1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * Copyright (c) 2016-2018 Christoph Hellwig. 5 * All Rights Reserved. 6 */ 7 #include "xfs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_trans.h" 15 #include "xfs_iomap.h" 16 #include "xfs_trace.h" 17 #include "xfs_bmap.h" 18 #include "xfs_bmap_util.h" 19 #include "xfs_reflink.h" 20 #include "xfs_errortag.h" 21 #include "xfs_error.h" 22 23 struct xfs_writepage_ctx { 24 struct iomap_writepage_ctx ctx; 25 unsigned int data_seq; 26 unsigned int cow_seq; 27 }; 28 29 static inline struct xfs_writepage_ctx * 30 XFS_WPC(struct iomap_writepage_ctx *ctx) 31 { 32 return container_of(ctx, struct xfs_writepage_ctx, ctx); 33 } 34 35 /* 36 * Fast and loose check if this write could update the on-disk inode size. 37 */ 38 static inline bool xfs_ioend_is_append(struct iomap_ioend *ioend) 39 { 40 return ioend->io_offset + ioend->io_size > 41 XFS_I(ioend->io_inode)->i_disk_size; 42 } 43 44 /* 45 * Update on-disk file size now that data has been written to disk. 46 */ 47 int 48 xfs_setfilesize( 49 struct xfs_inode *ip, 50 xfs_off_t offset, 51 size_t size) 52 { 53 struct xfs_mount *mp = ip->i_mount; 54 struct xfs_trans *tp; 55 xfs_fsize_t isize; 56 int error; 57 58 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp); 59 if (error) 60 return error; 61 62 xfs_ilock(ip, XFS_ILOCK_EXCL); 63 isize = xfs_new_eof(ip, offset + size); 64 if (!isize) { 65 xfs_iunlock(ip, XFS_ILOCK_EXCL); 66 xfs_trans_cancel(tp); 67 return 0; 68 } 69 70 trace_xfs_setfilesize(ip, offset, size); 71 72 ip->i_disk_size = isize; 73 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 74 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 75 76 return xfs_trans_commit(tp); 77 } 78 79 /* 80 * IO write completion. 81 */ 82 STATIC void 83 xfs_end_ioend( 84 struct iomap_ioend *ioend) 85 { 86 struct xfs_inode *ip = XFS_I(ioend->io_inode); 87 struct xfs_mount *mp = ip->i_mount; 88 xfs_off_t offset = ioend->io_offset; 89 size_t size = ioend->io_size; 90 unsigned int nofs_flag; 91 int error; 92 93 /* 94 * We can allocate memory here while doing writeback on behalf of 95 * memory reclaim. To avoid memory allocation deadlocks set the 96 * task-wide nofs context for the following operations. 97 */ 98 nofs_flag = memalloc_nofs_save(); 99 100 /* 101 * Just clean up the in-memory structures if the fs has been shut down. 102 */ 103 if (xfs_is_shutdown(mp)) { 104 error = -EIO; 105 goto done; 106 } 107 108 /* 109 * Clean up all COW blocks and underlying data fork delalloc blocks on 110 * I/O error. The delalloc punch is required because this ioend was 111 * mapped to blocks in the COW fork and the associated pages are no 112 * longer dirty. If we don't remove delalloc blocks here, they become 113 * stale and can corrupt free space accounting on unmount. 114 */ 115 error = blk_status_to_errno(ioend->io_bio.bi_status); 116 if (unlikely(error)) { 117 if (ioend->io_flags & IOMAP_F_SHARED) { 118 xfs_reflink_cancel_cow_range(ip, offset, size, true); 119 xfs_bmap_punch_delalloc_range(ip, XFS_DATA_FORK, offset, 120 offset + size); 121 } 122 goto done; 123 } 124 125 /* 126 * Success: commit the COW or unwritten blocks if needed. 127 */ 128 if (ioend->io_flags & IOMAP_F_SHARED) 129 error = xfs_reflink_end_cow(ip, offset, size); 130 else if (ioend->io_type == IOMAP_UNWRITTEN) 131 error = xfs_iomap_write_unwritten(ip, offset, size, false); 132 133 if (!error && xfs_ioend_is_append(ioend)) 134 error = xfs_setfilesize(ip, ioend->io_offset, ioend->io_size); 135 done: 136 iomap_finish_ioends(ioend, error); 137 memalloc_nofs_restore(nofs_flag); 138 } 139 140 /* 141 * Finish all pending IO completions that require transactional modifications. 142 * 143 * We try to merge physical and logically contiguous ioends before completion to 144 * minimise the number of transactions we need to perform during IO completion. 145 * Both unwritten extent conversion and COW remapping need to iterate and modify 146 * one physical extent at a time, so we gain nothing by merging physically 147 * discontiguous extents here. 148 * 149 * The ioend chain length that we can be processing here is largely unbound in 150 * length and we may have to perform significant amounts of work on each ioend 151 * to complete it. Hence we have to be careful about holding the CPU for too 152 * long in this loop. 153 */ 154 void 155 xfs_end_io( 156 struct work_struct *work) 157 { 158 struct xfs_inode *ip = 159 container_of(work, struct xfs_inode, i_ioend_work); 160 struct iomap_ioend *ioend; 161 struct list_head tmp; 162 unsigned long flags; 163 164 spin_lock_irqsave(&ip->i_ioend_lock, flags); 165 list_replace_init(&ip->i_ioend_list, &tmp); 166 spin_unlock_irqrestore(&ip->i_ioend_lock, flags); 167 168 iomap_sort_ioends(&tmp); 169 while ((ioend = list_first_entry_or_null(&tmp, struct iomap_ioend, 170 io_list))) { 171 list_del_init(&ioend->io_list); 172 iomap_ioend_try_merge(ioend, &tmp); 173 xfs_end_ioend(ioend); 174 cond_resched(); 175 } 176 } 177 178 STATIC void 179 xfs_end_bio( 180 struct bio *bio) 181 { 182 struct iomap_ioend *ioend = iomap_ioend_from_bio(bio); 183 struct xfs_inode *ip = XFS_I(ioend->io_inode); 184 unsigned long flags; 185 186 spin_lock_irqsave(&ip->i_ioend_lock, flags); 187 if (list_empty(&ip->i_ioend_list)) 188 WARN_ON_ONCE(!queue_work(ip->i_mount->m_unwritten_workqueue, 189 &ip->i_ioend_work)); 190 list_add_tail(&ioend->io_list, &ip->i_ioend_list); 191 spin_unlock_irqrestore(&ip->i_ioend_lock, flags); 192 } 193 194 /* 195 * Fast revalidation of the cached writeback mapping. Return true if the current 196 * mapping is valid, false otherwise. 197 */ 198 static bool 199 xfs_imap_valid( 200 struct iomap_writepage_ctx *wpc, 201 struct xfs_inode *ip, 202 loff_t offset) 203 { 204 if (offset < wpc->iomap.offset || 205 offset >= wpc->iomap.offset + wpc->iomap.length) 206 return false; 207 /* 208 * If this is a COW mapping, it is sufficient to check that the mapping 209 * covers the offset. Be careful to check this first because the caller 210 * can revalidate a COW mapping without updating the data seqno. 211 */ 212 if (wpc->iomap.flags & IOMAP_F_SHARED) 213 return true; 214 215 /* 216 * This is not a COW mapping. Check the sequence number of the data fork 217 * because concurrent changes could have invalidated the extent. Check 218 * the COW fork because concurrent changes since the last time we 219 * checked (and found nothing at this offset) could have added 220 * overlapping blocks. 221 */ 222 if (XFS_WPC(wpc)->data_seq != READ_ONCE(ip->i_df.if_seq)) { 223 trace_xfs_wb_data_iomap_invalid(ip, &wpc->iomap, 224 XFS_WPC(wpc)->data_seq, XFS_DATA_FORK); 225 return false; 226 } 227 if (xfs_inode_has_cow_data(ip) && 228 XFS_WPC(wpc)->cow_seq != READ_ONCE(ip->i_cowfp->if_seq)) { 229 trace_xfs_wb_cow_iomap_invalid(ip, &wpc->iomap, 230 XFS_WPC(wpc)->cow_seq, XFS_COW_FORK); 231 return false; 232 } 233 return true; 234 } 235 236 static int 237 xfs_map_blocks( 238 struct iomap_writepage_ctx *wpc, 239 struct inode *inode, 240 loff_t offset, 241 unsigned int len) 242 { 243 struct xfs_inode *ip = XFS_I(inode); 244 struct xfs_mount *mp = ip->i_mount; 245 ssize_t count = i_blocksize(inode); 246 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 247 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count); 248 xfs_fileoff_t cow_fsb; 249 int whichfork; 250 struct xfs_bmbt_irec imap; 251 struct xfs_iext_cursor icur; 252 int retries = 0; 253 int error = 0; 254 unsigned int *seq; 255 256 if (xfs_is_shutdown(mp)) 257 return -EIO; 258 259 XFS_ERRORTAG_DELAY(mp, XFS_ERRTAG_WB_DELAY_MS); 260 261 /* 262 * COW fork blocks can overlap data fork blocks even if the blocks 263 * aren't shared. COW I/O always takes precedent, so we must always 264 * check for overlap on reflink inodes unless the mapping is already a 265 * COW one, or the COW fork hasn't changed from the last time we looked 266 * at it. 267 * 268 * It's safe to check the COW fork if_seq here without the ILOCK because 269 * we've indirectly protected against concurrent updates: writeback has 270 * the page locked, which prevents concurrent invalidations by reflink 271 * and directio and prevents concurrent buffered writes to the same 272 * page. Changes to if_seq always happen under i_lock, which protects 273 * against concurrent updates and provides a memory barrier on the way 274 * out that ensures that we always see the current value. 275 */ 276 if (xfs_imap_valid(wpc, ip, offset)) 277 return 0; 278 279 /* 280 * If we don't have a valid map, now it's time to get a new one for this 281 * offset. This will convert delayed allocations (including COW ones) 282 * into real extents. If we return without a valid map, it means we 283 * landed in a hole and we skip the block. 284 */ 285 retry: 286 cow_fsb = NULLFILEOFF; 287 whichfork = XFS_DATA_FORK; 288 xfs_ilock(ip, XFS_ILOCK_SHARED); 289 ASSERT(!xfs_need_iread_extents(&ip->i_df)); 290 291 /* 292 * Check if this is offset is covered by a COW extents, and if yes use 293 * it directly instead of looking up anything in the data fork. 294 */ 295 if (xfs_inode_has_cow_data(ip) && 296 xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap)) 297 cow_fsb = imap.br_startoff; 298 if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) { 299 XFS_WPC(wpc)->cow_seq = READ_ONCE(ip->i_cowfp->if_seq); 300 xfs_iunlock(ip, XFS_ILOCK_SHARED); 301 302 whichfork = XFS_COW_FORK; 303 goto allocate_blocks; 304 } 305 306 /* 307 * No COW extent overlap. Revalidate now that we may have updated 308 * ->cow_seq. If the data mapping is still valid, we're done. 309 */ 310 if (xfs_imap_valid(wpc, ip, offset)) { 311 xfs_iunlock(ip, XFS_ILOCK_SHARED); 312 return 0; 313 } 314 315 /* 316 * If we don't have a valid map, now it's time to get a new one for this 317 * offset. This will convert delayed allocations (including COW ones) 318 * into real extents. 319 */ 320 if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap)) 321 imap.br_startoff = end_fsb; /* fake a hole past EOF */ 322 XFS_WPC(wpc)->data_seq = READ_ONCE(ip->i_df.if_seq); 323 xfs_iunlock(ip, XFS_ILOCK_SHARED); 324 325 /* landed in a hole or beyond EOF? */ 326 if (imap.br_startoff > offset_fsb) { 327 imap.br_blockcount = imap.br_startoff - offset_fsb; 328 imap.br_startoff = offset_fsb; 329 imap.br_startblock = HOLESTARTBLOCK; 330 imap.br_state = XFS_EXT_NORM; 331 } 332 333 /* 334 * Truncate to the next COW extent if there is one. This is the only 335 * opportunity to do this because we can skip COW fork lookups for the 336 * subsequent blocks in the mapping; however, the requirement to treat 337 * the COW range separately remains. 338 */ 339 if (cow_fsb != NULLFILEOFF && 340 cow_fsb < imap.br_startoff + imap.br_blockcount) 341 imap.br_blockcount = cow_fsb - imap.br_startoff; 342 343 /* got a delalloc extent? */ 344 if (imap.br_startblock != HOLESTARTBLOCK && 345 isnullstartblock(imap.br_startblock)) 346 goto allocate_blocks; 347 348 xfs_bmbt_to_iomap(ip, &wpc->iomap, &imap, 0, 0, XFS_WPC(wpc)->data_seq); 349 trace_xfs_map_blocks_found(ip, offset, count, whichfork, &imap); 350 return 0; 351 allocate_blocks: 352 /* 353 * Convert a dellalloc extent to a real one. The current page is held 354 * locked so nothing could have removed the block backing offset_fsb, 355 * although it could have moved from the COW to the data fork by another 356 * thread. 357 */ 358 if (whichfork == XFS_COW_FORK) 359 seq = &XFS_WPC(wpc)->cow_seq; 360 else 361 seq = &XFS_WPC(wpc)->data_seq; 362 363 error = xfs_bmapi_convert_delalloc(ip, whichfork, offset, 364 &wpc->iomap, seq); 365 if (error) { 366 /* 367 * If we failed to find the extent in the COW fork we might have 368 * raced with a COW to data fork conversion or truncate. 369 * Restart the lookup to catch the extent in the data fork for 370 * the former case, but prevent additional retries to avoid 371 * looping forever for the latter case. 372 */ 373 if (error == -EAGAIN && whichfork == XFS_COW_FORK && !retries++) 374 goto retry; 375 ASSERT(error != -EAGAIN); 376 return error; 377 } 378 379 /* 380 * Due to merging the return real extent might be larger than the 381 * original delalloc one. Trim the return extent to the next COW 382 * boundary again to force a re-lookup. 383 */ 384 if (whichfork != XFS_COW_FORK && cow_fsb != NULLFILEOFF) { 385 loff_t cow_offset = XFS_FSB_TO_B(mp, cow_fsb); 386 387 if (cow_offset < wpc->iomap.offset + wpc->iomap.length) 388 wpc->iomap.length = cow_offset - wpc->iomap.offset; 389 } 390 391 ASSERT(wpc->iomap.offset <= offset); 392 ASSERT(wpc->iomap.offset + wpc->iomap.length > offset); 393 trace_xfs_map_blocks_alloc(ip, offset, count, whichfork, &imap); 394 return 0; 395 } 396 397 static int 398 xfs_prepare_ioend( 399 struct iomap_ioend *ioend, 400 int status) 401 { 402 unsigned int nofs_flag; 403 404 /* 405 * We can allocate memory here while doing writeback on behalf of 406 * memory reclaim. To avoid memory allocation deadlocks set the 407 * task-wide nofs context for the following operations. 408 */ 409 nofs_flag = memalloc_nofs_save(); 410 411 /* Convert CoW extents to regular */ 412 if (!status && (ioend->io_flags & IOMAP_F_SHARED)) { 413 status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode), 414 ioend->io_offset, ioend->io_size); 415 } 416 417 memalloc_nofs_restore(nofs_flag); 418 419 /* send ioends that might require a transaction to the completion wq */ 420 if (xfs_ioend_is_append(ioend) || ioend->io_type == IOMAP_UNWRITTEN || 421 (ioend->io_flags & IOMAP_F_SHARED)) 422 ioend->io_bio.bi_end_io = xfs_end_bio; 423 return status; 424 } 425 426 /* 427 * If the folio has delalloc blocks on it, the caller is asking us to punch them 428 * out. If we don't, we can leave a stale delalloc mapping covered by a clean 429 * page that needs to be dirtied again before the delalloc mapping can be 430 * converted. This stale delalloc mapping can trip up a later direct I/O read 431 * operation on the same region. 432 * 433 * We prevent this by truncating away the delalloc regions on the folio. Because 434 * they are delalloc, we can do this without needing a transaction. Indeed - if 435 * we get ENOSPC errors, we have to be able to do this truncation without a 436 * transaction as there is no space left for block reservation (typically why 437 * we see a ENOSPC in writeback). 438 */ 439 static void 440 xfs_discard_folio( 441 struct folio *folio, 442 loff_t pos) 443 { 444 struct xfs_inode *ip = XFS_I(folio->mapping->host); 445 struct xfs_mount *mp = ip->i_mount; 446 447 if (xfs_is_shutdown(mp)) 448 return; 449 450 xfs_alert_ratelimited(mp, 451 "page discard on page "PTR_FMT", inode 0x%llx, pos %llu.", 452 folio, ip->i_ino, pos); 453 454 /* 455 * The end of the punch range is always the offset of the first 456 * byte of the next folio. Hence the end offset is only dependent on the 457 * folio itself and not the start offset that is passed in. 458 */ 459 xfs_bmap_punch_delalloc_range(ip, XFS_DATA_FORK, pos, 460 folio_pos(folio) + folio_size(folio)); 461 } 462 463 static const struct iomap_writeback_ops xfs_writeback_ops = { 464 .map_blocks = xfs_map_blocks, 465 .prepare_ioend = xfs_prepare_ioend, 466 .discard_folio = xfs_discard_folio, 467 }; 468 469 STATIC int 470 xfs_vm_writepages( 471 struct address_space *mapping, 472 struct writeback_control *wbc) 473 { 474 struct xfs_writepage_ctx wpc = { }; 475 476 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED); 477 return iomap_writepages(mapping, wbc, &wpc.ctx, &xfs_writeback_ops); 478 } 479 480 STATIC int 481 xfs_dax_writepages( 482 struct address_space *mapping, 483 struct writeback_control *wbc) 484 { 485 struct xfs_inode *ip = XFS_I(mapping->host); 486 487 xfs_iflags_clear(ip, XFS_ITRUNCATED); 488 return dax_writeback_mapping_range(mapping, 489 xfs_inode_buftarg(ip)->bt_daxdev, wbc); 490 } 491 492 STATIC sector_t 493 xfs_vm_bmap( 494 struct address_space *mapping, 495 sector_t block) 496 { 497 struct xfs_inode *ip = XFS_I(mapping->host); 498 499 trace_xfs_vm_bmap(ip); 500 501 /* 502 * The swap code (ab-)uses ->bmap to get a block mapping and then 503 * bypasses the file system for actual I/O. We really can't allow 504 * that on reflinks inodes, so we have to skip out here. And yes, 505 * 0 is the magic code for a bmap error. 506 * 507 * Since we don't pass back blockdev info, we can't return bmap 508 * information for rt files either. 509 */ 510 if (xfs_is_cow_inode(ip) || XFS_IS_REALTIME_INODE(ip)) 511 return 0; 512 return iomap_bmap(mapping, block, &xfs_read_iomap_ops); 513 } 514 515 STATIC int 516 xfs_vm_read_folio( 517 struct file *unused, 518 struct folio *folio) 519 { 520 return iomap_read_folio(folio, &xfs_read_iomap_ops); 521 } 522 523 STATIC void 524 xfs_vm_readahead( 525 struct readahead_control *rac) 526 { 527 iomap_readahead(rac, &xfs_read_iomap_ops); 528 } 529 530 static int 531 xfs_iomap_swapfile_activate( 532 struct swap_info_struct *sis, 533 struct file *swap_file, 534 sector_t *span) 535 { 536 sis->bdev = xfs_inode_buftarg(XFS_I(file_inode(swap_file)))->bt_bdev; 537 return iomap_swapfile_activate(sis, swap_file, span, 538 &xfs_read_iomap_ops); 539 } 540 541 const struct address_space_operations xfs_address_space_operations = { 542 .read_folio = xfs_vm_read_folio, 543 .readahead = xfs_vm_readahead, 544 .writepages = xfs_vm_writepages, 545 .dirty_folio = iomap_dirty_folio, 546 .release_folio = iomap_release_folio, 547 .invalidate_folio = iomap_invalidate_folio, 548 .bmap = xfs_vm_bmap, 549 .migrate_folio = filemap_migrate_folio, 550 .is_partially_uptodate = iomap_is_partially_uptodate, 551 .error_remove_folio = generic_error_remove_folio, 552 .swap_activate = xfs_iomap_swapfile_activate, 553 }; 554 555 const struct address_space_operations xfs_dax_aops = { 556 .writepages = xfs_dax_writepages, 557 .dirty_folio = noop_dirty_folio, 558 .swap_activate = xfs_iomap_swapfile_activate, 559 }; 560