1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_shared.h" 20 #include "xfs_format.h" 21 #include "xfs_log_format.h" 22 #include "xfs_trans_resv.h" 23 #include "xfs_mount.h" 24 #include "xfs_inode.h" 25 #include "xfs_trans.h" 26 #include "xfs_inode_item.h" 27 #include "xfs_alloc.h" 28 #include "xfs_error.h" 29 #include "xfs_iomap.h" 30 #include "xfs_trace.h" 31 #include "xfs_bmap.h" 32 #include "xfs_bmap_util.h" 33 #include "xfs_bmap_btree.h" 34 #include "xfs_reflink.h" 35 #include <linux/gfp.h> 36 #include <linux/mpage.h> 37 #include <linux/pagevec.h> 38 #include <linux/writeback.h> 39 40 /* 41 * structure owned by writepages passed to individual writepage calls 42 */ 43 struct xfs_writepage_ctx { 44 struct xfs_bmbt_irec imap; 45 bool imap_valid; 46 unsigned int io_type; 47 struct xfs_ioend *ioend; 48 sector_t last_block; 49 }; 50 51 void 52 xfs_count_page_state( 53 struct page *page, 54 int *delalloc, 55 int *unwritten) 56 { 57 struct buffer_head *bh, *head; 58 59 *delalloc = *unwritten = 0; 60 61 bh = head = page_buffers(page); 62 do { 63 if (buffer_unwritten(bh)) 64 (*unwritten) = 1; 65 else if (buffer_delay(bh)) 66 (*delalloc) = 1; 67 } while ((bh = bh->b_this_page) != head); 68 } 69 70 struct block_device * 71 xfs_find_bdev_for_inode( 72 struct inode *inode) 73 { 74 struct xfs_inode *ip = XFS_I(inode); 75 struct xfs_mount *mp = ip->i_mount; 76 77 if (XFS_IS_REALTIME_INODE(ip)) 78 return mp->m_rtdev_targp->bt_bdev; 79 else 80 return mp->m_ddev_targp->bt_bdev; 81 } 82 83 /* 84 * We're now finished for good with this page. Update the page state via the 85 * associated buffer_heads, paying attention to the start and end offsets that 86 * we need to process on the page. 87 * 88 * Landmine Warning: bh->b_end_io() will call end_page_writeback() on the last 89 * buffer in the IO. Once it does this, it is unsafe to access the bufferhead or 90 * the page at all, as we may be racing with memory reclaim and it can free both 91 * the bufferhead chain and the page as it will see the page as clean and 92 * unused. 93 */ 94 static void 95 xfs_finish_page_writeback( 96 struct inode *inode, 97 struct bio_vec *bvec, 98 int error) 99 { 100 unsigned int end = bvec->bv_offset + bvec->bv_len - 1; 101 struct buffer_head *head, *bh, *next; 102 unsigned int off = 0; 103 unsigned int bsize; 104 105 ASSERT(bvec->bv_offset < PAGE_SIZE); 106 ASSERT((bvec->bv_offset & ((1 << inode->i_blkbits) - 1)) == 0); 107 ASSERT(end < PAGE_SIZE); 108 ASSERT((bvec->bv_len & ((1 << inode->i_blkbits) - 1)) == 0); 109 110 bh = head = page_buffers(bvec->bv_page); 111 112 bsize = bh->b_size; 113 do { 114 next = bh->b_this_page; 115 if (off < bvec->bv_offset) 116 goto next_bh; 117 if (off > end) 118 break; 119 bh->b_end_io(bh, !error); 120 next_bh: 121 off += bsize; 122 } while ((bh = next) != head); 123 } 124 125 /* 126 * We're now finished for good with this ioend structure. Update the page 127 * state, release holds on bios, and finally free up memory. Do not use the 128 * ioend after this. 129 */ 130 STATIC void 131 xfs_destroy_ioend( 132 struct xfs_ioend *ioend, 133 int error) 134 { 135 struct inode *inode = ioend->io_inode; 136 struct bio *last = ioend->io_bio; 137 struct bio *bio, *next; 138 139 for (bio = &ioend->io_inline_bio; bio; bio = next) { 140 struct bio_vec *bvec; 141 int i; 142 143 /* 144 * For the last bio, bi_private points to the ioend, so we 145 * need to explicitly end the iteration here. 146 */ 147 if (bio == last) 148 next = NULL; 149 else 150 next = bio->bi_private; 151 152 /* walk each page on bio, ending page IO on them */ 153 bio_for_each_segment_all(bvec, bio, i) 154 xfs_finish_page_writeback(inode, bvec, error); 155 156 bio_put(bio); 157 } 158 } 159 160 /* 161 * Fast and loose check if this write could update the on-disk inode size. 162 */ 163 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend) 164 { 165 return ioend->io_offset + ioend->io_size > 166 XFS_I(ioend->io_inode)->i_d.di_size; 167 } 168 169 STATIC int 170 xfs_setfilesize_trans_alloc( 171 struct xfs_ioend *ioend) 172 { 173 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount; 174 struct xfs_trans *tp; 175 int error; 176 177 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp); 178 if (error) 179 return error; 180 181 ioend->io_append_trans = tp; 182 183 /* 184 * We may pass freeze protection with a transaction. So tell lockdep 185 * we released it. 186 */ 187 __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS); 188 /* 189 * We hand off the transaction to the completion thread now, so 190 * clear the flag here. 191 */ 192 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS); 193 return 0; 194 } 195 196 /* 197 * Update on-disk file size now that data has been written to disk. 198 */ 199 STATIC int 200 __xfs_setfilesize( 201 struct xfs_inode *ip, 202 struct xfs_trans *tp, 203 xfs_off_t offset, 204 size_t size) 205 { 206 xfs_fsize_t isize; 207 208 xfs_ilock(ip, XFS_ILOCK_EXCL); 209 isize = xfs_new_eof(ip, offset + size); 210 if (!isize) { 211 xfs_iunlock(ip, XFS_ILOCK_EXCL); 212 xfs_trans_cancel(tp); 213 return 0; 214 } 215 216 trace_xfs_setfilesize(ip, offset, size); 217 218 ip->i_d.di_size = isize; 219 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 220 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 221 222 return xfs_trans_commit(tp); 223 } 224 225 int 226 xfs_setfilesize( 227 struct xfs_inode *ip, 228 xfs_off_t offset, 229 size_t size) 230 { 231 struct xfs_mount *mp = ip->i_mount; 232 struct xfs_trans *tp; 233 int error; 234 235 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp); 236 if (error) 237 return error; 238 239 return __xfs_setfilesize(ip, tp, offset, size); 240 } 241 242 STATIC int 243 xfs_setfilesize_ioend( 244 struct xfs_ioend *ioend, 245 int error) 246 { 247 struct xfs_inode *ip = XFS_I(ioend->io_inode); 248 struct xfs_trans *tp = ioend->io_append_trans; 249 250 /* 251 * The transaction may have been allocated in the I/O submission thread, 252 * thus we need to mark ourselves as being in a transaction manually. 253 * Similarly for freeze protection. 254 */ 255 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS); 256 __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS); 257 258 /* we abort the update if there was an IO error */ 259 if (error) { 260 xfs_trans_cancel(tp); 261 return error; 262 } 263 264 return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size); 265 } 266 267 /* 268 * IO write completion. 269 */ 270 STATIC void 271 xfs_end_io( 272 struct work_struct *work) 273 { 274 struct xfs_ioend *ioend = 275 container_of(work, struct xfs_ioend, io_work); 276 struct xfs_inode *ip = XFS_I(ioend->io_inode); 277 int error = ioend->io_bio->bi_error; 278 279 /* 280 * Set an error if the mount has shut down and proceed with end I/O 281 * processing so it can perform whatever cleanups are necessary. 282 */ 283 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 284 error = -EIO; 285 286 /* 287 * For a CoW extent, we need to move the mapping from the CoW fork 288 * to the data fork. If instead an error happened, just dump the 289 * new blocks. 290 */ 291 if (ioend->io_type == XFS_IO_COW) { 292 if (error) 293 goto done; 294 if (ioend->io_bio->bi_error) { 295 error = xfs_reflink_cancel_cow_range(ip, 296 ioend->io_offset, ioend->io_size); 297 goto done; 298 } 299 error = xfs_reflink_end_cow(ip, ioend->io_offset, 300 ioend->io_size); 301 if (error) 302 goto done; 303 } 304 305 /* 306 * For unwritten extents we need to issue transactions to convert a 307 * range to normal written extens after the data I/O has finished. 308 * Detecting and handling completion IO errors is done individually 309 * for each case as different cleanup operations need to be performed 310 * on error. 311 */ 312 if (ioend->io_type == XFS_IO_UNWRITTEN) { 313 if (error) 314 goto done; 315 error = xfs_iomap_write_unwritten(ip, ioend->io_offset, 316 ioend->io_size); 317 } else if (ioend->io_append_trans) { 318 error = xfs_setfilesize_ioend(ioend, error); 319 } else { 320 ASSERT(!xfs_ioend_is_append(ioend) || 321 ioend->io_type == XFS_IO_COW); 322 } 323 324 done: 325 xfs_destroy_ioend(ioend, error); 326 } 327 328 STATIC void 329 xfs_end_bio( 330 struct bio *bio) 331 { 332 struct xfs_ioend *ioend = bio->bi_private; 333 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount; 334 335 if (ioend->io_type == XFS_IO_UNWRITTEN || ioend->io_type == XFS_IO_COW) 336 queue_work(mp->m_unwritten_workqueue, &ioend->io_work); 337 else if (ioend->io_append_trans) 338 queue_work(mp->m_data_workqueue, &ioend->io_work); 339 else 340 xfs_destroy_ioend(ioend, bio->bi_error); 341 } 342 343 STATIC int 344 xfs_map_blocks( 345 struct inode *inode, 346 loff_t offset, 347 struct xfs_bmbt_irec *imap, 348 int type) 349 { 350 struct xfs_inode *ip = XFS_I(inode); 351 struct xfs_mount *mp = ip->i_mount; 352 ssize_t count = 1 << inode->i_blkbits; 353 xfs_fileoff_t offset_fsb, end_fsb; 354 int error = 0; 355 int bmapi_flags = XFS_BMAPI_ENTIRE; 356 int nimaps = 1; 357 358 if (XFS_FORCED_SHUTDOWN(mp)) 359 return -EIO; 360 361 ASSERT(type != XFS_IO_COW); 362 if (type == XFS_IO_UNWRITTEN) 363 bmapi_flags |= XFS_BMAPI_IGSTATE; 364 365 xfs_ilock(ip, XFS_ILOCK_SHARED); 366 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 367 (ip->i_df.if_flags & XFS_IFEXTENTS)); 368 ASSERT(offset <= mp->m_super->s_maxbytes); 369 370 if (offset + count > mp->m_super->s_maxbytes) 371 count = mp->m_super->s_maxbytes - offset; 372 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count); 373 offset_fsb = XFS_B_TO_FSBT(mp, offset); 374 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, 375 imap, &nimaps, bmapi_flags); 376 /* 377 * Truncate an overwrite extent if there's a pending CoW 378 * reservation before the end of this extent. This forces us 379 * to come back to writepage to take care of the CoW. 380 */ 381 if (nimaps && type == XFS_IO_OVERWRITE) 382 xfs_reflink_trim_irec_to_next_cow(ip, offset_fsb, imap); 383 xfs_iunlock(ip, XFS_ILOCK_SHARED); 384 385 if (error) 386 return error; 387 388 if (type == XFS_IO_DELALLOC && 389 (!nimaps || isnullstartblock(imap->br_startblock))) { 390 error = xfs_iomap_write_allocate(ip, XFS_DATA_FORK, offset, 391 imap); 392 if (!error) 393 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap); 394 return error; 395 } 396 397 #ifdef DEBUG 398 if (type == XFS_IO_UNWRITTEN) { 399 ASSERT(nimaps); 400 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 401 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 402 } 403 #endif 404 if (nimaps) 405 trace_xfs_map_blocks_found(ip, offset, count, type, imap); 406 return 0; 407 } 408 409 STATIC bool 410 xfs_imap_valid( 411 struct inode *inode, 412 struct xfs_bmbt_irec *imap, 413 xfs_off_t offset) 414 { 415 offset >>= inode->i_blkbits; 416 417 return offset >= imap->br_startoff && 418 offset < imap->br_startoff + imap->br_blockcount; 419 } 420 421 STATIC void 422 xfs_start_buffer_writeback( 423 struct buffer_head *bh) 424 { 425 ASSERT(buffer_mapped(bh)); 426 ASSERT(buffer_locked(bh)); 427 ASSERT(!buffer_delay(bh)); 428 ASSERT(!buffer_unwritten(bh)); 429 430 mark_buffer_async_write(bh); 431 set_buffer_uptodate(bh); 432 clear_buffer_dirty(bh); 433 } 434 435 STATIC void 436 xfs_start_page_writeback( 437 struct page *page, 438 int clear_dirty) 439 { 440 ASSERT(PageLocked(page)); 441 ASSERT(!PageWriteback(page)); 442 443 /* 444 * if the page was not fully cleaned, we need to ensure that the higher 445 * layers come back to it correctly. That means we need to keep the page 446 * dirty, and for WB_SYNC_ALL writeback we need to ensure the 447 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to 448 * write this page in this writeback sweep will be made. 449 */ 450 if (clear_dirty) { 451 clear_page_dirty_for_io(page); 452 set_page_writeback(page); 453 } else 454 set_page_writeback_keepwrite(page); 455 456 unlock_page(page); 457 } 458 459 static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh) 460 { 461 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); 462 } 463 464 /* 465 * Submit the bio for an ioend. We are passed an ioend with a bio attached to 466 * it, and we submit that bio. The ioend may be used for multiple bio 467 * submissions, so we only want to allocate an append transaction for the ioend 468 * once. In the case of multiple bio submission, each bio will take an IO 469 * reference to the ioend to ensure that the ioend completion is only done once 470 * all bios have been submitted and the ioend is really done. 471 * 472 * If @fail is non-zero, it means that we have a situation where some part of 473 * the submission process has failed after we have marked paged for writeback 474 * and unlocked them. In this situation, we need to fail the bio and ioend 475 * rather than submit it to IO. This typically only happens on a filesystem 476 * shutdown. 477 */ 478 STATIC int 479 xfs_submit_ioend( 480 struct writeback_control *wbc, 481 struct xfs_ioend *ioend, 482 int status) 483 { 484 /* Reserve log space if we might write beyond the on-disk inode size. */ 485 if (!status && 486 ioend->io_type != XFS_IO_UNWRITTEN && 487 xfs_ioend_is_append(ioend) && 488 !ioend->io_append_trans) 489 status = xfs_setfilesize_trans_alloc(ioend); 490 491 ioend->io_bio->bi_private = ioend; 492 ioend->io_bio->bi_end_io = xfs_end_bio; 493 ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc); 494 495 /* 496 * If we are failing the IO now, just mark the ioend with an 497 * error and finish it. This will run IO completion immediately 498 * as there is only one reference to the ioend at this point in 499 * time. 500 */ 501 if (status) { 502 ioend->io_bio->bi_error = status; 503 bio_endio(ioend->io_bio); 504 return status; 505 } 506 507 submit_bio(ioend->io_bio); 508 return 0; 509 } 510 511 static void 512 xfs_init_bio_from_bh( 513 struct bio *bio, 514 struct buffer_head *bh) 515 { 516 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 517 bio->bi_bdev = bh->b_bdev; 518 } 519 520 static struct xfs_ioend * 521 xfs_alloc_ioend( 522 struct inode *inode, 523 unsigned int type, 524 xfs_off_t offset, 525 struct buffer_head *bh) 526 { 527 struct xfs_ioend *ioend; 528 struct bio *bio; 529 530 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, xfs_ioend_bioset); 531 xfs_init_bio_from_bh(bio, bh); 532 533 ioend = container_of(bio, struct xfs_ioend, io_inline_bio); 534 INIT_LIST_HEAD(&ioend->io_list); 535 ioend->io_type = type; 536 ioend->io_inode = inode; 537 ioend->io_size = 0; 538 ioend->io_offset = offset; 539 INIT_WORK(&ioend->io_work, xfs_end_io); 540 ioend->io_append_trans = NULL; 541 ioend->io_bio = bio; 542 return ioend; 543 } 544 545 /* 546 * Allocate a new bio, and chain the old bio to the new one. 547 * 548 * Note that we have to do perform the chaining in this unintuitive order 549 * so that the bi_private linkage is set up in the right direction for the 550 * traversal in xfs_destroy_ioend(). 551 */ 552 static void 553 xfs_chain_bio( 554 struct xfs_ioend *ioend, 555 struct writeback_control *wbc, 556 struct buffer_head *bh) 557 { 558 struct bio *new; 559 560 new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES); 561 xfs_init_bio_from_bh(new, bh); 562 563 bio_chain(ioend->io_bio, new); 564 bio_get(ioend->io_bio); /* for xfs_destroy_ioend */ 565 ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc); 566 submit_bio(ioend->io_bio); 567 ioend->io_bio = new; 568 } 569 570 /* 571 * Test to see if we've been building up a completion structure for 572 * earlier buffers -- if so, we try to append to this ioend if we 573 * can, otherwise we finish off any current ioend and start another. 574 * Return the ioend we finished off so that the caller can submit it 575 * once it has finished processing the dirty page. 576 */ 577 STATIC void 578 xfs_add_to_ioend( 579 struct inode *inode, 580 struct buffer_head *bh, 581 xfs_off_t offset, 582 struct xfs_writepage_ctx *wpc, 583 struct writeback_control *wbc, 584 struct list_head *iolist) 585 { 586 if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type || 587 bh->b_blocknr != wpc->last_block + 1 || 588 offset != wpc->ioend->io_offset + wpc->ioend->io_size) { 589 if (wpc->ioend) 590 list_add(&wpc->ioend->io_list, iolist); 591 wpc->ioend = xfs_alloc_ioend(inode, wpc->io_type, offset, bh); 592 } 593 594 /* 595 * If the buffer doesn't fit into the bio we need to allocate a new 596 * one. This shouldn't happen more than once for a given buffer. 597 */ 598 while (xfs_bio_add_buffer(wpc->ioend->io_bio, bh) != bh->b_size) 599 xfs_chain_bio(wpc->ioend, wbc, bh); 600 601 wpc->ioend->io_size += bh->b_size; 602 wpc->last_block = bh->b_blocknr; 603 xfs_start_buffer_writeback(bh); 604 } 605 606 STATIC void 607 xfs_map_buffer( 608 struct inode *inode, 609 struct buffer_head *bh, 610 struct xfs_bmbt_irec *imap, 611 xfs_off_t offset) 612 { 613 sector_t bn; 614 struct xfs_mount *m = XFS_I(inode)->i_mount; 615 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff); 616 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock); 617 618 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 619 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 620 621 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) + 622 ((offset - iomap_offset) >> inode->i_blkbits); 623 624 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode))); 625 626 bh->b_blocknr = bn; 627 set_buffer_mapped(bh); 628 } 629 630 STATIC void 631 xfs_map_at_offset( 632 struct inode *inode, 633 struct buffer_head *bh, 634 struct xfs_bmbt_irec *imap, 635 xfs_off_t offset) 636 { 637 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 638 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 639 640 xfs_map_buffer(inode, bh, imap, offset); 641 set_buffer_mapped(bh); 642 clear_buffer_delay(bh); 643 clear_buffer_unwritten(bh); 644 } 645 646 /* 647 * Test if a given page contains at least one buffer of a given @type. 648 * If @check_all_buffers is true, then we walk all the buffers in the page to 649 * try to find one of the type passed in. If it is not set, then the caller only 650 * needs to check the first buffer on the page for a match. 651 */ 652 STATIC bool 653 xfs_check_page_type( 654 struct page *page, 655 unsigned int type, 656 bool check_all_buffers) 657 { 658 struct buffer_head *bh; 659 struct buffer_head *head; 660 661 if (PageWriteback(page)) 662 return false; 663 if (!page->mapping) 664 return false; 665 if (!page_has_buffers(page)) 666 return false; 667 668 bh = head = page_buffers(page); 669 do { 670 if (buffer_unwritten(bh)) { 671 if (type == XFS_IO_UNWRITTEN) 672 return true; 673 } else if (buffer_delay(bh)) { 674 if (type == XFS_IO_DELALLOC) 675 return true; 676 } else if (buffer_dirty(bh) && buffer_mapped(bh)) { 677 if (type == XFS_IO_OVERWRITE) 678 return true; 679 } 680 681 /* If we are only checking the first buffer, we are done now. */ 682 if (!check_all_buffers) 683 break; 684 } while ((bh = bh->b_this_page) != head); 685 686 return false; 687 } 688 689 STATIC void 690 xfs_vm_invalidatepage( 691 struct page *page, 692 unsigned int offset, 693 unsigned int length) 694 { 695 trace_xfs_invalidatepage(page->mapping->host, page, offset, 696 length); 697 block_invalidatepage(page, offset, length); 698 } 699 700 /* 701 * If the page has delalloc buffers on it, we need to punch them out before we 702 * invalidate the page. If we don't, we leave a stale delalloc mapping on the 703 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read 704 * is done on that same region - the delalloc extent is returned when none is 705 * supposed to be there. 706 * 707 * We prevent this by truncating away the delalloc regions on the page before 708 * invalidating it. Because they are delalloc, we can do this without needing a 709 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this 710 * truncation without a transaction as there is no space left for block 711 * reservation (typically why we see a ENOSPC in writeback). 712 * 713 * This is not a performance critical path, so for now just do the punching a 714 * buffer head at a time. 715 */ 716 STATIC void 717 xfs_aops_discard_page( 718 struct page *page) 719 { 720 struct inode *inode = page->mapping->host; 721 struct xfs_inode *ip = XFS_I(inode); 722 struct buffer_head *bh, *head; 723 loff_t offset = page_offset(page); 724 725 if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true)) 726 goto out_invalidate; 727 728 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 729 goto out_invalidate; 730 731 xfs_alert(ip->i_mount, 732 "page discard on page %p, inode 0x%llx, offset %llu.", 733 page, ip->i_ino, offset); 734 735 xfs_ilock(ip, XFS_ILOCK_EXCL); 736 bh = head = page_buffers(page); 737 do { 738 int error; 739 xfs_fileoff_t start_fsb; 740 741 if (!buffer_delay(bh)) 742 goto next_buffer; 743 744 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset); 745 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1); 746 if (error) { 747 /* something screwed, just bail */ 748 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { 749 xfs_alert(ip->i_mount, 750 "page discard unable to remove delalloc mapping."); 751 } 752 break; 753 } 754 next_buffer: 755 offset += 1 << inode->i_blkbits; 756 757 } while ((bh = bh->b_this_page) != head); 758 759 xfs_iunlock(ip, XFS_ILOCK_EXCL); 760 out_invalidate: 761 xfs_vm_invalidatepage(page, 0, PAGE_SIZE); 762 return; 763 } 764 765 static int 766 xfs_map_cow( 767 struct xfs_writepage_ctx *wpc, 768 struct inode *inode, 769 loff_t offset, 770 unsigned int *new_type) 771 { 772 struct xfs_inode *ip = XFS_I(inode); 773 struct xfs_bmbt_irec imap; 774 bool is_cow = false; 775 int error; 776 777 /* 778 * If we already have a valid COW mapping keep using it. 779 */ 780 if (wpc->io_type == XFS_IO_COW) { 781 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, offset); 782 if (wpc->imap_valid) { 783 *new_type = XFS_IO_COW; 784 return 0; 785 } 786 } 787 788 /* 789 * Else we need to check if there is a COW mapping at this offset. 790 */ 791 xfs_ilock(ip, XFS_ILOCK_SHARED); 792 is_cow = xfs_reflink_find_cow_mapping(ip, offset, &imap); 793 xfs_iunlock(ip, XFS_ILOCK_SHARED); 794 795 if (!is_cow) 796 return 0; 797 798 /* 799 * And if the COW mapping has a delayed extent here we need to 800 * allocate real space for it now. 801 */ 802 if (isnullstartblock(imap.br_startblock)) { 803 error = xfs_iomap_write_allocate(ip, XFS_COW_FORK, offset, 804 &imap); 805 if (error) 806 return error; 807 } 808 809 wpc->io_type = *new_type = XFS_IO_COW; 810 wpc->imap_valid = true; 811 wpc->imap = imap; 812 return 0; 813 } 814 815 /* 816 * We implement an immediate ioend submission policy here to avoid needing to 817 * chain multiple ioends and hence nest mempool allocations which can violate 818 * forward progress guarantees we need to provide. The current ioend we are 819 * adding buffers to is cached on the writepage context, and if the new buffer 820 * does not append to the cached ioend it will create a new ioend and cache that 821 * instead. 822 * 823 * If a new ioend is created and cached, the old ioend is returned and queued 824 * locally for submission once the entire page is processed or an error has been 825 * detected. While ioends are submitted immediately after they are completed, 826 * batching optimisations are provided by higher level block plugging. 827 * 828 * At the end of a writeback pass, there will be a cached ioend remaining on the 829 * writepage context that the caller will need to submit. 830 */ 831 static int 832 xfs_writepage_map( 833 struct xfs_writepage_ctx *wpc, 834 struct writeback_control *wbc, 835 struct inode *inode, 836 struct page *page, 837 loff_t offset, 838 __uint64_t end_offset) 839 { 840 LIST_HEAD(submit_list); 841 struct xfs_ioend *ioend, *next; 842 struct buffer_head *bh, *head; 843 ssize_t len = 1 << inode->i_blkbits; 844 int error = 0; 845 int count = 0; 846 int uptodate = 1; 847 unsigned int new_type; 848 849 bh = head = page_buffers(page); 850 offset = page_offset(page); 851 do { 852 if (offset >= end_offset) 853 break; 854 if (!buffer_uptodate(bh)) 855 uptodate = 0; 856 857 /* 858 * set_page_dirty dirties all buffers in a page, independent 859 * of their state. The dirty state however is entirely 860 * meaningless for holes (!mapped && uptodate), so skip 861 * buffers covering holes here. 862 */ 863 if (!buffer_mapped(bh) && buffer_uptodate(bh)) { 864 wpc->imap_valid = false; 865 continue; 866 } 867 868 if (buffer_unwritten(bh)) 869 new_type = XFS_IO_UNWRITTEN; 870 else if (buffer_delay(bh)) 871 new_type = XFS_IO_DELALLOC; 872 else if (buffer_uptodate(bh)) 873 new_type = XFS_IO_OVERWRITE; 874 else { 875 if (PageUptodate(page)) 876 ASSERT(buffer_mapped(bh)); 877 /* 878 * This buffer is not uptodate and will not be 879 * written to disk. Ensure that we will put any 880 * subsequent writeable buffers into a new 881 * ioend. 882 */ 883 wpc->imap_valid = false; 884 continue; 885 } 886 887 if (xfs_is_reflink_inode(XFS_I(inode))) { 888 error = xfs_map_cow(wpc, inode, offset, &new_type); 889 if (error) 890 goto out; 891 } 892 893 if (wpc->io_type != new_type) { 894 wpc->io_type = new_type; 895 wpc->imap_valid = false; 896 } 897 898 if (wpc->imap_valid) 899 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, 900 offset); 901 if (!wpc->imap_valid) { 902 error = xfs_map_blocks(inode, offset, &wpc->imap, 903 wpc->io_type); 904 if (error) 905 goto out; 906 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, 907 offset); 908 } 909 if (wpc->imap_valid) { 910 lock_buffer(bh); 911 if (wpc->io_type != XFS_IO_OVERWRITE) 912 xfs_map_at_offset(inode, bh, &wpc->imap, offset); 913 xfs_add_to_ioend(inode, bh, offset, wpc, wbc, &submit_list); 914 count++; 915 } 916 917 } while (offset += len, ((bh = bh->b_this_page) != head)); 918 919 if (uptodate && bh == head) 920 SetPageUptodate(page); 921 922 ASSERT(wpc->ioend || list_empty(&submit_list)); 923 924 out: 925 /* 926 * On error, we have to fail the ioend here because we have locked 927 * buffers in the ioend. If we don't do this, we'll deadlock 928 * invalidating the page as that tries to lock the buffers on the page. 929 * Also, because we may have set pages under writeback, we have to make 930 * sure we run IO completion to mark the error state of the IO 931 * appropriately, so we can't cancel the ioend directly here. That means 932 * we have to mark this page as under writeback if we included any 933 * buffers from it in the ioend chain so that completion treats it 934 * correctly. 935 * 936 * If we didn't include the page in the ioend, the on error we can 937 * simply discard and unlock it as there are no other users of the page 938 * or it's buffers right now. The caller will still need to trigger 939 * submission of outstanding ioends on the writepage context so they are 940 * treated correctly on error. 941 */ 942 if (count) { 943 xfs_start_page_writeback(page, !error); 944 945 /* 946 * Preserve the original error if there was one, otherwise catch 947 * submission errors here and propagate into subsequent ioend 948 * submissions. 949 */ 950 list_for_each_entry_safe(ioend, next, &submit_list, io_list) { 951 int error2; 952 953 list_del_init(&ioend->io_list); 954 error2 = xfs_submit_ioend(wbc, ioend, error); 955 if (error2 && !error) 956 error = error2; 957 } 958 } else if (error) { 959 xfs_aops_discard_page(page); 960 ClearPageUptodate(page); 961 unlock_page(page); 962 } else { 963 /* 964 * We can end up here with no error and nothing to write if we 965 * race with a partial page truncate on a sub-page block sized 966 * filesystem. In that case we need to mark the page clean. 967 */ 968 xfs_start_page_writeback(page, 1); 969 end_page_writeback(page); 970 } 971 972 mapping_set_error(page->mapping, error); 973 return error; 974 } 975 976 /* 977 * Write out a dirty page. 978 * 979 * For delalloc space on the page we need to allocate space and flush it. 980 * For unwritten space on the page we need to start the conversion to 981 * regular allocated space. 982 * For any other dirty buffer heads on the page we should flush them. 983 */ 984 STATIC int 985 xfs_do_writepage( 986 struct page *page, 987 struct writeback_control *wbc, 988 void *data) 989 { 990 struct xfs_writepage_ctx *wpc = data; 991 struct inode *inode = page->mapping->host; 992 loff_t offset; 993 __uint64_t end_offset; 994 pgoff_t end_index; 995 996 trace_xfs_writepage(inode, page, 0, 0); 997 998 ASSERT(page_has_buffers(page)); 999 1000 /* 1001 * Refuse to write the page out if we are called from reclaim context. 1002 * 1003 * This avoids stack overflows when called from deeply used stacks in 1004 * random callers for direct reclaim or memcg reclaim. We explicitly 1005 * allow reclaim from kswapd as the stack usage there is relatively low. 1006 * 1007 * This should never happen except in the case of a VM regression so 1008 * warn about it. 1009 */ 1010 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == 1011 PF_MEMALLOC)) 1012 goto redirty; 1013 1014 /* 1015 * Given that we do not allow direct reclaim to call us, we should 1016 * never be called while in a filesystem transaction. 1017 */ 1018 if (WARN_ON_ONCE(current->flags & PF_FSTRANS)) 1019 goto redirty; 1020 1021 /* 1022 * Is this page beyond the end of the file? 1023 * 1024 * The page index is less than the end_index, adjust the end_offset 1025 * to the highest offset that this page should represent. 1026 * ----------------------------------------------------- 1027 * | file mapping | <EOF> | 1028 * ----------------------------------------------------- 1029 * | Page ... | Page N-2 | Page N-1 | Page N | | 1030 * ^--------------------------------^----------|-------- 1031 * | desired writeback range | see else | 1032 * ---------------------------------^------------------| 1033 */ 1034 offset = i_size_read(inode); 1035 end_index = offset >> PAGE_SHIFT; 1036 if (page->index < end_index) 1037 end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT; 1038 else { 1039 /* 1040 * Check whether the page to write out is beyond or straddles 1041 * i_size or not. 1042 * ------------------------------------------------------- 1043 * | file mapping | <EOF> | 1044 * ------------------------------------------------------- 1045 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond | 1046 * ^--------------------------------^-----------|--------- 1047 * | | Straddles | 1048 * ---------------------------------^-----------|--------| 1049 */ 1050 unsigned offset_into_page = offset & (PAGE_SIZE - 1); 1051 1052 /* 1053 * Skip the page if it is fully outside i_size, e.g. due to a 1054 * truncate operation that is in progress. We must redirty the 1055 * page so that reclaim stops reclaiming it. Otherwise 1056 * xfs_vm_releasepage() is called on it and gets confused. 1057 * 1058 * Note that the end_index is unsigned long, it would overflow 1059 * if the given offset is greater than 16TB on 32-bit system 1060 * and if we do check the page is fully outside i_size or not 1061 * via "if (page->index >= end_index + 1)" as "end_index + 1" 1062 * will be evaluated to 0. Hence this page will be redirtied 1063 * and be written out repeatedly which would result in an 1064 * infinite loop, the user program that perform this operation 1065 * will hang. Instead, we can verify this situation by checking 1066 * if the page to write is totally beyond the i_size or if it's 1067 * offset is just equal to the EOF. 1068 */ 1069 if (page->index > end_index || 1070 (page->index == end_index && offset_into_page == 0)) 1071 goto redirty; 1072 1073 /* 1074 * The page straddles i_size. It must be zeroed out on each 1075 * and every writepage invocation because it may be mmapped. 1076 * "A file is mapped in multiples of the page size. For a file 1077 * that is not a multiple of the page size, the remaining 1078 * memory is zeroed when mapped, and writes to that region are 1079 * not written out to the file." 1080 */ 1081 zero_user_segment(page, offset_into_page, PAGE_SIZE); 1082 1083 /* Adjust the end_offset to the end of file */ 1084 end_offset = offset; 1085 } 1086 1087 return xfs_writepage_map(wpc, wbc, inode, page, offset, end_offset); 1088 1089 redirty: 1090 redirty_page_for_writepage(wbc, page); 1091 unlock_page(page); 1092 return 0; 1093 } 1094 1095 STATIC int 1096 xfs_vm_writepage( 1097 struct page *page, 1098 struct writeback_control *wbc) 1099 { 1100 struct xfs_writepage_ctx wpc = { 1101 .io_type = XFS_IO_INVALID, 1102 }; 1103 int ret; 1104 1105 ret = xfs_do_writepage(page, wbc, &wpc); 1106 if (wpc.ioend) 1107 ret = xfs_submit_ioend(wbc, wpc.ioend, ret); 1108 return ret; 1109 } 1110 1111 STATIC int 1112 xfs_vm_writepages( 1113 struct address_space *mapping, 1114 struct writeback_control *wbc) 1115 { 1116 struct xfs_writepage_ctx wpc = { 1117 .io_type = XFS_IO_INVALID, 1118 }; 1119 int ret; 1120 1121 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED); 1122 if (dax_mapping(mapping)) 1123 return dax_writeback_mapping_range(mapping, 1124 xfs_find_bdev_for_inode(mapping->host), wbc); 1125 1126 ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc); 1127 if (wpc.ioend) 1128 ret = xfs_submit_ioend(wbc, wpc.ioend, ret); 1129 return ret; 1130 } 1131 1132 /* 1133 * Called to move a page into cleanable state - and from there 1134 * to be released. The page should already be clean. We always 1135 * have buffer heads in this call. 1136 * 1137 * Returns 1 if the page is ok to release, 0 otherwise. 1138 */ 1139 STATIC int 1140 xfs_vm_releasepage( 1141 struct page *page, 1142 gfp_t gfp_mask) 1143 { 1144 int delalloc, unwritten; 1145 1146 trace_xfs_releasepage(page->mapping->host, page, 0, 0); 1147 1148 /* 1149 * mm accommodates an old ext3 case where clean pages might not have had 1150 * the dirty bit cleared. Thus, it can send actual dirty pages to 1151 * ->releasepage() via shrink_active_list(). Conversely, 1152 * block_invalidatepage() can send pages that are still marked dirty 1153 * but otherwise have invalidated buffers. 1154 * 1155 * We've historically freed buffers on the latter. Instead, quietly 1156 * filter out all dirty pages to avoid spurious buffer state warnings. 1157 * This can likely be removed once shrink_active_list() is fixed. 1158 */ 1159 if (PageDirty(page)) 1160 return 0; 1161 1162 xfs_count_page_state(page, &delalloc, &unwritten); 1163 1164 if (WARN_ON_ONCE(delalloc)) 1165 return 0; 1166 if (WARN_ON_ONCE(unwritten)) 1167 return 0; 1168 1169 return try_to_free_buffers(page); 1170 } 1171 1172 /* 1173 * If this is O_DIRECT or the mpage code calling tell them how large the mapping 1174 * is, so that we can avoid repeated get_blocks calls. 1175 * 1176 * If the mapping spans EOF, then we have to break the mapping up as the mapping 1177 * for blocks beyond EOF must be marked new so that sub block regions can be 1178 * correctly zeroed. We can't do this for mappings within EOF unless the mapping 1179 * was just allocated or is unwritten, otherwise the callers would overwrite 1180 * existing data with zeros. Hence we have to split the mapping into a range up 1181 * to and including EOF, and a second mapping for beyond EOF. 1182 */ 1183 static void 1184 xfs_map_trim_size( 1185 struct inode *inode, 1186 sector_t iblock, 1187 struct buffer_head *bh_result, 1188 struct xfs_bmbt_irec *imap, 1189 xfs_off_t offset, 1190 ssize_t size) 1191 { 1192 xfs_off_t mapping_size; 1193 1194 mapping_size = imap->br_startoff + imap->br_blockcount - iblock; 1195 mapping_size <<= inode->i_blkbits; 1196 1197 ASSERT(mapping_size > 0); 1198 if (mapping_size > size) 1199 mapping_size = size; 1200 if (offset < i_size_read(inode) && 1201 offset + mapping_size >= i_size_read(inode)) { 1202 /* limit mapping to block that spans EOF */ 1203 mapping_size = roundup_64(i_size_read(inode) - offset, 1204 1 << inode->i_blkbits); 1205 } 1206 if (mapping_size > LONG_MAX) 1207 mapping_size = LONG_MAX; 1208 1209 bh_result->b_size = mapping_size; 1210 } 1211 1212 static int 1213 xfs_get_blocks( 1214 struct inode *inode, 1215 sector_t iblock, 1216 struct buffer_head *bh_result, 1217 int create) 1218 { 1219 struct xfs_inode *ip = XFS_I(inode); 1220 struct xfs_mount *mp = ip->i_mount; 1221 xfs_fileoff_t offset_fsb, end_fsb; 1222 int error = 0; 1223 int lockmode = 0; 1224 struct xfs_bmbt_irec imap; 1225 int nimaps = 1; 1226 xfs_off_t offset; 1227 ssize_t size; 1228 1229 BUG_ON(create); 1230 1231 if (XFS_FORCED_SHUTDOWN(mp)) 1232 return -EIO; 1233 1234 offset = (xfs_off_t)iblock << inode->i_blkbits; 1235 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits)); 1236 size = bh_result->b_size; 1237 1238 if (offset >= i_size_read(inode)) 1239 return 0; 1240 1241 /* 1242 * Direct I/O is usually done on preallocated files, so try getting 1243 * a block mapping without an exclusive lock first. 1244 */ 1245 lockmode = xfs_ilock_data_map_shared(ip); 1246 1247 ASSERT(offset <= mp->m_super->s_maxbytes); 1248 if (offset + size > mp->m_super->s_maxbytes) 1249 size = mp->m_super->s_maxbytes - offset; 1250 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size); 1251 offset_fsb = XFS_B_TO_FSBT(mp, offset); 1252 1253 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, 1254 &imap, &nimaps, XFS_BMAPI_ENTIRE); 1255 if (error) 1256 goto out_unlock; 1257 1258 if (nimaps) { 1259 trace_xfs_get_blocks_found(ip, offset, size, 1260 ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN 1261 : XFS_IO_OVERWRITE, &imap); 1262 xfs_iunlock(ip, lockmode); 1263 } else { 1264 trace_xfs_get_blocks_notfound(ip, offset, size); 1265 goto out_unlock; 1266 } 1267 1268 /* trim mapping down to size requested */ 1269 xfs_map_trim_size(inode, iblock, bh_result, &imap, offset, size); 1270 1271 /* 1272 * For unwritten extents do not report a disk address in the buffered 1273 * read case (treat as if we're reading into a hole). 1274 */ 1275 if (imap.br_startblock != HOLESTARTBLOCK && 1276 imap.br_startblock != DELAYSTARTBLOCK && 1277 !ISUNWRITTEN(&imap)) 1278 xfs_map_buffer(inode, bh_result, &imap, offset); 1279 1280 /* 1281 * If this is a realtime file, data may be on a different device. 1282 * to that pointed to from the buffer_head b_bdev currently. 1283 */ 1284 bh_result->b_bdev = xfs_find_bdev_for_inode(inode); 1285 return 0; 1286 1287 out_unlock: 1288 xfs_iunlock(ip, lockmode); 1289 return error; 1290 } 1291 1292 STATIC ssize_t 1293 xfs_vm_direct_IO( 1294 struct kiocb *iocb, 1295 struct iov_iter *iter) 1296 { 1297 /* 1298 * We just need the method present so that open/fcntl allow direct I/O. 1299 */ 1300 return -EINVAL; 1301 } 1302 1303 STATIC sector_t 1304 xfs_vm_bmap( 1305 struct address_space *mapping, 1306 sector_t block) 1307 { 1308 struct inode *inode = (struct inode *)mapping->host; 1309 struct xfs_inode *ip = XFS_I(inode); 1310 1311 trace_xfs_vm_bmap(XFS_I(inode)); 1312 1313 /* 1314 * The swap code (ab-)uses ->bmap to get a block mapping and then 1315 * bypasseѕ the file system for actual I/O. We really can't allow 1316 * that on reflinks inodes, so we have to skip out here. And yes, 1317 * 0 is the magic code for a bmap error.. 1318 */ 1319 if (xfs_is_reflink_inode(ip)) 1320 return 0; 1321 1322 filemap_write_and_wait(mapping); 1323 return generic_block_bmap(mapping, block, xfs_get_blocks); 1324 } 1325 1326 STATIC int 1327 xfs_vm_readpage( 1328 struct file *unused, 1329 struct page *page) 1330 { 1331 trace_xfs_vm_readpage(page->mapping->host, 1); 1332 return mpage_readpage(page, xfs_get_blocks); 1333 } 1334 1335 STATIC int 1336 xfs_vm_readpages( 1337 struct file *unused, 1338 struct address_space *mapping, 1339 struct list_head *pages, 1340 unsigned nr_pages) 1341 { 1342 trace_xfs_vm_readpages(mapping->host, nr_pages); 1343 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks); 1344 } 1345 1346 /* 1347 * This is basically a copy of __set_page_dirty_buffers() with one 1348 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them 1349 * dirty, we'll never be able to clean them because we don't write buffers 1350 * beyond EOF, and that means we can't invalidate pages that span EOF 1351 * that have been marked dirty. Further, the dirty state can leak into 1352 * the file interior if the file is extended, resulting in all sorts of 1353 * bad things happening as the state does not match the underlying data. 1354 * 1355 * XXX: this really indicates that bufferheads in XFS need to die. Warts like 1356 * this only exist because of bufferheads and how the generic code manages them. 1357 */ 1358 STATIC int 1359 xfs_vm_set_page_dirty( 1360 struct page *page) 1361 { 1362 struct address_space *mapping = page->mapping; 1363 struct inode *inode = mapping->host; 1364 loff_t end_offset; 1365 loff_t offset; 1366 int newly_dirty; 1367 1368 if (unlikely(!mapping)) 1369 return !TestSetPageDirty(page); 1370 1371 end_offset = i_size_read(inode); 1372 offset = page_offset(page); 1373 1374 spin_lock(&mapping->private_lock); 1375 if (page_has_buffers(page)) { 1376 struct buffer_head *head = page_buffers(page); 1377 struct buffer_head *bh = head; 1378 1379 do { 1380 if (offset < end_offset) 1381 set_buffer_dirty(bh); 1382 bh = bh->b_this_page; 1383 offset += 1 << inode->i_blkbits; 1384 } while (bh != head); 1385 } 1386 /* 1387 * Lock out page->mem_cgroup migration to keep PageDirty 1388 * synchronized with per-memcg dirty page counters. 1389 */ 1390 lock_page_memcg(page); 1391 newly_dirty = !TestSetPageDirty(page); 1392 spin_unlock(&mapping->private_lock); 1393 1394 if (newly_dirty) { 1395 /* sigh - __set_page_dirty() is static, so copy it here, too */ 1396 unsigned long flags; 1397 1398 spin_lock_irqsave(&mapping->tree_lock, flags); 1399 if (page->mapping) { /* Race with truncate? */ 1400 WARN_ON_ONCE(!PageUptodate(page)); 1401 account_page_dirtied(page, mapping); 1402 radix_tree_tag_set(&mapping->page_tree, 1403 page_index(page), PAGECACHE_TAG_DIRTY); 1404 } 1405 spin_unlock_irqrestore(&mapping->tree_lock, flags); 1406 } 1407 unlock_page_memcg(page); 1408 if (newly_dirty) 1409 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1410 return newly_dirty; 1411 } 1412 1413 const struct address_space_operations xfs_address_space_operations = { 1414 .readpage = xfs_vm_readpage, 1415 .readpages = xfs_vm_readpages, 1416 .writepage = xfs_vm_writepage, 1417 .writepages = xfs_vm_writepages, 1418 .set_page_dirty = xfs_vm_set_page_dirty, 1419 .releasepage = xfs_vm_releasepage, 1420 .invalidatepage = xfs_vm_invalidatepage, 1421 .bmap = xfs_vm_bmap, 1422 .direct_IO = xfs_vm_direct_IO, 1423 .migratepage = buffer_migrate_page, 1424 .is_partially_uptodate = block_is_partially_uptodate, 1425 .error_remove_page = generic_error_remove_page, 1426 }; 1427