1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * Copyright (c) 2016-2025 Christoph Hellwig. 5 * All Rights Reserved. 6 */ 7 #include "xfs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_trans.h" 15 #include "xfs_iomap.h" 16 #include "xfs_trace.h" 17 #include "xfs_bmap.h" 18 #include "xfs_bmap_util.h" 19 #include "xfs_reflink.h" 20 #include "xfs_errortag.h" 21 #include "xfs_error.h" 22 #include "xfs_icache.h" 23 #include "xfs_zone_alloc.h" 24 #include "xfs_rtgroup.h" 25 26 struct xfs_writepage_ctx { 27 struct iomap_writepage_ctx ctx; 28 unsigned int data_seq; 29 unsigned int cow_seq; 30 }; 31 32 static inline struct xfs_writepage_ctx * 33 XFS_WPC(struct iomap_writepage_ctx *ctx) 34 { 35 return container_of(ctx, struct xfs_writepage_ctx, ctx); 36 } 37 38 /* 39 * Fast and loose check if this write could update the on-disk inode size. 40 */ 41 static inline bool xfs_ioend_is_append(struct iomap_ioend *ioend) 42 { 43 return ioend->io_offset + ioend->io_size > 44 XFS_I(ioend->io_inode)->i_disk_size; 45 } 46 47 /* 48 * Update on-disk file size now that data has been written to disk. 49 */ 50 int 51 xfs_setfilesize( 52 struct xfs_inode *ip, 53 xfs_off_t offset, 54 size_t size) 55 { 56 struct xfs_mount *mp = ip->i_mount; 57 struct xfs_trans *tp; 58 xfs_fsize_t isize; 59 int error; 60 61 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp); 62 if (error) 63 return error; 64 65 xfs_ilock(ip, XFS_ILOCK_EXCL); 66 isize = xfs_new_eof(ip, offset + size); 67 if (!isize) { 68 xfs_iunlock(ip, XFS_ILOCK_EXCL); 69 xfs_trans_cancel(tp); 70 return 0; 71 } 72 73 trace_xfs_setfilesize(ip, offset, size); 74 75 ip->i_disk_size = isize; 76 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 77 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 78 79 return xfs_trans_commit(tp); 80 } 81 82 static void 83 xfs_ioend_put_open_zones( 84 struct iomap_ioend *ioend) 85 { 86 struct iomap_ioend *tmp; 87 88 /* 89 * Put the open zone for all ioends merged into this one (if any). 90 */ 91 list_for_each_entry(tmp, &ioend->io_list, io_list) 92 xfs_open_zone_put(tmp->io_private); 93 94 /* 95 * The main ioend might not have an open zone if the submission failed 96 * before xfs_zone_alloc_and_submit got called. 97 */ 98 if (ioend->io_private) 99 xfs_open_zone_put(ioend->io_private); 100 } 101 102 /* 103 * IO write completion. 104 */ 105 STATIC void 106 xfs_end_ioend( 107 struct iomap_ioend *ioend) 108 { 109 struct xfs_inode *ip = XFS_I(ioend->io_inode); 110 struct xfs_mount *mp = ip->i_mount; 111 bool is_zoned = xfs_is_zoned_inode(ip); 112 xfs_off_t offset = ioend->io_offset; 113 size_t size = ioend->io_size; 114 unsigned int nofs_flag; 115 int error; 116 117 /* 118 * We can allocate memory here while doing writeback on behalf of 119 * memory reclaim. To avoid memory allocation deadlocks set the 120 * task-wide nofs context for the following operations. 121 */ 122 nofs_flag = memalloc_nofs_save(); 123 124 /* 125 * Just clean up the in-memory structures if the fs has been shut down. 126 */ 127 if (xfs_is_shutdown(mp)) { 128 error = -EIO; 129 goto done; 130 } 131 132 /* 133 * Clean up all COW blocks and underlying data fork delalloc blocks on 134 * I/O error. The delalloc punch is required because this ioend was 135 * mapped to blocks in the COW fork and the associated pages are no 136 * longer dirty. If we don't remove delalloc blocks here, they become 137 * stale and can corrupt free space accounting on unmount. 138 */ 139 error = blk_status_to_errno(ioend->io_bio.bi_status); 140 if (unlikely(error)) { 141 if (ioend->io_flags & IOMAP_IOEND_SHARED) { 142 ASSERT(!is_zoned); 143 xfs_reflink_cancel_cow_range(ip, offset, size, true); 144 xfs_bmap_punch_delalloc_range(ip, XFS_DATA_FORK, offset, 145 offset + size, NULL); 146 } 147 goto done; 148 } 149 150 /* 151 * Success: commit the COW or unwritten blocks if needed. 152 */ 153 if (is_zoned) 154 error = xfs_zoned_end_io(ip, offset, size, ioend->io_sector, 155 ioend->io_private, NULLFSBLOCK); 156 else if (ioend->io_flags & IOMAP_IOEND_SHARED) 157 error = xfs_reflink_end_cow(ip, offset, size); 158 else if (ioend->io_flags & IOMAP_IOEND_UNWRITTEN) 159 error = xfs_iomap_write_unwritten(ip, offset, size, false); 160 161 if (!error && 162 !(ioend->io_flags & IOMAP_IOEND_DIRECT) && 163 xfs_ioend_is_append(ioend)) 164 error = xfs_setfilesize(ip, offset, size); 165 done: 166 if (is_zoned) 167 xfs_ioend_put_open_zones(ioend); 168 iomap_finish_ioends(ioend, error); 169 memalloc_nofs_restore(nofs_flag); 170 } 171 172 /* 173 * Finish all pending IO completions that require transactional modifications. 174 * 175 * We try to merge physical and logically contiguous ioends before completion to 176 * minimise the number of transactions we need to perform during IO completion. 177 * Both unwritten extent conversion and COW remapping need to iterate and modify 178 * one physical extent at a time, so we gain nothing by merging physically 179 * discontiguous extents here. 180 * 181 * The ioend chain length that we can be processing here is largely unbound in 182 * length and we may have to perform significant amounts of work on each ioend 183 * to complete it. Hence we have to be careful about holding the CPU for too 184 * long in this loop. 185 */ 186 void 187 xfs_end_io( 188 struct work_struct *work) 189 { 190 struct xfs_inode *ip = 191 container_of(work, struct xfs_inode, i_ioend_work); 192 struct iomap_ioend *ioend; 193 struct list_head tmp; 194 unsigned long flags; 195 196 spin_lock_irqsave(&ip->i_ioend_lock, flags); 197 list_replace_init(&ip->i_ioend_list, &tmp); 198 spin_unlock_irqrestore(&ip->i_ioend_lock, flags); 199 200 iomap_sort_ioends(&tmp); 201 while ((ioend = list_first_entry_or_null(&tmp, struct iomap_ioend, 202 io_list))) { 203 list_del_init(&ioend->io_list); 204 iomap_ioend_try_merge(ioend, &tmp); 205 xfs_end_ioend(ioend); 206 cond_resched(); 207 } 208 } 209 210 void 211 xfs_end_bio( 212 struct bio *bio) 213 { 214 struct iomap_ioend *ioend = iomap_ioend_from_bio(bio); 215 struct xfs_inode *ip = XFS_I(ioend->io_inode); 216 struct xfs_mount *mp = ip->i_mount; 217 unsigned long flags; 218 219 /* 220 * For Appends record the actually written block number and set the 221 * boundary flag if needed. 222 */ 223 if (IS_ENABLED(CONFIG_XFS_RT) && bio_is_zone_append(bio)) { 224 ioend->io_sector = bio->bi_iter.bi_sector; 225 xfs_mark_rtg_boundary(ioend); 226 } 227 228 spin_lock_irqsave(&ip->i_ioend_lock, flags); 229 if (list_empty(&ip->i_ioend_list)) 230 WARN_ON_ONCE(!queue_work(mp->m_unwritten_workqueue, 231 &ip->i_ioend_work)); 232 list_add_tail(&ioend->io_list, &ip->i_ioend_list); 233 spin_unlock_irqrestore(&ip->i_ioend_lock, flags); 234 } 235 236 /* 237 * Fast revalidation of the cached writeback mapping. Return true if the current 238 * mapping is valid, false otherwise. 239 */ 240 static bool 241 xfs_imap_valid( 242 struct iomap_writepage_ctx *wpc, 243 struct xfs_inode *ip, 244 loff_t offset) 245 { 246 if (offset < wpc->iomap.offset || 247 offset >= wpc->iomap.offset + wpc->iomap.length) 248 return false; 249 /* 250 * If this is a COW mapping, it is sufficient to check that the mapping 251 * covers the offset. Be careful to check this first because the caller 252 * can revalidate a COW mapping without updating the data seqno. 253 */ 254 if (wpc->iomap.flags & IOMAP_F_SHARED) 255 return true; 256 257 /* 258 * This is not a COW mapping. Check the sequence number of the data fork 259 * because concurrent changes could have invalidated the extent. Check 260 * the COW fork because concurrent changes since the last time we 261 * checked (and found nothing at this offset) could have added 262 * overlapping blocks. 263 */ 264 if (XFS_WPC(wpc)->data_seq != READ_ONCE(ip->i_df.if_seq)) { 265 trace_xfs_wb_data_iomap_invalid(ip, &wpc->iomap, 266 XFS_WPC(wpc)->data_seq, XFS_DATA_FORK); 267 return false; 268 } 269 if (xfs_inode_has_cow_data(ip) && 270 XFS_WPC(wpc)->cow_seq != READ_ONCE(ip->i_cowfp->if_seq)) { 271 trace_xfs_wb_cow_iomap_invalid(ip, &wpc->iomap, 272 XFS_WPC(wpc)->cow_seq, XFS_COW_FORK); 273 return false; 274 } 275 return true; 276 } 277 278 static int 279 xfs_map_blocks( 280 struct iomap_writepage_ctx *wpc, 281 struct inode *inode, 282 loff_t offset, 283 unsigned int len) 284 { 285 struct xfs_inode *ip = XFS_I(inode); 286 struct xfs_mount *mp = ip->i_mount; 287 ssize_t count = i_blocksize(inode); 288 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 289 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count); 290 xfs_fileoff_t cow_fsb; 291 int whichfork; 292 struct xfs_bmbt_irec imap; 293 struct xfs_iext_cursor icur; 294 int retries = 0; 295 int error = 0; 296 unsigned int *seq; 297 298 if (xfs_is_shutdown(mp)) 299 return -EIO; 300 301 XFS_ERRORTAG_DELAY(mp, XFS_ERRTAG_WB_DELAY_MS); 302 303 /* 304 * COW fork blocks can overlap data fork blocks even if the blocks 305 * aren't shared. COW I/O always takes precedent, so we must always 306 * check for overlap on reflink inodes unless the mapping is already a 307 * COW one, or the COW fork hasn't changed from the last time we looked 308 * at it. 309 * 310 * It's safe to check the COW fork if_seq here without the ILOCK because 311 * we've indirectly protected against concurrent updates: writeback has 312 * the page locked, which prevents concurrent invalidations by reflink 313 * and directio and prevents concurrent buffered writes to the same 314 * page. Changes to if_seq always happen under i_lock, which protects 315 * against concurrent updates and provides a memory barrier on the way 316 * out that ensures that we always see the current value. 317 */ 318 if (xfs_imap_valid(wpc, ip, offset)) 319 return 0; 320 321 /* 322 * If we don't have a valid map, now it's time to get a new one for this 323 * offset. This will convert delayed allocations (including COW ones) 324 * into real extents. If we return without a valid map, it means we 325 * landed in a hole and we skip the block. 326 */ 327 retry: 328 cow_fsb = NULLFILEOFF; 329 whichfork = XFS_DATA_FORK; 330 xfs_ilock(ip, XFS_ILOCK_SHARED); 331 ASSERT(!xfs_need_iread_extents(&ip->i_df)); 332 333 /* 334 * Check if this is offset is covered by a COW extents, and if yes use 335 * it directly instead of looking up anything in the data fork. 336 */ 337 if (xfs_inode_has_cow_data(ip) && 338 xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap)) 339 cow_fsb = imap.br_startoff; 340 if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) { 341 XFS_WPC(wpc)->cow_seq = READ_ONCE(ip->i_cowfp->if_seq); 342 xfs_iunlock(ip, XFS_ILOCK_SHARED); 343 344 whichfork = XFS_COW_FORK; 345 goto allocate_blocks; 346 } 347 348 /* 349 * No COW extent overlap. Revalidate now that we may have updated 350 * ->cow_seq. If the data mapping is still valid, we're done. 351 */ 352 if (xfs_imap_valid(wpc, ip, offset)) { 353 xfs_iunlock(ip, XFS_ILOCK_SHARED); 354 return 0; 355 } 356 357 /* 358 * If we don't have a valid map, now it's time to get a new one for this 359 * offset. This will convert delayed allocations (including COW ones) 360 * into real extents. 361 */ 362 if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap)) 363 imap.br_startoff = end_fsb; /* fake a hole past EOF */ 364 XFS_WPC(wpc)->data_seq = READ_ONCE(ip->i_df.if_seq); 365 xfs_iunlock(ip, XFS_ILOCK_SHARED); 366 367 /* landed in a hole or beyond EOF? */ 368 if (imap.br_startoff > offset_fsb) { 369 imap.br_blockcount = imap.br_startoff - offset_fsb; 370 imap.br_startoff = offset_fsb; 371 imap.br_startblock = HOLESTARTBLOCK; 372 imap.br_state = XFS_EXT_NORM; 373 } 374 375 /* 376 * Truncate to the next COW extent if there is one. This is the only 377 * opportunity to do this because we can skip COW fork lookups for the 378 * subsequent blocks in the mapping; however, the requirement to treat 379 * the COW range separately remains. 380 */ 381 if (cow_fsb != NULLFILEOFF && 382 cow_fsb < imap.br_startoff + imap.br_blockcount) 383 imap.br_blockcount = cow_fsb - imap.br_startoff; 384 385 /* got a delalloc extent? */ 386 if (imap.br_startblock != HOLESTARTBLOCK && 387 isnullstartblock(imap.br_startblock)) 388 goto allocate_blocks; 389 390 xfs_bmbt_to_iomap(ip, &wpc->iomap, &imap, 0, 0, XFS_WPC(wpc)->data_seq); 391 trace_xfs_map_blocks_found(ip, offset, count, whichfork, &imap); 392 return 0; 393 allocate_blocks: 394 /* 395 * Convert a dellalloc extent to a real one. The current page is held 396 * locked so nothing could have removed the block backing offset_fsb, 397 * although it could have moved from the COW to the data fork by another 398 * thread. 399 */ 400 if (whichfork == XFS_COW_FORK) 401 seq = &XFS_WPC(wpc)->cow_seq; 402 else 403 seq = &XFS_WPC(wpc)->data_seq; 404 405 error = xfs_bmapi_convert_delalloc(ip, whichfork, offset, 406 &wpc->iomap, seq); 407 if (error) { 408 /* 409 * If we failed to find the extent in the COW fork we might have 410 * raced with a COW to data fork conversion or truncate. 411 * Restart the lookup to catch the extent in the data fork for 412 * the former case, but prevent additional retries to avoid 413 * looping forever for the latter case. 414 */ 415 if (error == -EAGAIN && whichfork == XFS_COW_FORK && !retries++) 416 goto retry; 417 ASSERT(error != -EAGAIN); 418 return error; 419 } 420 421 /* 422 * Due to merging the return real extent might be larger than the 423 * original delalloc one. Trim the return extent to the next COW 424 * boundary again to force a re-lookup. 425 */ 426 if (whichfork != XFS_COW_FORK && cow_fsb != NULLFILEOFF) { 427 loff_t cow_offset = XFS_FSB_TO_B(mp, cow_fsb); 428 429 if (cow_offset < wpc->iomap.offset + wpc->iomap.length) 430 wpc->iomap.length = cow_offset - wpc->iomap.offset; 431 } 432 433 ASSERT(wpc->iomap.offset <= offset); 434 ASSERT(wpc->iomap.offset + wpc->iomap.length > offset); 435 trace_xfs_map_blocks_alloc(ip, offset, count, whichfork, &imap); 436 return 0; 437 } 438 439 static bool 440 xfs_ioend_needs_wq_completion( 441 struct iomap_ioend *ioend) 442 { 443 /* Changing inode size requires a transaction. */ 444 if (xfs_ioend_is_append(ioend)) 445 return true; 446 447 /* Extent manipulation requires a transaction. */ 448 if (ioend->io_flags & (IOMAP_IOEND_UNWRITTEN | IOMAP_IOEND_SHARED)) 449 return true; 450 451 /* Page cache invalidation cannot be done in irq context. */ 452 if (ioend->io_flags & IOMAP_IOEND_DONTCACHE) 453 return true; 454 455 return false; 456 } 457 458 static int 459 xfs_submit_ioend( 460 struct iomap_writepage_ctx *wpc, 461 int status) 462 { 463 struct iomap_ioend *ioend = wpc->ioend; 464 unsigned int nofs_flag; 465 466 /* 467 * We can allocate memory here while doing writeback on behalf of 468 * memory reclaim. To avoid memory allocation deadlocks set the 469 * task-wide nofs context for the following operations. 470 */ 471 nofs_flag = memalloc_nofs_save(); 472 473 /* Convert CoW extents to regular */ 474 if (!status && (ioend->io_flags & IOMAP_IOEND_SHARED)) { 475 status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode), 476 ioend->io_offset, ioend->io_size); 477 } 478 479 memalloc_nofs_restore(nofs_flag); 480 481 /* send ioends that might require a transaction to the completion wq */ 482 if (xfs_ioend_needs_wq_completion(ioend)) 483 ioend->io_bio.bi_end_io = xfs_end_bio; 484 485 if (status) 486 return status; 487 submit_bio(&ioend->io_bio); 488 return 0; 489 } 490 491 /* 492 * If the folio has delalloc blocks on it, the caller is asking us to punch them 493 * out. If we don't, we can leave a stale delalloc mapping covered by a clean 494 * page that needs to be dirtied again before the delalloc mapping can be 495 * converted. This stale delalloc mapping can trip up a later direct I/O read 496 * operation on the same region. 497 * 498 * We prevent this by truncating away the delalloc regions on the folio. Because 499 * they are delalloc, we can do this without needing a transaction. Indeed - if 500 * we get ENOSPC errors, we have to be able to do this truncation without a 501 * transaction as there is no space left for block reservation (typically why 502 * we see a ENOSPC in writeback). 503 */ 504 static void 505 xfs_discard_folio( 506 struct folio *folio, 507 loff_t pos) 508 { 509 struct xfs_inode *ip = XFS_I(folio->mapping->host); 510 struct xfs_mount *mp = ip->i_mount; 511 512 if (xfs_is_shutdown(mp)) 513 return; 514 515 xfs_alert_ratelimited(mp, 516 "page discard on page "PTR_FMT", inode 0x%llx, pos %llu.", 517 folio, ip->i_ino, pos); 518 519 /* 520 * The end of the punch range is always the offset of the first 521 * byte of the next folio. Hence the end offset is only dependent on the 522 * folio itself and not the start offset that is passed in. 523 */ 524 xfs_bmap_punch_delalloc_range(ip, XFS_DATA_FORK, pos, 525 folio_pos(folio) + folio_size(folio), NULL); 526 } 527 528 static const struct iomap_writeback_ops xfs_writeback_ops = { 529 .map_blocks = xfs_map_blocks, 530 .submit_ioend = xfs_submit_ioend, 531 .discard_folio = xfs_discard_folio, 532 }; 533 534 struct xfs_zoned_writepage_ctx { 535 struct iomap_writepage_ctx ctx; 536 struct xfs_open_zone *open_zone; 537 }; 538 539 static inline struct xfs_zoned_writepage_ctx * 540 XFS_ZWPC(struct iomap_writepage_ctx *ctx) 541 { 542 return container_of(ctx, struct xfs_zoned_writepage_ctx, ctx); 543 } 544 545 static int 546 xfs_zoned_map_blocks( 547 struct iomap_writepage_ctx *wpc, 548 struct inode *inode, 549 loff_t offset, 550 unsigned int len) 551 { 552 struct xfs_inode *ip = XFS_I(inode); 553 struct xfs_mount *mp = ip->i_mount; 554 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 555 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + len); 556 xfs_filblks_t count_fsb; 557 struct xfs_bmbt_irec imap, del; 558 struct xfs_iext_cursor icur; 559 560 if (xfs_is_shutdown(mp)) 561 return -EIO; 562 563 XFS_ERRORTAG_DELAY(mp, XFS_ERRTAG_WB_DELAY_MS); 564 565 /* 566 * All dirty data must be covered by delalloc extents. But truncate can 567 * remove delalloc extents underneath us or reduce their size. 568 * Returning a hole tells iomap to not write back any data from this 569 * range, which is the right thing to do in that case. 570 * 571 * Otherwise just tell iomap to treat ranges previously covered by a 572 * delalloc extent as mapped. The actual block allocation will be done 573 * just before submitting the bio. 574 * 575 * This implies we never map outside folios that are locked or marked 576 * as under writeback, and thus there is no need check the fork sequence 577 * count here. 578 */ 579 xfs_ilock(ip, XFS_ILOCK_EXCL); 580 if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap)) 581 imap.br_startoff = end_fsb; /* fake a hole past EOF */ 582 if (imap.br_startoff > offset_fsb) { 583 imap.br_blockcount = imap.br_startoff - offset_fsb; 584 imap.br_startoff = offset_fsb; 585 imap.br_startblock = HOLESTARTBLOCK; 586 imap.br_state = XFS_EXT_NORM; 587 xfs_iunlock(ip, XFS_ILOCK_EXCL); 588 xfs_bmbt_to_iomap(ip, &wpc->iomap, &imap, 0, 0, 0); 589 return 0; 590 } 591 end_fsb = min(end_fsb, imap.br_startoff + imap.br_blockcount); 592 count_fsb = end_fsb - offset_fsb; 593 594 del = imap; 595 xfs_trim_extent(&del, offset_fsb, count_fsb); 596 xfs_bmap_del_extent_delay(ip, XFS_COW_FORK, &icur, &imap, &del, 597 XFS_BMAPI_REMAP); 598 xfs_iunlock(ip, XFS_ILOCK_EXCL); 599 600 wpc->iomap.type = IOMAP_MAPPED; 601 wpc->iomap.flags = IOMAP_F_DIRTY; 602 wpc->iomap.bdev = mp->m_rtdev_targp->bt_bdev; 603 wpc->iomap.offset = offset; 604 wpc->iomap.length = XFS_FSB_TO_B(mp, count_fsb); 605 wpc->iomap.flags = IOMAP_F_ANON_WRITE; 606 607 trace_xfs_zoned_map_blocks(ip, offset, wpc->iomap.length); 608 return 0; 609 } 610 611 static int 612 xfs_zoned_submit_ioend( 613 struct iomap_writepage_ctx *wpc, 614 int status) 615 { 616 wpc->ioend->io_bio.bi_end_io = xfs_end_bio; 617 if (status) 618 return status; 619 xfs_zone_alloc_and_submit(wpc->ioend, &XFS_ZWPC(wpc)->open_zone); 620 return 0; 621 } 622 623 static const struct iomap_writeback_ops xfs_zoned_writeback_ops = { 624 .map_blocks = xfs_zoned_map_blocks, 625 .submit_ioend = xfs_zoned_submit_ioend, 626 .discard_folio = xfs_discard_folio, 627 }; 628 629 STATIC int 630 xfs_vm_writepages( 631 struct address_space *mapping, 632 struct writeback_control *wbc) 633 { 634 struct xfs_inode *ip = XFS_I(mapping->host); 635 636 xfs_iflags_clear(ip, XFS_ITRUNCATED); 637 638 if (xfs_is_zoned_inode(ip)) { 639 struct xfs_zoned_writepage_ctx xc = { }; 640 int error; 641 642 error = iomap_writepages(mapping, wbc, &xc.ctx, 643 &xfs_zoned_writeback_ops); 644 if (xc.open_zone) 645 xfs_open_zone_put(xc.open_zone); 646 return error; 647 } else { 648 struct xfs_writepage_ctx wpc = { }; 649 650 return iomap_writepages(mapping, wbc, &wpc.ctx, 651 &xfs_writeback_ops); 652 } 653 } 654 655 STATIC int 656 xfs_dax_writepages( 657 struct address_space *mapping, 658 struct writeback_control *wbc) 659 { 660 struct xfs_inode *ip = XFS_I(mapping->host); 661 662 xfs_iflags_clear(ip, XFS_ITRUNCATED); 663 return dax_writeback_mapping_range(mapping, 664 xfs_inode_buftarg(ip)->bt_daxdev, wbc); 665 } 666 667 STATIC sector_t 668 xfs_vm_bmap( 669 struct address_space *mapping, 670 sector_t block) 671 { 672 struct xfs_inode *ip = XFS_I(mapping->host); 673 674 trace_xfs_vm_bmap(ip); 675 676 /* 677 * The swap code (ab-)uses ->bmap to get a block mapping and then 678 * bypasses the file system for actual I/O. We really can't allow 679 * that on reflinks inodes, so we have to skip out here. And yes, 680 * 0 is the magic code for a bmap error. 681 * 682 * Since we don't pass back blockdev info, we can't return bmap 683 * information for rt files either. 684 */ 685 if (xfs_is_cow_inode(ip) || XFS_IS_REALTIME_INODE(ip)) 686 return 0; 687 return iomap_bmap(mapping, block, &xfs_read_iomap_ops); 688 } 689 690 STATIC int 691 xfs_vm_read_folio( 692 struct file *unused, 693 struct folio *folio) 694 { 695 return iomap_read_folio(folio, &xfs_read_iomap_ops); 696 } 697 698 STATIC void 699 xfs_vm_readahead( 700 struct readahead_control *rac) 701 { 702 iomap_readahead(rac, &xfs_read_iomap_ops); 703 } 704 705 static int 706 xfs_vm_swap_activate( 707 struct swap_info_struct *sis, 708 struct file *swap_file, 709 sector_t *span) 710 { 711 struct xfs_inode *ip = XFS_I(file_inode(swap_file)); 712 713 /* 714 * Swap file activation can race against concurrent shared extent 715 * removal in files that have been cloned. If this happens, 716 * iomap_swapfile_iter() can fail because it encountered a shared 717 * extent even though an operation is in progress to remove those 718 * shared extents. 719 * 720 * This race becomes problematic when we defer extent removal 721 * operations beyond the end of a syscall (i.e. use async background 722 * processing algorithms). Users think the extents are no longer 723 * shared, but iomap_swapfile_iter() still sees them as shared 724 * because the refcountbt entries for the extents being removed have 725 * not yet been updated. Hence the swapon call fails unexpectedly. 726 * 727 * The race condition is currently most obvious from the unlink() 728 * operation as extent removal is deferred until after the last 729 * reference to the inode goes away. We then process the extent 730 * removal asynchronously, hence triggers the "syscall completed but 731 * work not done" condition mentioned above. To close this race 732 * window, we need to flush any pending inodegc operations to ensure 733 * they have updated the refcountbt records before we try to map the 734 * swapfile. 735 */ 736 xfs_inodegc_flush(ip->i_mount); 737 738 /* 739 * Direct the swap code to the correct block device when this file 740 * sits on the RT device. 741 */ 742 sis->bdev = xfs_inode_buftarg(ip)->bt_bdev; 743 744 return iomap_swapfile_activate(sis, swap_file, span, 745 &xfs_read_iomap_ops); 746 } 747 748 const struct address_space_operations xfs_address_space_operations = { 749 .read_folio = xfs_vm_read_folio, 750 .readahead = xfs_vm_readahead, 751 .writepages = xfs_vm_writepages, 752 .dirty_folio = iomap_dirty_folio, 753 .release_folio = iomap_release_folio, 754 .invalidate_folio = iomap_invalidate_folio, 755 .bmap = xfs_vm_bmap, 756 .migrate_folio = filemap_migrate_folio, 757 .is_partially_uptodate = iomap_is_partially_uptodate, 758 .error_remove_folio = generic_error_remove_folio, 759 .swap_activate = xfs_vm_swap_activate, 760 }; 761 762 const struct address_space_operations xfs_dax_aops = { 763 .writepages = xfs_dax_writepages, 764 .dirty_folio = noop_dirty_folio, 765 .swap_activate = xfs_vm_swap_activate, 766 }; 767