xref: /linux/fs/xfs/xfs_aops.c (revision 9738280aae592b579a25b5b1b6584c894827d3c7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * Copyright (c) 2016-2025 Christoph Hellwig.
5  * All Rights Reserved.
6  */
7 #include "xfs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_iomap.h"
16 #include "xfs_trace.h"
17 #include "xfs_bmap.h"
18 #include "xfs_bmap_util.h"
19 #include "xfs_reflink.h"
20 #include "xfs_errortag.h"
21 #include "xfs_error.h"
22 #include "xfs_icache.h"
23 #include "xfs_zone_alloc.h"
24 #include "xfs_rtgroup.h"
25 
26 struct xfs_writepage_ctx {
27 	struct iomap_writepage_ctx ctx;
28 	unsigned int		data_seq;
29 	unsigned int		cow_seq;
30 };
31 
32 static inline struct xfs_writepage_ctx *
33 XFS_WPC(struct iomap_writepage_ctx *ctx)
34 {
35 	return container_of(ctx, struct xfs_writepage_ctx, ctx);
36 }
37 
38 /*
39  * Fast and loose check if this write could update the on-disk inode size.
40  */
41 static inline bool xfs_ioend_is_append(struct iomap_ioend *ioend)
42 {
43 	return ioend->io_offset + ioend->io_size >
44 		XFS_I(ioend->io_inode)->i_disk_size;
45 }
46 
47 /*
48  * Update on-disk file size now that data has been written to disk.
49  */
50 int
51 xfs_setfilesize(
52 	struct xfs_inode	*ip,
53 	xfs_off_t		offset,
54 	size_t			size)
55 {
56 	struct xfs_mount	*mp = ip->i_mount;
57 	struct xfs_trans	*tp;
58 	xfs_fsize_t		isize;
59 	int			error;
60 
61 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
62 	if (error)
63 		return error;
64 
65 	xfs_ilock(ip, XFS_ILOCK_EXCL);
66 	isize = xfs_new_eof(ip, offset + size);
67 	if (!isize) {
68 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
69 		xfs_trans_cancel(tp);
70 		return 0;
71 	}
72 
73 	trace_xfs_setfilesize(ip, offset, size);
74 
75 	ip->i_disk_size = isize;
76 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
77 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
78 
79 	return xfs_trans_commit(tp);
80 }
81 
82 static void
83 xfs_ioend_put_open_zones(
84 	struct iomap_ioend	*ioend)
85 {
86 	struct iomap_ioend *tmp;
87 
88 	/*
89 	 * Put the open zone for all ioends merged into this one (if any).
90 	 */
91 	list_for_each_entry(tmp, &ioend->io_list, io_list)
92 		xfs_open_zone_put(tmp->io_private);
93 
94 	/*
95 	 * The main ioend might not have an open zone if the submission failed
96 	 * before xfs_zone_alloc_and_submit got called.
97 	 */
98 	if (ioend->io_private)
99 		xfs_open_zone_put(ioend->io_private);
100 }
101 
102 /*
103  * IO write completion.
104  */
105 STATIC void
106 xfs_end_ioend(
107 	struct iomap_ioend	*ioend)
108 {
109 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
110 	struct xfs_mount	*mp = ip->i_mount;
111 	bool			is_zoned = xfs_is_zoned_inode(ip);
112 	xfs_off_t		offset = ioend->io_offset;
113 	size_t			size = ioend->io_size;
114 	unsigned int		nofs_flag;
115 	int			error;
116 
117 	/*
118 	 * We can allocate memory here while doing writeback on behalf of
119 	 * memory reclaim.  To avoid memory allocation deadlocks set the
120 	 * task-wide nofs context for the following operations.
121 	 */
122 	nofs_flag = memalloc_nofs_save();
123 
124 	/*
125 	 * Just clean up the in-memory structures if the fs has been shut down.
126 	 */
127 	if (xfs_is_shutdown(mp)) {
128 		error = -EIO;
129 		goto done;
130 	}
131 
132 	/*
133 	 * Clean up all COW blocks and underlying data fork delalloc blocks on
134 	 * I/O error. The delalloc punch is required because this ioend was
135 	 * mapped to blocks in the COW fork and the associated pages are no
136 	 * longer dirty. If we don't remove delalloc blocks here, they become
137 	 * stale and can corrupt free space accounting on unmount.
138 	 */
139 	error = blk_status_to_errno(ioend->io_bio.bi_status);
140 	if (unlikely(error)) {
141 		if (ioend->io_flags & IOMAP_IOEND_SHARED) {
142 			ASSERT(!is_zoned);
143 			xfs_reflink_cancel_cow_range(ip, offset, size, true);
144 			xfs_bmap_punch_delalloc_range(ip, XFS_DATA_FORK, offset,
145 					offset + size, NULL);
146 		}
147 		goto done;
148 	}
149 
150 	/*
151 	 * Success: commit the COW or unwritten blocks if needed.
152 	 */
153 	if (is_zoned)
154 		error = xfs_zoned_end_io(ip, offset, size, ioend->io_sector,
155 				ioend->io_private, NULLFSBLOCK);
156 	else if (ioend->io_flags & IOMAP_IOEND_SHARED)
157 		error = xfs_reflink_end_cow(ip, offset, size);
158 	else if (ioend->io_flags & IOMAP_IOEND_UNWRITTEN)
159 		error = xfs_iomap_write_unwritten(ip, offset, size, false);
160 
161 	if (!error &&
162 	    !(ioend->io_flags & IOMAP_IOEND_DIRECT) &&
163 	    xfs_ioend_is_append(ioend))
164 		error = xfs_setfilesize(ip, offset, size);
165 done:
166 	if (is_zoned)
167 		xfs_ioend_put_open_zones(ioend);
168 	iomap_finish_ioends(ioend, error);
169 	memalloc_nofs_restore(nofs_flag);
170 }
171 
172 /*
173  * Finish all pending IO completions that require transactional modifications.
174  *
175  * We try to merge physical and logically contiguous ioends before completion to
176  * minimise the number of transactions we need to perform during IO completion.
177  * Both unwritten extent conversion and COW remapping need to iterate and modify
178  * one physical extent at a time, so we gain nothing by merging physically
179  * discontiguous extents here.
180  *
181  * The ioend chain length that we can be processing here is largely unbound in
182  * length and we may have to perform significant amounts of work on each ioend
183  * to complete it. Hence we have to be careful about holding the CPU for too
184  * long in this loop.
185  */
186 void
187 xfs_end_io(
188 	struct work_struct	*work)
189 {
190 	struct xfs_inode	*ip =
191 		container_of(work, struct xfs_inode, i_ioend_work);
192 	struct iomap_ioend	*ioend;
193 	struct list_head	tmp;
194 	unsigned long		flags;
195 
196 	spin_lock_irqsave(&ip->i_ioend_lock, flags);
197 	list_replace_init(&ip->i_ioend_list, &tmp);
198 	spin_unlock_irqrestore(&ip->i_ioend_lock, flags);
199 
200 	iomap_sort_ioends(&tmp);
201 	while ((ioend = list_first_entry_or_null(&tmp, struct iomap_ioend,
202 			io_list))) {
203 		list_del_init(&ioend->io_list);
204 		iomap_ioend_try_merge(ioend, &tmp);
205 		xfs_end_ioend(ioend);
206 		cond_resched();
207 	}
208 }
209 
210 void
211 xfs_end_bio(
212 	struct bio		*bio)
213 {
214 	struct iomap_ioend	*ioend = iomap_ioend_from_bio(bio);
215 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
216 	struct xfs_mount	*mp = ip->i_mount;
217 	unsigned long		flags;
218 
219 	/*
220 	 * For Appends record the actually written block number and set the
221 	 * boundary flag if needed.
222 	 */
223 	if (IS_ENABLED(CONFIG_XFS_RT) && bio_is_zone_append(bio)) {
224 		ioend->io_sector = bio->bi_iter.bi_sector;
225 		xfs_mark_rtg_boundary(ioend);
226 	}
227 
228 	spin_lock_irqsave(&ip->i_ioend_lock, flags);
229 	if (list_empty(&ip->i_ioend_list))
230 		WARN_ON_ONCE(!queue_work(mp->m_unwritten_workqueue,
231 					 &ip->i_ioend_work));
232 	list_add_tail(&ioend->io_list, &ip->i_ioend_list);
233 	spin_unlock_irqrestore(&ip->i_ioend_lock, flags);
234 }
235 
236 /*
237  * Fast revalidation of the cached writeback mapping. Return true if the current
238  * mapping is valid, false otherwise.
239  */
240 static bool
241 xfs_imap_valid(
242 	struct iomap_writepage_ctx	*wpc,
243 	struct xfs_inode		*ip,
244 	loff_t				offset)
245 {
246 	if (offset < wpc->iomap.offset ||
247 	    offset >= wpc->iomap.offset + wpc->iomap.length)
248 		return false;
249 	/*
250 	 * If this is a COW mapping, it is sufficient to check that the mapping
251 	 * covers the offset. Be careful to check this first because the caller
252 	 * can revalidate a COW mapping without updating the data seqno.
253 	 */
254 	if (wpc->iomap.flags & IOMAP_F_SHARED)
255 		return true;
256 
257 	/*
258 	 * This is not a COW mapping. Check the sequence number of the data fork
259 	 * because concurrent changes could have invalidated the extent. Check
260 	 * the COW fork because concurrent changes since the last time we
261 	 * checked (and found nothing at this offset) could have added
262 	 * overlapping blocks.
263 	 */
264 	if (XFS_WPC(wpc)->data_seq != READ_ONCE(ip->i_df.if_seq)) {
265 		trace_xfs_wb_data_iomap_invalid(ip, &wpc->iomap,
266 				XFS_WPC(wpc)->data_seq, XFS_DATA_FORK);
267 		return false;
268 	}
269 	if (xfs_inode_has_cow_data(ip) &&
270 	    XFS_WPC(wpc)->cow_seq != READ_ONCE(ip->i_cowfp->if_seq)) {
271 		trace_xfs_wb_cow_iomap_invalid(ip, &wpc->iomap,
272 				XFS_WPC(wpc)->cow_seq, XFS_COW_FORK);
273 		return false;
274 	}
275 	return true;
276 }
277 
278 static int
279 xfs_map_blocks(
280 	struct iomap_writepage_ctx *wpc,
281 	struct inode		*inode,
282 	loff_t			offset,
283 	unsigned int		len)
284 {
285 	struct xfs_inode	*ip = XFS_I(inode);
286 	struct xfs_mount	*mp = ip->i_mount;
287 	ssize_t			count = i_blocksize(inode);
288 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
289 	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + count);
290 	xfs_fileoff_t		cow_fsb;
291 	int			whichfork;
292 	struct xfs_bmbt_irec	imap;
293 	struct xfs_iext_cursor	icur;
294 	int			retries = 0;
295 	int			error = 0;
296 	unsigned int		*seq;
297 
298 	if (xfs_is_shutdown(mp))
299 		return -EIO;
300 
301 	XFS_ERRORTAG_DELAY(mp, XFS_ERRTAG_WB_DELAY_MS);
302 
303 	/*
304 	 * COW fork blocks can overlap data fork blocks even if the blocks
305 	 * aren't shared.  COW I/O always takes precedent, so we must always
306 	 * check for overlap on reflink inodes unless the mapping is already a
307 	 * COW one, or the COW fork hasn't changed from the last time we looked
308 	 * at it.
309 	 *
310 	 * It's safe to check the COW fork if_seq here without the ILOCK because
311 	 * we've indirectly protected against concurrent updates: writeback has
312 	 * the page locked, which prevents concurrent invalidations by reflink
313 	 * and directio and prevents concurrent buffered writes to the same
314 	 * page.  Changes to if_seq always happen under i_lock, which protects
315 	 * against concurrent updates and provides a memory barrier on the way
316 	 * out that ensures that we always see the current value.
317 	 */
318 	if (xfs_imap_valid(wpc, ip, offset))
319 		return 0;
320 
321 	/*
322 	 * If we don't have a valid map, now it's time to get a new one for this
323 	 * offset.  This will convert delayed allocations (including COW ones)
324 	 * into real extents.  If we return without a valid map, it means we
325 	 * landed in a hole and we skip the block.
326 	 */
327 retry:
328 	cow_fsb = NULLFILEOFF;
329 	whichfork = XFS_DATA_FORK;
330 	xfs_ilock(ip, XFS_ILOCK_SHARED);
331 	ASSERT(!xfs_need_iread_extents(&ip->i_df));
332 
333 	/*
334 	 * Check if this is offset is covered by a COW extents, and if yes use
335 	 * it directly instead of looking up anything in the data fork.
336 	 */
337 	if (xfs_inode_has_cow_data(ip) &&
338 	    xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap))
339 		cow_fsb = imap.br_startoff;
340 	if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) {
341 		XFS_WPC(wpc)->cow_seq = READ_ONCE(ip->i_cowfp->if_seq);
342 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
343 
344 		whichfork = XFS_COW_FORK;
345 		goto allocate_blocks;
346 	}
347 
348 	/*
349 	 * No COW extent overlap. Revalidate now that we may have updated
350 	 * ->cow_seq. If the data mapping is still valid, we're done.
351 	 */
352 	if (xfs_imap_valid(wpc, ip, offset)) {
353 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
354 		return 0;
355 	}
356 
357 	/*
358 	 * If we don't have a valid map, now it's time to get a new one for this
359 	 * offset.  This will convert delayed allocations (including COW ones)
360 	 * into real extents.
361 	 */
362 	if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap))
363 		imap.br_startoff = end_fsb;	/* fake a hole past EOF */
364 	XFS_WPC(wpc)->data_seq = READ_ONCE(ip->i_df.if_seq);
365 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
366 
367 	/* landed in a hole or beyond EOF? */
368 	if (imap.br_startoff > offset_fsb) {
369 		imap.br_blockcount = imap.br_startoff - offset_fsb;
370 		imap.br_startoff = offset_fsb;
371 		imap.br_startblock = HOLESTARTBLOCK;
372 		imap.br_state = XFS_EXT_NORM;
373 	}
374 
375 	/*
376 	 * Truncate to the next COW extent if there is one.  This is the only
377 	 * opportunity to do this because we can skip COW fork lookups for the
378 	 * subsequent blocks in the mapping; however, the requirement to treat
379 	 * the COW range separately remains.
380 	 */
381 	if (cow_fsb != NULLFILEOFF &&
382 	    cow_fsb < imap.br_startoff + imap.br_blockcount)
383 		imap.br_blockcount = cow_fsb - imap.br_startoff;
384 
385 	/* got a delalloc extent? */
386 	if (imap.br_startblock != HOLESTARTBLOCK &&
387 	    isnullstartblock(imap.br_startblock))
388 		goto allocate_blocks;
389 
390 	xfs_bmbt_to_iomap(ip, &wpc->iomap, &imap, 0, 0, XFS_WPC(wpc)->data_seq);
391 	trace_xfs_map_blocks_found(ip, offset, count, whichfork, &imap);
392 	return 0;
393 allocate_blocks:
394 	/*
395 	 * Convert a dellalloc extent to a real one. The current page is held
396 	 * locked so nothing could have removed the block backing offset_fsb,
397 	 * although it could have moved from the COW to the data fork by another
398 	 * thread.
399 	 */
400 	if (whichfork == XFS_COW_FORK)
401 		seq = &XFS_WPC(wpc)->cow_seq;
402 	else
403 		seq = &XFS_WPC(wpc)->data_seq;
404 
405 	error = xfs_bmapi_convert_delalloc(ip, whichfork, offset,
406 				&wpc->iomap, seq);
407 	if (error) {
408 		/*
409 		 * If we failed to find the extent in the COW fork we might have
410 		 * raced with a COW to data fork conversion or truncate.
411 		 * Restart the lookup to catch the extent in the data fork for
412 		 * the former case, but prevent additional retries to avoid
413 		 * looping forever for the latter case.
414 		 */
415 		if (error == -EAGAIN && whichfork == XFS_COW_FORK && !retries++)
416 			goto retry;
417 		ASSERT(error != -EAGAIN);
418 		return error;
419 	}
420 
421 	/*
422 	 * Due to merging the return real extent might be larger than the
423 	 * original delalloc one.  Trim the return extent to the next COW
424 	 * boundary again to force a re-lookup.
425 	 */
426 	if (whichfork != XFS_COW_FORK && cow_fsb != NULLFILEOFF) {
427 		loff_t		cow_offset = XFS_FSB_TO_B(mp, cow_fsb);
428 
429 		if (cow_offset < wpc->iomap.offset + wpc->iomap.length)
430 			wpc->iomap.length = cow_offset - wpc->iomap.offset;
431 	}
432 
433 	ASSERT(wpc->iomap.offset <= offset);
434 	ASSERT(wpc->iomap.offset + wpc->iomap.length > offset);
435 	trace_xfs_map_blocks_alloc(ip, offset, count, whichfork, &imap);
436 	return 0;
437 }
438 
439 static bool
440 xfs_ioend_needs_wq_completion(
441 	struct iomap_ioend	*ioend)
442 {
443 	/* Changing inode size requires a transaction. */
444 	if (xfs_ioend_is_append(ioend))
445 		return true;
446 
447 	/* Extent manipulation requires a transaction. */
448 	if (ioend->io_flags & (IOMAP_IOEND_UNWRITTEN | IOMAP_IOEND_SHARED))
449 		return true;
450 
451 	/* Page cache invalidation cannot be done in irq context. */
452 	if (ioend->io_flags & IOMAP_IOEND_DONTCACHE)
453 		return true;
454 
455 	return false;
456 }
457 
458 static int
459 xfs_submit_ioend(
460 	struct iomap_writepage_ctx *wpc,
461 	int			status)
462 {
463 	struct iomap_ioend	*ioend = wpc->ioend;
464 	unsigned int		nofs_flag;
465 
466 	/*
467 	 * We can allocate memory here while doing writeback on behalf of
468 	 * memory reclaim.  To avoid memory allocation deadlocks set the
469 	 * task-wide nofs context for the following operations.
470 	 */
471 	nofs_flag = memalloc_nofs_save();
472 
473 	/* Convert CoW extents to regular */
474 	if (!status && (ioend->io_flags & IOMAP_IOEND_SHARED)) {
475 		status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
476 				ioend->io_offset, ioend->io_size);
477 	}
478 
479 	memalloc_nofs_restore(nofs_flag);
480 
481 	/* send ioends that might require a transaction to the completion wq */
482 	if (xfs_ioend_needs_wq_completion(ioend))
483 		ioend->io_bio.bi_end_io = xfs_end_bio;
484 
485 	if (status)
486 		return status;
487 	submit_bio(&ioend->io_bio);
488 	return 0;
489 }
490 
491 /*
492  * If the folio has delalloc blocks on it, the caller is asking us to punch them
493  * out. If we don't, we can leave a stale delalloc mapping covered by a clean
494  * page that needs to be dirtied again before the delalloc mapping can be
495  * converted. This stale delalloc mapping can trip up a later direct I/O read
496  * operation on the same region.
497  *
498  * We prevent this by truncating away the delalloc regions on the folio. Because
499  * they are delalloc, we can do this without needing a transaction. Indeed - if
500  * we get ENOSPC errors, we have to be able to do this truncation without a
501  * transaction as there is no space left for block reservation (typically why
502  * we see a ENOSPC in writeback).
503  */
504 static void
505 xfs_discard_folio(
506 	struct folio		*folio,
507 	loff_t			pos)
508 {
509 	struct xfs_inode	*ip = XFS_I(folio->mapping->host);
510 	struct xfs_mount	*mp = ip->i_mount;
511 
512 	if (xfs_is_shutdown(mp))
513 		return;
514 
515 	xfs_alert_ratelimited(mp,
516 		"page discard on page "PTR_FMT", inode 0x%llx, pos %llu.",
517 			folio, ip->i_ino, pos);
518 
519 	/*
520 	 * The end of the punch range is always the offset of the first
521 	 * byte of the next folio. Hence the end offset is only dependent on the
522 	 * folio itself and not the start offset that is passed in.
523 	 */
524 	xfs_bmap_punch_delalloc_range(ip, XFS_DATA_FORK, pos,
525 				folio_pos(folio) + folio_size(folio), NULL);
526 }
527 
528 static const struct iomap_writeback_ops xfs_writeback_ops = {
529 	.map_blocks		= xfs_map_blocks,
530 	.submit_ioend		= xfs_submit_ioend,
531 	.discard_folio		= xfs_discard_folio,
532 };
533 
534 struct xfs_zoned_writepage_ctx {
535 	struct iomap_writepage_ctx	ctx;
536 	struct xfs_open_zone		*open_zone;
537 };
538 
539 static inline struct xfs_zoned_writepage_ctx *
540 XFS_ZWPC(struct iomap_writepage_ctx *ctx)
541 {
542 	return container_of(ctx, struct xfs_zoned_writepage_ctx, ctx);
543 }
544 
545 static int
546 xfs_zoned_map_blocks(
547 	struct iomap_writepage_ctx *wpc,
548 	struct inode		*inode,
549 	loff_t			offset,
550 	unsigned int		len)
551 {
552 	struct xfs_inode	*ip = XFS_I(inode);
553 	struct xfs_mount	*mp = ip->i_mount;
554 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
555 	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + len);
556 	xfs_filblks_t		count_fsb;
557 	struct xfs_bmbt_irec	imap, del;
558 	struct xfs_iext_cursor	icur;
559 
560 	if (xfs_is_shutdown(mp))
561 		return -EIO;
562 
563 	XFS_ERRORTAG_DELAY(mp, XFS_ERRTAG_WB_DELAY_MS);
564 
565 	/*
566 	 * All dirty data must be covered by delalloc extents.  But truncate can
567 	 * remove delalloc extents underneath us or reduce their size.
568 	 * Returning a hole tells iomap to not write back any data from this
569 	 * range, which is the right thing to do in that case.
570 	 *
571 	 * Otherwise just tell iomap to treat ranges previously covered by a
572 	 * delalloc extent as mapped.  The actual block allocation will be done
573 	 * just before submitting the bio.
574 	 *
575 	 * This implies we never map outside folios that are locked or marked
576 	 * as under writeback, and thus there is no need check the fork sequence
577 	 * count here.
578 	 */
579 	xfs_ilock(ip, XFS_ILOCK_EXCL);
580 	if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap))
581 		imap.br_startoff = end_fsb;	/* fake a hole past EOF */
582 	if (imap.br_startoff > offset_fsb) {
583 		imap.br_blockcount = imap.br_startoff - offset_fsb;
584 		imap.br_startoff = offset_fsb;
585 		imap.br_startblock = HOLESTARTBLOCK;
586 		imap.br_state = XFS_EXT_NORM;
587 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
588 		xfs_bmbt_to_iomap(ip, &wpc->iomap, &imap, 0, 0, 0);
589 		return 0;
590 	}
591 	end_fsb = min(end_fsb, imap.br_startoff + imap.br_blockcount);
592 	count_fsb = end_fsb - offset_fsb;
593 
594 	del = imap;
595 	xfs_trim_extent(&del, offset_fsb, count_fsb);
596 	xfs_bmap_del_extent_delay(ip, XFS_COW_FORK, &icur, &imap, &del,
597 			XFS_BMAPI_REMAP);
598 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
599 
600 	wpc->iomap.type = IOMAP_MAPPED;
601 	wpc->iomap.flags = IOMAP_F_DIRTY;
602 	wpc->iomap.bdev = mp->m_rtdev_targp->bt_bdev;
603 	wpc->iomap.offset = offset;
604 	wpc->iomap.length = XFS_FSB_TO_B(mp, count_fsb);
605 	wpc->iomap.flags = IOMAP_F_ANON_WRITE;
606 
607 	trace_xfs_zoned_map_blocks(ip, offset, wpc->iomap.length);
608 	return 0;
609 }
610 
611 static int
612 xfs_zoned_submit_ioend(
613 	struct iomap_writepage_ctx *wpc,
614 	int			status)
615 {
616 	wpc->ioend->io_bio.bi_end_io = xfs_end_bio;
617 	if (status)
618 		return status;
619 	xfs_zone_alloc_and_submit(wpc->ioend, &XFS_ZWPC(wpc)->open_zone);
620 	return 0;
621 }
622 
623 static const struct iomap_writeback_ops xfs_zoned_writeback_ops = {
624 	.map_blocks		= xfs_zoned_map_blocks,
625 	.submit_ioend		= xfs_zoned_submit_ioend,
626 	.discard_folio		= xfs_discard_folio,
627 };
628 
629 STATIC int
630 xfs_vm_writepages(
631 	struct address_space	*mapping,
632 	struct writeback_control *wbc)
633 {
634 	struct xfs_inode	*ip = XFS_I(mapping->host);
635 
636 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
637 
638 	if (xfs_is_zoned_inode(ip)) {
639 		struct xfs_zoned_writepage_ctx	xc = { };
640 		int				error;
641 
642 		error = iomap_writepages(mapping, wbc, &xc.ctx,
643 					 &xfs_zoned_writeback_ops);
644 		if (xc.open_zone)
645 			xfs_open_zone_put(xc.open_zone);
646 		return error;
647 	} else {
648 		struct xfs_writepage_ctx	wpc = { };
649 
650 		return iomap_writepages(mapping, wbc, &wpc.ctx,
651 				&xfs_writeback_ops);
652 	}
653 }
654 
655 STATIC int
656 xfs_dax_writepages(
657 	struct address_space	*mapping,
658 	struct writeback_control *wbc)
659 {
660 	struct xfs_inode	*ip = XFS_I(mapping->host);
661 
662 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
663 	return dax_writeback_mapping_range(mapping,
664 			xfs_inode_buftarg(ip)->bt_daxdev, wbc);
665 }
666 
667 STATIC sector_t
668 xfs_vm_bmap(
669 	struct address_space	*mapping,
670 	sector_t		block)
671 {
672 	struct xfs_inode	*ip = XFS_I(mapping->host);
673 
674 	trace_xfs_vm_bmap(ip);
675 
676 	/*
677 	 * The swap code (ab-)uses ->bmap to get a block mapping and then
678 	 * bypasses the file system for actual I/O.  We really can't allow
679 	 * that on reflinks inodes, so we have to skip out here.  And yes,
680 	 * 0 is the magic code for a bmap error.
681 	 *
682 	 * Since we don't pass back blockdev info, we can't return bmap
683 	 * information for rt files either.
684 	 */
685 	if (xfs_is_cow_inode(ip) || XFS_IS_REALTIME_INODE(ip))
686 		return 0;
687 	return iomap_bmap(mapping, block, &xfs_read_iomap_ops);
688 }
689 
690 STATIC int
691 xfs_vm_read_folio(
692 	struct file		*unused,
693 	struct folio		*folio)
694 {
695 	return iomap_read_folio(folio, &xfs_read_iomap_ops);
696 }
697 
698 STATIC void
699 xfs_vm_readahead(
700 	struct readahead_control	*rac)
701 {
702 	iomap_readahead(rac, &xfs_read_iomap_ops);
703 }
704 
705 static int
706 xfs_vm_swap_activate(
707 	struct swap_info_struct		*sis,
708 	struct file			*swap_file,
709 	sector_t			*span)
710 {
711 	struct xfs_inode		*ip = XFS_I(file_inode(swap_file));
712 
713 	/*
714 	 * Swap file activation can race against concurrent shared extent
715 	 * removal in files that have been cloned.  If this happens,
716 	 * iomap_swapfile_iter() can fail because it encountered a shared
717 	 * extent even though an operation is in progress to remove those
718 	 * shared extents.
719 	 *
720 	 * This race becomes problematic when we defer extent removal
721 	 * operations beyond the end of a syscall (i.e. use async background
722 	 * processing algorithms).  Users think the extents are no longer
723 	 * shared, but iomap_swapfile_iter() still sees them as shared
724 	 * because the refcountbt entries for the extents being removed have
725 	 * not yet been updated.  Hence the swapon call fails unexpectedly.
726 	 *
727 	 * The race condition is currently most obvious from the unlink()
728 	 * operation as extent removal is deferred until after the last
729 	 * reference to the inode goes away.  We then process the extent
730 	 * removal asynchronously, hence triggers the "syscall completed but
731 	 * work not done" condition mentioned above.  To close this race
732 	 * window, we need to flush any pending inodegc operations to ensure
733 	 * they have updated the refcountbt records before we try to map the
734 	 * swapfile.
735 	 */
736 	xfs_inodegc_flush(ip->i_mount);
737 
738 	/*
739 	 * Direct the swap code to the correct block device when this file
740 	 * sits on the RT device.
741 	 */
742 	sis->bdev = xfs_inode_buftarg(ip)->bt_bdev;
743 
744 	return iomap_swapfile_activate(sis, swap_file, span,
745 			&xfs_read_iomap_ops);
746 }
747 
748 const struct address_space_operations xfs_address_space_operations = {
749 	.read_folio		= xfs_vm_read_folio,
750 	.readahead		= xfs_vm_readahead,
751 	.writepages		= xfs_vm_writepages,
752 	.dirty_folio		= iomap_dirty_folio,
753 	.release_folio		= iomap_release_folio,
754 	.invalidate_folio	= iomap_invalidate_folio,
755 	.bmap			= xfs_vm_bmap,
756 	.migrate_folio		= filemap_migrate_folio,
757 	.is_partially_uptodate  = iomap_is_partially_uptodate,
758 	.error_remove_folio	= generic_error_remove_folio,
759 	.swap_activate		= xfs_vm_swap_activate,
760 };
761 
762 const struct address_space_operations xfs_dax_aops = {
763 	.writepages		= xfs_dax_writepages,
764 	.dirty_folio		= noop_dirty_folio,
765 	.swap_activate		= xfs_vm_swap_activate,
766 };
767