,
2002 	.is_partially_uptodate  = block_is_partially_uptodate,
2003 	.error_remove_page	= generic_error_remove_page,
2004 };
2005