1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * Copyright (c) 2016-2025 Christoph Hellwig. 5 * All Rights Reserved. 6 */ 7 #include "xfs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_trans.h" 15 #include "xfs_iomap.h" 16 #include "xfs_trace.h" 17 #include "xfs_bmap.h" 18 #include "xfs_bmap_util.h" 19 #include "xfs_reflink.h" 20 #include "xfs_errortag.h" 21 #include "xfs_error.h" 22 #include "xfs_icache.h" 23 #include "xfs_zone_alloc.h" 24 #include "xfs_rtgroup.h" 25 26 struct xfs_writepage_ctx { 27 struct iomap_writepage_ctx ctx; 28 unsigned int data_seq; 29 unsigned int cow_seq; 30 }; 31 32 static inline struct xfs_writepage_ctx * 33 XFS_WPC(struct iomap_writepage_ctx *ctx) 34 { 35 return container_of(ctx, struct xfs_writepage_ctx, ctx); 36 } 37 38 /* 39 * Fast and loose check if this write could update the on-disk inode size. 40 */ 41 static inline bool xfs_ioend_is_append(struct iomap_ioend *ioend) 42 { 43 return ioend->io_offset + ioend->io_size > 44 XFS_I(ioend->io_inode)->i_disk_size; 45 } 46 47 /* 48 * Update on-disk file size now that data has been written to disk. 49 */ 50 int 51 xfs_setfilesize( 52 struct xfs_inode *ip, 53 xfs_off_t offset, 54 size_t size) 55 { 56 struct xfs_mount *mp = ip->i_mount; 57 struct xfs_trans *tp; 58 xfs_fsize_t isize; 59 int error; 60 61 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp); 62 if (error) 63 return error; 64 65 xfs_ilock(ip, XFS_ILOCK_EXCL); 66 isize = xfs_new_eof(ip, offset + size); 67 if (!isize) { 68 xfs_iunlock(ip, XFS_ILOCK_EXCL); 69 xfs_trans_cancel(tp); 70 return 0; 71 } 72 73 trace_xfs_setfilesize(ip, offset, size); 74 75 ip->i_disk_size = isize; 76 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 77 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 78 79 return xfs_trans_commit(tp); 80 } 81 82 static void 83 xfs_ioend_put_open_zones( 84 struct iomap_ioend *ioend) 85 { 86 struct iomap_ioend *tmp; 87 88 /* 89 * Put the open zone for all ioends merged into this one (if any). 90 */ 91 list_for_each_entry(tmp, &ioend->io_list, io_list) 92 xfs_open_zone_put(tmp->io_private); 93 94 /* 95 * The main ioend might not have an open zone if the submission failed 96 * before xfs_zone_alloc_and_submit got called. 97 */ 98 if (ioend->io_private) 99 xfs_open_zone_put(ioend->io_private); 100 } 101 102 /* 103 * IO write completion. 104 */ 105 STATIC void 106 xfs_end_ioend( 107 struct iomap_ioend *ioend) 108 { 109 struct xfs_inode *ip = XFS_I(ioend->io_inode); 110 struct xfs_mount *mp = ip->i_mount; 111 bool is_zoned = xfs_is_zoned_inode(ip); 112 xfs_off_t offset = ioend->io_offset; 113 size_t size = ioend->io_size; 114 unsigned int nofs_flag; 115 int error; 116 117 /* 118 * We can allocate memory here while doing writeback on behalf of 119 * memory reclaim. To avoid memory allocation deadlocks set the 120 * task-wide nofs context for the following operations. 121 */ 122 nofs_flag = memalloc_nofs_save(); 123 124 /* 125 * Just clean up the in-memory structures if the fs has been shut down. 126 */ 127 if (xfs_is_shutdown(mp)) { 128 error = -EIO; 129 goto done; 130 } 131 132 /* 133 * Clean up all COW blocks and underlying data fork delalloc blocks on 134 * I/O error. The delalloc punch is required because this ioend was 135 * mapped to blocks in the COW fork and the associated pages are no 136 * longer dirty. If we don't remove delalloc blocks here, they become 137 * stale and can corrupt free space accounting on unmount. 138 */ 139 error = blk_status_to_errno(ioend->io_bio.bi_status); 140 if (unlikely(error)) { 141 if (ioend->io_flags & IOMAP_IOEND_SHARED) { 142 ASSERT(!is_zoned); 143 xfs_reflink_cancel_cow_range(ip, offset, size, true); 144 xfs_bmap_punch_delalloc_range(ip, XFS_DATA_FORK, offset, 145 offset + size, NULL); 146 } 147 goto done; 148 } 149 150 /* 151 * Success: commit the COW or unwritten blocks if needed. 152 */ 153 if (is_zoned) 154 error = xfs_zoned_end_io(ip, offset, size, ioend->io_sector, 155 ioend->io_private, NULLFSBLOCK); 156 else if (ioend->io_flags & IOMAP_IOEND_SHARED) 157 error = xfs_reflink_end_cow(ip, offset, size); 158 else if (ioend->io_flags & IOMAP_IOEND_UNWRITTEN) 159 error = xfs_iomap_write_unwritten(ip, offset, size, false); 160 161 if (!error && 162 !(ioend->io_flags & IOMAP_IOEND_DIRECT) && 163 xfs_ioend_is_append(ioend)) 164 error = xfs_setfilesize(ip, offset, size); 165 done: 166 if (is_zoned) 167 xfs_ioend_put_open_zones(ioend); 168 iomap_finish_ioends(ioend, error); 169 memalloc_nofs_restore(nofs_flag); 170 } 171 172 /* 173 * Finish all pending IO completions that require transactional modifications. 174 * 175 * We try to merge physical and logically contiguous ioends before completion to 176 * minimise the number of transactions we need to perform during IO completion. 177 * Both unwritten extent conversion and COW remapping need to iterate and modify 178 * one physical extent at a time, so we gain nothing by merging physically 179 * discontiguous extents here. 180 * 181 * The ioend chain length that we can be processing here is largely unbound in 182 * length and we may have to perform significant amounts of work on each ioend 183 * to complete it. Hence we have to be careful about holding the CPU for too 184 * long in this loop. 185 */ 186 void 187 xfs_end_io( 188 struct work_struct *work) 189 { 190 struct xfs_inode *ip = 191 container_of(work, struct xfs_inode, i_ioend_work); 192 struct iomap_ioend *ioend; 193 struct list_head tmp; 194 unsigned long flags; 195 196 spin_lock_irqsave(&ip->i_ioend_lock, flags); 197 list_replace_init(&ip->i_ioend_list, &tmp); 198 spin_unlock_irqrestore(&ip->i_ioend_lock, flags); 199 200 iomap_sort_ioends(&tmp); 201 while ((ioend = list_first_entry_or_null(&tmp, struct iomap_ioend, 202 io_list))) { 203 list_del_init(&ioend->io_list); 204 iomap_ioend_try_merge(ioend, &tmp); 205 xfs_end_ioend(ioend); 206 cond_resched(); 207 } 208 } 209 210 void 211 xfs_end_bio( 212 struct bio *bio) 213 { 214 struct iomap_ioend *ioend = iomap_ioend_from_bio(bio); 215 struct xfs_inode *ip = XFS_I(ioend->io_inode); 216 struct xfs_mount *mp = ip->i_mount; 217 unsigned long flags; 218 219 /* 220 * For Appends record the actually written block number and set the 221 * boundary flag if needed. 222 */ 223 if (IS_ENABLED(CONFIG_XFS_RT) && bio_is_zone_append(bio)) { 224 ioend->io_sector = bio->bi_iter.bi_sector; 225 xfs_mark_rtg_boundary(ioend); 226 } 227 228 spin_lock_irqsave(&ip->i_ioend_lock, flags); 229 if (list_empty(&ip->i_ioend_list)) 230 WARN_ON_ONCE(!queue_work(mp->m_unwritten_workqueue, 231 &ip->i_ioend_work)); 232 list_add_tail(&ioend->io_list, &ip->i_ioend_list); 233 spin_unlock_irqrestore(&ip->i_ioend_lock, flags); 234 } 235 236 /* 237 * We cannot cancel the ioend directly on error. We may have already set other 238 * pages under writeback and hence we have to run I/O completion to mark the 239 * error state of the pages under writeback appropriately. 240 * 241 * If the folio has delalloc blocks on it, the caller is asking us to punch them 242 * out. If we don't, we can leave a stale delalloc mapping covered by a clean 243 * page that needs to be dirtied again before the delalloc mapping can be 244 * converted. This stale delalloc mapping can trip up a later direct I/O read 245 * operation on the same region. 246 * 247 * We prevent this by truncating away the delalloc regions on the folio. Because 248 * they are delalloc, we can do this without needing a transaction. Indeed - if 249 * we get ENOSPC errors, we have to be able to do this truncation without a 250 * transaction as there is no space left for block reservation (typically why 251 * we see a ENOSPC in writeback). 252 */ 253 static void 254 xfs_discard_folio( 255 struct folio *folio, 256 loff_t pos) 257 { 258 struct xfs_inode *ip = XFS_I(folio->mapping->host); 259 struct xfs_mount *mp = ip->i_mount; 260 261 if (xfs_is_shutdown(mp)) 262 return; 263 264 xfs_alert_ratelimited(mp, 265 "page discard on page "PTR_FMT", inode 0x%llx, pos %llu.", 266 folio, ip->i_ino, pos); 267 268 /* 269 * The end of the punch range is always the offset of the first 270 * byte of the next folio. Hence the end offset is only dependent on the 271 * folio itself and not the start offset that is passed in. 272 */ 273 xfs_bmap_punch_delalloc_range(ip, XFS_DATA_FORK, pos, 274 folio_pos(folio) + folio_size(folio), NULL); 275 } 276 277 /* 278 * Fast revalidation of the cached writeback mapping. Return true if the current 279 * mapping is valid, false otherwise. 280 */ 281 static bool 282 xfs_imap_valid( 283 struct iomap_writepage_ctx *wpc, 284 struct xfs_inode *ip, 285 loff_t offset) 286 { 287 if (offset < wpc->iomap.offset || 288 offset >= wpc->iomap.offset + wpc->iomap.length) 289 return false; 290 /* 291 * If this is a COW mapping, it is sufficient to check that the mapping 292 * covers the offset. Be careful to check this first because the caller 293 * can revalidate a COW mapping without updating the data seqno. 294 */ 295 if (wpc->iomap.flags & IOMAP_F_SHARED) 296 return true; 297 298 /* 299 * This is not a COW mapping. Check the sequence number of the data fork 300 * because concurrent changes could have invalidated the extent. Check 301 * the COW fork because concurrent changes since the last time we 302 * checked (and found nothing at this offset) could have added 303 * overlapping blocks. 304 */ 305 if (XFS_WPC(wpc)->data_seq != READ_ONCE(ip->i_df.if_seq)) { 306 trace_xfs_wb_data_iomap_invalid(ip, &wpc->iomap, 307 XFS_WPC(wpc)->data_seq, XFS_DATA_FORK); 308 return false; 309 } 310 if (xfs_inode_has_cow_data(ip) && 311 XFS_WPC(wpc)->cow_seq != READ_ONCE(ip->i_cowfp->if_seq)) { 312 trace_xfs_wb_cow_iomap_invalid(ip, &wpc->iomap, 313 XFS_WPC(wpc)->cow_seq, XFS_COW_FORK); 314 return false; 315 } 316 return true; 317 } 318 319 static int 320 xfs_map_blocks( 321 struct iomap_writepage_ctx *wpc, 322 loff_t offset, 323 unsigned int len) 324 { 325 struct xfs_inode *ip = XFS_I(wpc->inode); 326 struct xfs_mount *mp = ip->i_mount; 327 ssize_t count = i_blocksize(wpc->inode); 328 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 329 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count); 330 xfs_fileoff_t cow_fsb; 331 int whichfork; 332 struct xfs_bmbt_irec imap; 333 struct xfs_iext_cursor icur; 334 int retries = 0; 335 int error = 0; 336 unsigned int *seq; 337 338 if (xfs_is_shutdown(mp)) 339 return -EIO; 340 341 XFS_ERRORTAG_DELAY(mp, XFS_ERRTAG_WB_DELAY_MS); 342 343 /* 344 * COW fork blocks can overlap data fork blocks even if the blocks 345 * aren't shared. COW I/O always takes precedent, so we must always 346 * check for overlap on reflink inodes unless the mapping is already a 347 * COW one, or the COW fork hasn't changed from the last time we looked 348 * at it. 349 * 350 * It's safe to check the COW fork if_seq here without the ILOCK because 351 * we've indirectly protected against concurrent updates: writeback has 352 * the page locked, which prevents concurrent invalidations by reflink 353 * and directio and prevents concurrent buffered writes to the same 354 * page. Changes to if_seq always happen under i_lock, which protects 355 * against concurrent updates and provides a memory barrier on the way 356 * out that ensures that we always see the current value. 357 */ 358 if (xfs_imap_valid(wpc, ip, offset)) 359 return 0; 360 361 /* 362 * If we don't have a valid map, now it's time to get a new one for this 363 * offset. This will convert delayed allocations (including COW ones) 364 * into real extents. If we return without a valid map, it means we 365 * landed in a hole and we skip the block. 366 */ 367 retry: 368 cow_fsb = NULLFILEOFF; 369 whichfork = XFS_DATA_FORK; 370 xfs_ilock(ip, XFS_ILOCK_SHARED); 371 ASSERT(!xfs_need_iread_extents(&ip->i_df)); 372 373 /* 374 * Check if this is offset is covered by a COW extents, and if yes use 375 * it directly instead of looking up anything in the data fork. 376 */ 377 if (xfs_inode_has_cow_data(ip) && 378 xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap)) 379 cow_fsb = imap.br_startoff; 380 if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) { 381 XFS_WPC(wpc)->cow_seq = READ_ONCE(ip->i_cowfp->if_seq); 382 xfs_iunlock(ip, XFS_ILOCK_SHARED); 383 384 whichfork = XFS_COW_FORK; 385 goto allocate_blocks; 386 } 387 388 /* 389 * No COW extent overlap. Revalidate now that we may have updated 390 * ->cow_seq. If the data mapping is still valid, we're done. 391 */ 392 if (xfs_imap_valid(wpc, ip, offset)) { 393 xfs_iunlock(ip, XFS_ILOCK_SHARED); 394 return 0; 395 } 396 397 /* 398 * If we don't have a valid map, now it's time to get a new one for this 399 * offset. This will convert delayed allocations (including COW ones) 400 * into real extents. 401 */ 402 if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap)) 403 imap.br_startoff = end_fsb; /* fake a hole past EOF */ 404 XFS_WPC(wpc)->data_seq = READ_ONCE(ip->i_df.if_seq); 405 xfs_iunlock(ip, XFS_ILOCK_SHARED); 406 407 /* landed in a hole or beyond EOF? */ 408 if (imap.br_startoff > offset_fsb) { 409 imap.br_blockcount = imap.br_startoff - offset_fsb; 410 imap.br_startoff = offset_fsb; 411 imap.br_startblock = HOLESTARTBLOCK; 412 imap.br_state = XFS_EXT_NORM; 413 } 414 415 /* 416 * Truncate to the next COW extent if there is one. This is the only 417 * opportunity to do this because we can skip COW fork lookups for the 418 * subsequent blocks in the mapping; however, the requirement to treat 419 * the COW range separately remains. 420 */ 421 if (cow_fsb != NULLFILEOFF && 422 cow_fsb < imap.br_startoff + imap.br_blockcount) 423 imap.br_blockcount = cow_fsb - imap.br_startoff; 424 425 /* got a delalloc extent? */ 426 if (imap.br_startblock != HOLESTARTBLOCK && 427 isnullstartblock(imap.br_startblock)) 428 goto allocate_blocks; 429 430 xfs_bmbt_to_iomap(ip, &wpc->iomap, &imap, 0, 0, XFS_WPC(wpc)->data_seq); 431 trace_xfs_map_blocks_found(ip, offset, count, whichfork, &imap); 432 return 0; 433 allocate_blocks: 434 /* 435 * Convert a dellalloc extent to a real one. The current page is held 436 * locked so nothing could have removed the block backing offset_fsb, 437 * although it could have moved from the COW to the data fork by another 438 * thread. 439 */ 440 if (whichfork == XFS_COW_FORK) 441 seq = &XFS_WPC(wpc)->cow_seq; 442 else 443 seq = &XFS_WPC(wpc)->data_seq; 444 445 error = xfs_bmapi_convert_delalloc(ip, whichfork, offset, 446 &wpc->iomap, seq); 447 if (error) { 448 /* 449 * If we failed to find the extent in the COW fork we might have 450 * raced with a COW to data fork conversion or truncate. 451 * Restart the lookup to catch the extent in the data fork for 452 * the former case, but prevent additional retries to avoid 453 * looping forever for the latter case. 454 */ 455 if (error == -EAGAIN && whichfork == XFS_COW_FORK && !retries++) 456 goto retry; 457 ASSERT(error != -EAGAIN); 458 return error; 459 } 460 461 /* 462 * Due to merging the return real extent might be larger than the 463 * original delalloc one. Trim the return extent to the next COW 464 * boundary again to force a re-lookup. 465 */ 466 if (whichfork != XFS_COW_FORK && cow_fsb != NULLFILEOFF) { 467 loff_t cow_offset = XFS_FSB_TO_B(mp, cow_fsb); 468 469 if (cow_offset < wpc->iomap.offset + wpc->iomap.length) 470 wpc->iomap.length = cow_offset - wpc->iomap.offset; 471 } 472 473 ASSERT(wpc->iomap.offset <= offset); 474 ASSERT(wpc->iomap.offset + wpc->iomap.length > offset); 475 trace_xfs_map_blocks_alloc(ip, offset, count, whichfork, &imap); 476 return 0; 477 } 478 479 static ssize_t 480 xfs_writeback_range( 481 struct iomap_writepage_ctx *wpc, 482 struct folio *folio, 483 u64 offset, 484 unsigned int len, 485 u64 end_pos) 486 { 487 ssize_t ret; 488 489 ret = xfs_map_blocks(wpc, offset, len); 490 if (!ret) 491 ret = iomap_add_to_ioend(wpc, folio, offset, end_pos, len); 492 if (ret < 0) 493 xfs_discard_folio(folio, offset); 494 return ret; 495 } 496 497 static bool 498 xfs_ioend_needs_wq_completion( 499 struct iomap_ioend *ioend) 500 { 501 /* Changing inode size requires a transaction. */ 502 if (xfs_ioend_is_append(ioend)) 503 return true; 504 505 /* Extent manipulation requires a transaction. */ 506 if (ioend->io_flags & (IOMAP_IOEND_UNWRITTEN | IOMAP_IOEND_SHARED)) 507 return true; 508 509 /* Page cache invalidation cannot be done in irq context. */ 510 if (ioend->io_flags & IOMAP_IOEND_DONTCACHE) 511 return true; 512 513 return false; 514 } 515 516 static int 517 xfs_writeback_submit( 518 struct iomap_writepage_ctx *wpc, 519 int error) 520 { 521 struct iomap_ioend *ioend = wpc->wb_ctx; 522 523 /* 524 * Convert CoW extents to regular. 525 * 526 * We can allocate memory here while doing writeback on behalf of memory 527 * reclaim. To avoid memory allocation deadlocks, set the task-wide 528 * nofs context. 529 */ 530 if (!error && (ioend->io_flags & IOMAP_IOEND_SHARED)) { 531 unsigned int nofs_flag; 532 533 nofs_flag = memalloc_nofs_save(); 534 error = xfs_reflink_convert_cow(XFS_I(ioend->io_inode), 535 ioend->io_offset, ioend->io_size); 536 memalloc_nofs_restore(nofs_flag); 537 } 538 539 /* 540 * Send ioends that might require a transaction to the completion wq. 541 */ 542 if (xfs_ioend_needs_wq_completion(ioend)) 543 ioend->io_bio.bi_end_io = xfs_end_bio; 544 545 return iomap_ioend_writeback_submit(wpc, error); 546 } 547 548 static const struct iomap_writeback_ops xfs_writeback_ops = { 549 .writeback_range = xfs_writeback_range, 550 .writeback_submit = xfs_writeback_submit, 551 }; 552 553 struct xfs_zoned_writepage_ctx { 554 struct iomap_writepage_ctx ctx; 555 struct xfs_open_zone *open_zone; 556 }; 557 558 static inline struct xfs_zoned_writepage_ctx * 559 XFS_ZWPC(struct iomap_writepage_ctx *ctx) 560 { 561 return container_of(ctx, struct xfs_zoned_writepage_ctx, ctx); 562 } 563 564 static int 565 xfs_zoned_map_blocks( 566 struct iomap_writepage_ctx *wpc, 567 loff_t offset, 568 unsigned int len) 569 { 570 struct xfs_inode *ip = XFS_I(wpc->inode); 571 struct xfs_mount *mp = ip->i_mount; 572 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 573 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + len); 574 xfs_filblks_t count_fsb; 575 struct xfs_bmbt_irec imap, del; 576 struct xfs_iext_cursor icur; 577 578 if (xfs_is_shutdown(mp)) 579 return -EIO; 580 581 XFS_ERRORTAG_DELAY(mp, XFS_ERRTAG_WB_DELAY_MS); 582 583 /* 584 * All dirty data must be covered by delalloc extents. But truncate can 585 * remove delalloc extents underneath us or reduce their size. 586 * Returning a hole tells iomap to not write back any data from this 587 * range, which is the right thing to do in that case. 588 * 589 * Otherwise just tell iomap to treat ranges previously covered by a 590 * delalloc extent as mapped. The actual block allocation will be done 591 * just before submitting the bio. 592 * 593 * This implies we never map outside folios that are locked or marked 594 * as under writeback, and thus there is no need check the fork sequence 595 * count here. 596 */ 597 xfs_ilock(ip, XFS_ILOCK_EXCL); 598 if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap)) 599 imap.br_startoff = end_fsb; /* fake a hole past EOF */ 600 if (imap.br_startoff > offset_fsb) { 601 imap.br_blockcount = imap.br_startoff - offset_fsb; 602 imap.br_startoff = offset_fsb; 603 imap.br_startblock = HOLESTARTBLOCK; 604 imap.br_state = XFS_EXT_NORM; 605 xfs_iunlock(ip, XFS_ILOCK_EXCL); 606 xfs_bmbt_to_iomap(ip, &wpc->iomap, &imap, 0, 0, 0); 607 return 0; 608 } 609 end_fsb = min(end_fsb, imap.br_startoff + imap.br_blockcount); 610 count_fsb = end_fsb - offset_fsb; 611 612 del = imap; 613 xfs_trim_extent(&del, offset_fsb, count_fsb); 614 xfs_bmap_del_extent_delay(ip, XFS_COW_FORK, &icur, &imap, &del, 615 XFS_BMAPI_REMAP); 616 xfs_iunlock(ip, XFS_ILOCK_EXCL); 617 618 wpc->iomap.type = IOMAP_MAPPED; 619 wpc->iomap.flags = IOMAP_F_DIRTY; 620 wpc->iomap.bdev = mp->m_rtdev_targp->bt_bdev; 621 wpc->iomap.offset = offset; 622 wpc->iomap.length = XFS_FSB_TO_B(mp, count_fsb); 623 wpc->iomap.flags = IOMAP_F_ANON_WRITE; 624 625 trace_xfs_zoned_map_blocks(ip, offset, wpc->iomap.length); 626 return 0; 627 } 628 629 static ssize_t 630 xfs_zoned_writeback_range( 631 struct iomap_writepage_ctx *wpc, 632 struct folio *folio, 633 u64 offset, 634 unsigned int len, 635 u64 end_pos) 636 { 637 ssize_t ret; 638 639 ret = xfs_zoned_map_blocks(wpc, offset, len); 640 if (!ret) 641 ret = iomap_add_to_ioend(wpc, folio, offset, end_pos, len); 642 if (ret < 0) 643 xfs_discard_folio(folio, offset); 644 return ret; 645 } 646 647 static int 648 xfs_zoned_writeback_submit( 649 struct iomap_writepage_ctx *wpc, 650 int error) 651 { 652 struct iomap_ioend *ioend = wpc->wb_ctx; 653 654 ioend->io_bio.bi_end_io = xfs_end_bio; 655 if (error) { 656 ioend->io_bio.bi_status = errno_to_blk_status(error); 657 bio_endio(&ioend->io_bio); 658 return error; 659 } 660 xfs_zone_alloc_and_submit(ioend, &XFS_ZWPC(wpc)->open_zone); 661 return 0; 662 } 663 664 static const struct iomap_writeback_ops xfs_zoned_writeback_ops = { 665 .writeback_range = xfs_zoned_writeback_range, 666 .writeback_submit = xfs_zoned_writeback_submit, 667 }; 668 669 STATIC int 670 xfs_vm_writepages( 671 struct address_space *mapping, 672 struct writeback_control *wbc) 673 { 674 struct xfs_inode *ip = XFS_I(mapping->host); 675 676 xfs_iflags_clear(ip, XFS_ITRUNCATED); 677 678 if (xfs_is_zoned_inode(ip)) { 679 struct xfs_zoned_writepage_ctx xc = { 680 .ctx = { 681 .inode = mapping->host, 682 .wbc = wbc, 683 .ops = &xfs_zoned_writeback_ops 684 }, 685 }; 686 int error; 687 688 error = iomap_writepages(&xc.ctx); 689 if (xc.open_zone) 690 xfs_open_zone_put(xc.open_zone); 691 return error; 692 } else { 693 struct xfs_writepage_ctx wpc = { 694 .ctx = { 695 .inode = mapping->host, 696 .wbc = wbc, 697 .ops = &xfs_writeback_ops 698 }, 699 }; 700 701 return iomap_writepages(&wpc.ctx); 702 } 703 } 704 705 STATIC int 706 xfs_dax_writepages( 707 struct address_space *mapping, 708 struct writeback_control *wbc) 709 { 710 struct xfs_inode *ip = XFS_I(mapping->host); 711 712 xfs_iflags_clear(ip, XFS_ITRUNCATED); 713 return dax_writeback_mapping_range(mapping, 714 xfs_inode_buftarg(ip)->bt_daxdev, wbc); 715 } 716 717 STATIC sector_t 718 xfs_vm_bmap( 719 struct address_space *mapping, 720 sector_t block) 721 { 722 struct xfs_inode *ip = XFS_I(mapping->host); 723 724 trace_xfs_vm_bmap(ip); 725 726 /* 727 * The swap code (ab-)uses ->bmap to get a block mapping and then 728 * bypasses the file system for actual I/O. We really can't allow 729 * that on reflinks inodes, so we have to skip out here. And yes, 730 * 0 is the magic code for a bmap error. 731 * 732 * Since we don't pass back blockdev info, we can't return bmap 733 * information for rt files either. 734 */ 735 if (xfs_is_cow_inode(ip) || XFS_IS_REALTIME_INODE(ip)) 736 return 0; 737 return iomap_bmap(mapping, block, &xfs_read_iomap_ops); 738 } 739 740 STATIC int 741 xfs_vm_read_folio( 742 struct file *unused, 743 struct folio *folio) 744 { 745 return iomap_read_folio(folio, &xfs_read_iomap_ops); 746 } 747 748 STATIC void 749 xfs_vm_readahead( 750 struct readahead_control *rac) 751 { 752 iomap_readahead(rac, &xfs_read_iomap_ops); 753 } 754 755 static int 756 xfs_vm_swap_activate( 757 struct swap_info_struct *sis, 758 struct file *swap_file, 759 sector_t *span) 760 { 761 struct xfs_inode *ip = XFS_I(file_inode(swap_file)); 762 763 /* 764 * Swap file activation can race against concurrent shared extent 765 * removal in files that have been cloned. If this happens, 766 * iomap_swapfile_iter() can fail because it encountered a shared 767 * extent even though an operation is in progress to remove those 768 * shared extents. 769 * 770 * This race becomes problematic when we defer extent removal 771 * operations beyond the end of a syscall (i.e. use async background 772 * processing algorithms). Users think the extents are no longer 773 * shared, but iomap_swapfile_iter() still sees them as shared 774 * because the refcountbt entries for the extents being removed have 775 * not yet been updated. Hence the swapon call fails unexpectedly. 776 * 777 * The race condition is currently most obvious from the unlink() 778 * operation as extent removal is deferred until after the last 779 * reference to the inode goes away. We then process the extent 780 * removal asynchronously, hence triggers the "syscall completed but 781 * work not done" condition mentioned above. To close this race 782 * window, we need to flush any pending inodegc operations to ensure 783 * they have updated the refcountbt records before we try to map the 784 * swapfile. 785 */ 786 xfs_inodegc_flush(ip->i_mount); 787 788 /* 789 * Direct the swap code to the correct block device when this file 790 * sits on the RT device. 791 */ 792 sis->bdev = xfs_inode_buftarg(ip)->bt_bdev; 793 794 return iomap_swapfile_activate(sis, swap_file, span, 795 &xfs_read_iomap_ops); 796 } 797 798 const struct address_space_operations xfs_address_space_operations = { 799 .read_folio = xfs_vm_read_folio, 800 .readahead = xfs_vm_readahead, 801 .writepages = xfs_vm_writepages, 802 .dirty_folio = iomap_dirty_folio, 803 .release_folio = iomap_release_folio, 804 .invalidate_folio = iomap_invalidate_folio, 805 .bmap = xfs_vm_bmap, 806 .migrate_folio = filemap_migrate_folio, 807 .is_partially_uptodate = iomap_is_partially_uptodate, 808 .error_remove_folio = generic_error_remove_folio, 809 .swap_activate = xfs_vm_swap_activate, 810 }; 811 812 const struct address_space_operations xfs_dax_aops = { 813 .writepages = xfs_dax_writepages, 814 .dirty_folio = noop_dirty_folio, 815 .swap_activate = xfs_vm_swap_activate, 816 }; 817