xref: /linux/fs/xfs/xfs_aops.c (revision 95e9fd10f06cb5642028b6b851e32b8c8afb4571)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_log.h"
20 #include "xfs_sb.h"
21 #include "xfs_ag.h"
22 #include "xfs_trans.h"
23 #include "xfs_mount.h"
24 #include "xfs_bmap_btree.h"
25 #include "xfs_dinode.h"
26 #include "xfs_inode.h"
27 #include "xfs_inode_item.h"
28 #include "xfs_alloc.h"
29 #include "xfs_error.h"
30 #include "xfs_iomap.h"
31 #include "xfs_vnodeops.h"
32 #include "xfs_trace.h"
33 #include "xfs_bmap.h"
34 #include <linux/gfp.h>
35 #include <linux/mpage.h>
36 #include <linux/pagevec.h>
37 #include <linux/writeback.h>
38 
39 void
40 xfs_count_page_state(
41 	struct page		*page,
42 	int			*delalloc,
43 	int			*unwritten)
44 {
45 	struct buffer_head	*bh, *head;
46 
47 	*delalloc = *unwritten = 0;
48 
49 	bh = head = page_buffers(page);
50 	do {
51 		if (buffer_unwritten(bh))
52 			(*unwritten) = 1;
53 		else if (buffer_delay(bh))
54 			(*delalloc) = 1;
55 	} while ((bh = bh->b_this_page) != head);
56 }
57 
58 STATIC struct block_device *
59 xfs_find_bdev_for_inode(
60 	struct inode		*inode)
61 {
62 	struct xfs_inode	*ip = XFS_I(inode);
63 	struct xfs_mount	*mp = ip->i_mount;
64 
65 	if (XFS_IS_REALTIME_INODE(ip))
66 		return mp->m_rtdev_targp->bt_bdev;
67 	else
68 		return mp->m_ddev_targp->bt_bdev;
69 }
70 
71 /*
72  * We're now finished for good with this ioend structure.
73  * Update the page state via the associated buffer_heads,
74  * release holds on the inode and bio, and finally free
75  * up memory.  Do not use the ioend after this.
76  */
77 STATIC void
78 xfs_destroy_ioend(
79 	xfs_ioend_t		*ioend)
80 {
81 	struct buffer_head	*bh, *next;
82 
83 	for (bh = ioend->io_buffer_head; bh; bh = next) {
84 		next = bh->b_private;
85 		bh->b_end_io(bh, !ioend->io_error);
86 	}
87 
88 	if (ioend->io_iocb) {
89 		if (ioend->io_isasync) {
90 			aio_complete(ioend->io_iocb, ioend->io_error ?
91 					ioend->io_error : ioend->io_result, 0);
92 		}
93 		inode_dio_done(ioend->io_inode);
94 	}
95 
96 	mempool_free(ioend, xfs_ioend_pool);
97 }
98 
99 /*
100  * Fast and loose check if this write could update the on-disk inode size.
101  */
102 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
103 {
104 	return ioend->io_offset + ioend->io_size >
105 		XFS_I(ioend->io_inode)->i_d.di_size;
106 }
107 
108 STATIC int
109 xfs_setfilesize_trans_alloc(
110 	struct xfs_ioend	*ioend)
111 {
112 	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
113 	struct xfs_trans	*tp;
114 	int			error;
115 
116 	tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
117 
118 	error = xfs_trans_reserve(tp, 0, XFS_FSYNC_TS_LOG_RES(mp), 0, 0, 0);
119 	if (error) {
120 		xfs_trans_cancel(tp, 0);
121 		return error;
122 	}
123 
124 	ioend->io_append_trans = tp;
125 
126 	/*
127 	 * We will pass freeze protection with a transaction.  So tell lockdep
128 	 * we released it.
129 	 */
130 	rwsem_release(&ioend->io_inode->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
131 		      1, _THIS_IP_);
132 	/*
133 	 * We hand off the transaction to the completion thread now, so
134 	 * clear the flag here.
135 	 */
136 	current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
137 	return 0;
138 }
139 
140 /*
141  * Update on-disk file size now that data has been written to disk.
142  */
143 STATIC int
144 xfs_setfilesize(
145 	struct xfs_ioend	*ioend)
146 {
147 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
148 	struct xfs_trans	*tp = ioend->io_append_trans;
149 	xfs_fsize_t		isize;
150 
151 	/*
152 	 * The transaction was allocated in the I/O submission thread,
153 	 * thus we need to mark ourselves as beeing in a transaction
154 	 * manually.
155 	 */
156 	current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
157 
158 	xfs_ilock(ip, XFS_ILOCK_EXCL);
159 	isize = xfs_new_eof(ip, ioend->io_offset + ioend->io_size);
160 	if (!isize) {
161 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
162 		xfs_trans_cancel(tp, 0);
163 		return 0;
164 	}
165 
166 	trace_xfs_setfilesize(ip, ioend->io_offset, ioend->io_size);
167 
168 	ip->i_d.di_size = isize;
169 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
170 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
171 
172 	return xfs_trans_commit(tp, 0);
173 }
174 
175 /*
176  * Schedule IO completion handling on the final put of an ioend.
177  *
178  * If there is no work to do we might as well call it a day and free the
179  * ioend right now.
180  */
181 STATIC void
182 xfs_finish_ioend(
183 	struct xfs_ioend	*ioend)
184 {
185 	if (atomic_dec_and_test(&ioend->io_remaining)) {
186 		struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
187 
188 		if (ioend->io_type == XFS_IO_UNWRITTEN)
189 			queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
190 		else if (ioend->io_append_trans)
191 			queue_work(mp->m_data_workqueue, &ioend->io_work);
192 		else
193 			xfs_destroy_ioend(ioend);
194 	}
195 }
196 
197 /*
198  * IO write completion.
199  */
200 STATIC void
201 xfs_end_io(
202 	struct work_struct *work)
203 {
204 	xfs_ioend_t	*ioend = container_of(work, xfs_ioend_t, io_work);
205 	struct xfs_inode *ip = XFS_I(ioend->io_inode);
206 	int		error = 0;
207 
208 	if (ioend->io_append_trans) {
209 		/*
210 		 * We've got freeze protection passed with the transaction.
211 		 * Tell lockdep about it.
212 		 */
213 		rwsem_acquire_read(
214 			&ioend->io_inode->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
215 			0, 1, _THIS_IP_);
216 	}
217 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
218 		ioend->io_error = -EIO;
219 		goto done;
220 	}
221 	if (ioend->io_error)
222 		goto done;
223 
224 	/*
225 	 * For unwritten extents we need to issue transactions to convert a
226 	 * range to normal written extens after the data I/O has finished.
227 	 */
228 	if (ioend->io_type == XFS_IO_UNWRITTEN) {
229 		/*
230 		 * For buffered I/O we never preallocate a transaction when
231 		 * doing the unwritten extent conversion, but for direct I/O
232 		 * we do not know if we are converting an unwritten extent
233 		 * or not at the point where we preallocate the transaction.
234 		 */
235 		if (ioend->io_append_trans) {
236 			ASSERT(ioend->io_isdirect);
237 
238 			current_set_flags_nested(
239 				&ioend->io_append_trans->t_pflags, PF_FSTRANS);
240 			xfs_trans_cancel(ioend->io_append_trans, 0);
241 		}
242 
243 		error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
244 						 ioend->io_size);
245 		if (error) {
246 			ioend->io_error = -error;
247 			goto done;
248 		}
249 	} else if (ioend->io_append_trans) {
250 		error = xfs_setfilesize(ioend);
251 		if (error)
252 			ioend->io_error = -error;
253 	} else {
254 		ASSERT(!xfs_ioend_is_append(ioend));
255 	}
256 
257 done:
258 	xfs_destroy_ioend(ioend);
259 }
260 
261 /*
262  * Call IO completion handling in caller context on the final put of an ioend.
263  */
264 STATIC void
265 xfs_finish_ioend_sync(
266 	struct xfs_ioend	*ioend)
267 {
268 	if (atomic_dec_and_test(&ioend->io_remaining))
269 		xfs_end_io(&ioend->io_work);
270 }
271 
272 /*
273  * Allocate and initialise an IO completion structure.
274  * We need to track unwritten extent write completion here initially.
275  * We'll need to extend this for updating the ondisk inode size later
276  * (vs. incore size).
277  */
278 STATIC xfs_ioend_t *
279 xfs_alloc_ioend(
280 	struct inode		*inode,
281 	unsigned int		type)
282 {
283 	xfs_ioend_t		*ioend;
284 
285 	ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
286 
287 	/*
288 	 * Set the count to 1 initially, which will prevent an I/O
289 	 * completion callback from happening before we have started
290 	 * all the I/O from calling the completion routine too early.
291 	 */
292 	atomic_set(&ioend->io_remaining, 1);
293 	ioend->io_isasync = 0;
294 	ioend->io_isdirect = 0;
295 	ioend->io_error = 0;
296 	ioend->io_list = NULL;
297 	ioend->io_type = type;
298 	ioend->io_inode = inode;
299 	ioend->io_buffer_head = NULL;
300 	ioend->io_buffer_tail = NULL;
301 	ioend->io_offset = 0;
302 	ioend->io_size = 0;
303 	ioend->io_iocb = NULL;
304 	ioend->io_result = 0;
305 	ioend->io_append_trans = NULL;
306 
307 	INIT_WORK(&ioend->io_work, xfs_end_io);
308 	return ioend;
309 }
310 
311 STATIC int
312 xfs_map_blocks(
313 	struct inode		*inode,
314 	loff_t			offset,
315 	struct xfs_bmbt_irec	*imap,
316 	int			type,
317 	int			nonblocking)
318 {
319 	struct xfs_inode	*ip = XFS_I(inode);
320 	struct xfs_mount	*mp = ip->i_mount;
321 	ssize_t			count = 1 << inode->i_blkbits;
322 	xfs_fileoff_t		offset_fsb, end_fsb;
323 	int			error = 0;
324 	int			bmapi_flags = XFS_BMAPI_ENTIRE;
325 	int			nimaps = 1;
326 
327 	if (XFS_FORCED_SHUTDOWN(mp))
328 		return -XFS_ERROR(EIO);
329 
330 	if (type == XFS_IO_UNWRITTEN)
331 		bmapi_flags |= XFS_BMAPI_IGSTATE;
332 
333 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
334 		if (nonblocking)
335 			return -XFS_ERROR(EAGAIN);
336 		xfs_ilock(ip, XFS_ILOCK_SHARED);
337 	}
338 
339 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
340 	       (ip->i_df.if_flags & XFS_IFEXTENTS));
341 	ASSERT(offset <= mp->m_super->s_maxbytes);
342 
343 	if (offset + count > mp->m_super->s_maxbytes)
344 		count = mp->m_super->s_maxbytes - offset;
345 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
346 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
347 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
348 				imap, &nimaps, bmapi_flags);
349 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
350 
351 	if (error)
352 		return -XFS_ERROR(error);
353 
354 	if (type == XFS_IO_DELALLOC &&
355 	    (!nimaps || isnullstartblock(imap->br_startblock))) {
356 		error = xfs_iomap_write_allocate(ip, offset, count, imap);
357 		if (!error)
358 			trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
359 		return -XFS_ERROR(error);
360 	}
361 
362 #ifdef DEBUG
363 	if (type == XFS_IO_UNWRITTEN) {
364 		ASSERT(nimaps);
365 		ASSERT(imap->br_startblock != HOLESTARTBLOCK);
366 		ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
367 	}
368 #endif
369 	if (nimaps)
370 		trace_xfs_map_blocks_found(ip, offset, count, type, imap);
371 	return 0;
372 }
373 
374 STATIC int
375 xfs_imap_valid(
376 	struct inode		*inode,
377 	struct xfs_bmbt_irec	*imap,
378 	xfs_off_t		offset)
379 {
380 	offset >>= inode->i_blkbits;
381 
382 	return offset >= imap->br_startoff &&
383 		offset < imap->br_startoff + imap->br_blockcount;
384 }
385 
386 /*
387  * BIO completion handler for buffered IO.
388  */
389 STATIC void
390 xfs_end_bio(
391 	struct bio		*bio,
392 	int			error)
393 {
394 	xfs_ioend_t		*ioend = bio->bi_private;
395 
396 	ASSERT(atomic_read(&bio->bi_cnt) >= 1);
397 	ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
398 
399 	/* Toss bio and pass work off to an xfsdatad thread */
400 	bio->bi_private = NULL;
401 	bio->bi_end_io = NULL;
402 	bio_put(bio);
403 
404 	xfs_finish_ioend(ioend);
405 }
406 
407 STATIC void
408 xfs_submit_ioend_bio(
409 	struct writeback_control *wbc,
410 	xfs_ioend_t		*ioend,
411 	struct bio		*bio)
412 {
413 	atomic_inc(&ioend->io_remaining);
414 	bio->bi_private = ioend;
415 	bio->bi_end_io = xfs_end_bio;
416 	submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
417 }
418 
419 STATIC struct bio *
420 xfs_alloc_ioend_bio(
421 	struct buffer_head	*bh)
422 {
423 	int			nvecs = bio_get_nr_vecs(bh->b_bdev);
424 	struct bio		*bio = bio_alloc(GFP_NOIO, nvecs);
425 
426 	ASSERT(bio->bi_private == NULL);
427 	bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
428 	bio->bi_bdev = bh->b_bdev;
429 	return bio;
430 }
431 
432 STATIC void
433 xfs_start_buffer_writeback(
434 	struct buffer_head	*bh)
435 {
436 	ASSERT(buffer_mapped(bh));
437 	ASSERT(buffer_locked(bh));
438 	ASSERT(!buffer_delay(bh));
439 	ASSERT(!buffer_unwritten(bh));
440 
441 	mark_buffer_async_write(bh);
442 	set_buffer_uptodate(bh);
443 	clear_buffer_dirty(bh);
444 }
445 
446 STATIC void
447 xfs_start_page_writeback(
448 	struct page		*page,
449 	int			clear_dirty,
450 	int			buffers)
451 {
452 	ASSERT(PageLocked(page));
453 	ASSERT(!PageWriteback(page));
454 	if (clear_dirty)
455 		clear_page_dirty_for_io(page);
456 	set_page_writeback(page);
457 	unlock_page(page);
458 	/* If no buffers on the page are to be written, finish it here */
459 	if (!buffers)
460 		end_page_writeback(page);
461 }
462 
463 static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
464 {
465 	return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
466 }
467 
468 /*
469  * Submit all of the bios for all of the ioends we have saved up, covering the
470  * initial writepage page and also any probed pages.
471  *
472  * Because we may have multiple ioends spanning a page, we need to start
473  * writeback on all the buffers before we submit them for I/O. If we mark the
474  * buffers as we got, then we can end up with a page that only has buffers
475  * marked async write and I/O complete on can occur before we mark the other
476  * buffers async write.
477  *
478  * The end result of this is that we trip a bug in end_page_writeback() because
479  * we call it twice for the one page as the code in end_buffer_async_write()
480  * assumes that all buffers on the page are started at the same time.
481  *
482  * The fix is two passes across the ioend list - one to start writeback on the
483  * buffer_heads, and then submit them for I/O on the second pass.
484  */
485 STATIC void
486 xfs_submit_ioend(
487 	struct writeback_control *wbc,
488 	xfs_ioend_t		*ioend)
489 {
490 	xfs_ioend_t		*head = ioend;
491 	xfs_ioend_t		*next;
492 	struct buffer_head	*bh;
493 	struct bio		*bio;
494 	sector_t		lastblock = 0;
495 
496 	/* Pass 1 - start writeback */
497 	do {
498 		next = ioend->io_list;
499 		for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
500 			xfs_start_buffer_writeback(bh);
501 	} while ((ioend = next) != NULL);
502 
503 	/* Pass 2 - submit I/O */
504 	ioend = head;
505 	do {
506 		next = ioend->io_list;
507 		bio = NULL;
508 
509 		for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
510 
511 			if (!bio) {
512  retry:
513 				bio = xfs_alloc_ioend_bio(bh);
514 			} else if (bh->b_blocknr != lastblock + 1) {
515 				xfs_submit_ioend_bio(wbc, ioend, bio);
516 				goto retry;
517 			}
518 
519 			if (bio_add_buffer(bio, bh) != bh->b_size) {
520 				xfs_submit_ioend_bio(wbc, ioend, bio);
521 				goto retry;
522 			}
523 
524 			lastblock = bh->b_blocknr;
525 		}
526 		if (bio)
527 			xfs_submit_ioend_bio(wbc, ioend, bio);
528 		xfs_finish_ioend(ioend);
529 	} while ((ioend = next) != NULL);
530 }
531 
532 /*
533  * Cancel submission of all buffer_heads so far in this endio.
534  * Toss the endio too.  Only ever called for the initial page
535  * in a writepage request, so only ever one page.
536  */
537 STATIC void
538 xfs_cancel_ioend(
539 	xfs_ioend_t		*ioend)
540 {
541 	xfs_ioend_t		*next;
542 	struct buffer_head	*bh, *next_bh;
543 
544 	do {
545 		next = ioend->io_list;
546 		bh = ioend->io_buffer_head;
547 		do {
548 			next_bh = bh->b_private;
549 			clear_buffer_async_write(bh);
550 			unlock_buffer(bh);
551 		} while ((bh = next_bh) != NULL);
552 
553 		mempool_free(ioend, xfs_ioend_pool);
554 	} while ((ioend = next) != NULL);
555 }
556 
557 /*
558  * Test to see if we've been building up a completion structure for
559  * earlier buffers -- if so, we try to append to this ioend if we
560  * can, otherwise we finish off any current ioend and start another.
561  * Return true if we've finished the given ioend.
562  */
563 STATIC void
564 xfs_add_to_ioend(
565 	struct inode		*inode,
566 	struct buffer_head	*bh,
567 	xfs_off_t		offset,
568 	unsigned int		type,
569 	xfs_ioend_t		**result,
570 	int			need_ioend)
571 {
572 	xfs_ioend_t		*ioend = *result;
573 
574 	if (!ioend || need_ioend || type != ioend->io_type) {
575 		xfs_ioend_t	*previous = *result;
576 
577 		ioend = xfs_alloc_ioend(inode, type);
578 		ioend->io_offset = offset;
579 		ioend->io_buffer_head = bh;
580 		ioend->io_buffer_tail = bh;
581 		if (previous)
582 			previous->io_list = ioend;
583 		*result = ioend;
584 	} else {
585 		ioend->io_buffer_tail->b_private = bh;
586 		ioend->io_buffer_tail = bh;
587 	}
588 
589 	bh->b_private = NULL;
590 	ioend->io_size += bh->b_size;
591 }
592 
593 STATIC void
594 xfs_map_buffer(
595 	struct inode		*inode,
596 	struct buffer_head	*bh,
597 	struct xfs_bmbt_irec	*imap,
598 	xfs_off_t		offset)
599 {
600 	sector_t		bn;
601 	struct xfs_mount	*m = XFS_I(inode)->i_mount;
602 	xfs_off_t		iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
603 	xfs_daddr_t		iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
604 
605 	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
606 	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
607 
608 	bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
609 	      ((offset - iomap_offset) >> inode->i_blkbits);
610 
611 	ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
612 
613 	bh->b_blocknr = bn;
614 	set_buffer_mapped(bh);
615 }
616 
617 STATIC void
618 xfs_map_at_offset(
619 	struct inode		*inode,
620 	struct buffer_head	*bh,
621 	struct xfs_bmbt_irec	*imap,
622 	xfs_off_t		offset)
623 {
624 	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
625 	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
626 
627 	xfs_map_buffer(inode, bh, imap, offset);
628 	set_buffer_mapped(bh);
629 	clear_buffer_delay(bh);
630 	clear_buffer_unwritten(bh);
631 }
632 
633 /*
634  * Test if a given page is suitable for writing as part of an unwritten
635  * or delayed allocate extent.
636  */
637 STATIC int
638 xfs_check_page_type(
639 	struct page		*page,
640 	unsigned int		type)
641 {
642 	if (PageWriteback(page))
643 		return 0;
644 
645 	if (page->mapping && page_has_buffers(page)) {
646 		struct buffer_head	*bh, *head;
647 		int			acceptable = 0;
648 
649 		bh = head = page_buffers(page);
650 		do {
651 			if (buffer_unwritten(bh))
652 				acceptable += (type == XFS_IO_UNWRITTEN);
653 			else if (buffer_delay(bh))
654 				acceptable += (type == XFS_IO_DELALLOC);
655 			else if (buffer_dirty(bh) && buffer_mapped(bh))
656 				acceptable += (type == XFS_IO_OVERWRITE);
657 			else
658 				break;
659 		} while ((bh = bh->b_this_page) != head);
660 
661 		if (acceptable)
662 			return 1;
663 	}
664 
665 	return 0;
666 }
667 
668 /*
669  * Allocate & map buffers for page given the extent map. Write it out.
670  * except for the original page of a writepage, this is called on
671  * delalloc/unwritten pages only, for the original page it is possible
672  * that the page has no mapping at all.
673  */
674 STATIC int
675 xfs_convert_page(
676 	struct inode		*inode,
677 	struct page		*page,
678 	loff_t			tindex,
679 	struct xfs_bmbt_irec	*imap,
680 	xfs_ioend_t		**ioendp,
681 	struct writeback_control *wbc)
682 {
683 	struct buffer_head	*bh, *head;
684 	xfs_off_t		end_offset;
685 	unsigned long		p_offset;
686 	unsigned int		type;
687 	int			len, page_dirty;
688 	int			count = 0, done = 0, uptodate = 1;
689  	xfs_off_t		offset = page_offset(page);
690 
691 	if (page->index != tindex)
692 		goto fail;
693 	if (!trylock_page(page))
694 		goto fail;
695 	if (PageWriteback(page))
696 		goto fail_unlock_page;
697 	if (page->mapping != inode->i_mapping)
698 		goto fail_unlock_page;
699 	if (!xfs_check_page_type(page, (*ioendp)->io_type))
700 		goto fail_unlock_page;
701 
702 	/*
703 	 * page_dirty is initially a count of buffers on the page before
704 	 * EOF and is decremented as we move each into a cleanable state.
705 	 *
706 	 * Derivation:
707 	 *
708 	 * End offset is the highest offset that this page should represent.
709 	 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
710 	 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
711 	 * hence give us the correct page_dirty count. On any other page,
712 	 * it will be zero and in that case we need page_dirty to be the
713 	 * count of buffers on the page.
714 	 */
715 	end_offset = min_t(unsigned long long,
716 			(xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
717 			i_size_read(inode));
718 
719 	len = 1 << inode->i_blkbits;
720 	p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
721 					PAGE_CACHE_SIZE);
722 	p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
723 	page_dirty = p_offset / len;
724 
725 	bh = head = page_buffers(page);
726 	do {
727 		if (offset >= end_offset)
728 			break;
729 		if (!buffer_uptodate(bh))
730 			uptodate = 0;
731 		if (!(PageUptodate(page) || buffer_uptodate(bh))) {
732 			done = 1;
733 			continue;
734 		}
735 
736 		if (buffer_unwritten(bh) || buffer_delay(bh) ||
737 		    buffer_mapped(bh)) {
738 			if (buffer_unwritten(bh))
739 				type = XFS_IO_UNWRITTEN;
740 			else if (buffer_delay(bh))
741 				type = XFS_IO_DELALLOC;
742 			else
743 				type = XFS_IO_OVERWRITE;
744 
745 			if (!xfs_imap_valid(inode, imap, offset)) {
746 				done = 1;
747 				continue;
748 			}
749 
750 			lock_buffer(bh);
751 			if (type != XFS_IO_OVERWRITE)
752 				xfs_map_at_offset(inode, bh, imap, offset);
753 			xfs_add_to_ioend(inode, bh, offset, type,
754 					 ioendp, done);
755 
756 			page_dirty--;
757 			count++;
758 		} else {
759 			done = 1;
760 		}
761 	} while (offset += len, (bh = bh->b_this_page) != head);
762 
763 	if (uptodate && bh == head)
764 		SetPageUptodate(page);
765 
766 	if (count) {
767 		if (--wbc->nr_to_write <= 0 &&
768 		    wbc->sync_mode == WB_SYNC_NONE)
769 			done = 1;
770 	}
771 	xfs_start_page_writeback(page, !page_dirty, count);
772 
773 	return done;
774  fail_unlock_page:
775 	unlock_page(page);
776  fail:
777 	return 1;
778 }
779 
780 /*
781  * Convert & write out a cluster of pages in the same extent as defined
782  * by mp and following the start page.
783  */
784 STATIC void
785 xfs_cluster_write(
786 	struct inode		*inode,
787 	pgoff_t			tindex,
788 	struct xfs_bmbt_irec	*imap,
789 	xfs_ioend_t		**ioendp,
790 	struct writeback_control *wbc,
791 	pgoff_t			tlast)
792 {
793 	struct pagevec		pvec;
794 	int			done = 0, i;
795 
796 	pagevec_init(&pvec, 0);
797 	while (!done && tindex <= tlast) {
798 		unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
799 
800 		if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
801 			break;
802 
803 		for (i = 0; i < pagevec_count(&pvec); i++) {
804 			done = xfs_convert_page(inode, pvec.pages[i], tindex++,
805 					imap, ioendp, wbc);
806 			if (done)
807 				break;
808 		}
809 
810 		pagevec_release(&pvec);
811 		cond_resched();
812 	}
813 }
814 
815 STATIC void
816 xfs_vm_invalidatepage(
817 	struct page		*page,
818 	unsigned long		offset)
819 {
820 	trace_xfs_invalidatepage(page->mapping->host, page, offset);
821 	block_invalidatepage(page, offset);
822 }
823 
824 /*
825  * If the page has delalloc buffers on it, we need to punch them out before we
826  * invalidate the page. If we don't, we leave a stale delalloc mapping on the
827  * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
828  * is done on that same region - the delalloc extent is returned when none is
829  * supposed to be there.
830  *
831  * We prevent this by truncating away the delalloc regions on the page before
832  * invalidating it. Because they are delalloc, we can do this without needing a
833  * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
834  * truncation without a transaction as there is no space left for block
835  * reservation (typically why we see a ENOSPC in writeback).
836  *
837  * This is not a performance critical path, so for now just do the punching a
838  * buffer head at a time.
839  */
840 STATIC void
841 xfs_aops_discard_page(
842 	struct page		*page)
843 {
844 	struct inode		*inode = page->mapping->host;
845 	struct xfs_inode	*ip = XFS_I(inode);
846 	struct buffer_head	*bh, *head;
847 	loff_t			offset = page_offset(page);
848 
849 	if (!xfs_check_page_type(page, XFS_IO_DELALLOC))
850 		goto out_invalidate;
851 
852 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
853 		goto out_invalidate;
854 
855 	xfs_alert(ip->i_mount,
856 		"page discard on page %p, inode 0x%llx, offset %llu.",
857 			page, ip->i_ino, offset);
858 
859 	xfs_ilock(ip, XFS_ILOCK_EXCL);
860 	bh = head = page_buffers(page);
861 	do {
862 		int		error;
863 		xfs_fileoff_t	start_fsb;
864 
865 		if (!buffer_delay(bh))
866 			goto next_buffer;
867 
868 		start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
869 		error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
870 		if (error) {
871 			/* something screwed, just bail */
872 			if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
873 				xfs_alert(ip->i_mount,
874 			"page discard unable to remove delalloc mapping.");
875 			}
876 			break;
877 		}
878 next_buffer:
879 		offset += 1 << inode->i_blkbits;
880 
881 	} while ((bh = bh->b_this_page) != head);
882 
883 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
884 out_invalidate:
885 	xfs_vm_invalidatepage(page, 0);
886 	return;
887 }
888 
889 /*
890  * Write out a dirty page.
891  *
892  * For delalloc space on the page we need to allocate space and flush it.
893  * For unwritten space on the page we need to start the conversion to
894  * regular allocated space.
895  * For any other dirty buffer heads on the page we should flush them.
896  */
897 STATIC int
898 xfs_vm_writepage(
899 	struct page		*page,
900 	struct writeback_control *wbc)
901 {
902 	struct inode		*inode = page->mapping->host;
903 	struct buffer_head	*bh, *head;
904 	struct xfs_bmbt_irec	imap;
905 	xfs_ioend_t		*ioend = NULL, *iohead = NULL;
906 	loff_t			offset;
907 	unsigned int		type;
908 	__uint64_t              end_offset;
909 	pgoff_t                 end_index, last_index;
910 	ssize_t			len;
911 	int			err, imap_valid = 0, uptodate = 1;
912 	int			count = 0;
913 	int			nonblocking = 0;
914 
915 	trace_xfs_writepage(inode, page, 0);
916 
917 	ASSERT(page_has_buffers(page));
918 
919 	/*
920 	 * Refuse to write the page out if we are called from reclaim context.
921 	 *
922 	 * This avoids stack overflows when called from deeply used stacks in
923 	 * random callers for direct reclaim or memcg reclaim.  We explicitly
924 	 * allow reclaim from kswapd as the stack usage there is relatively low.
925 	 *
926 	 * This should never happen except in the case of a VM regression so
927 	 * warn about it.
928 	 */
929 	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
930 			PF_MEMALLOC))
931 		goto redirty;
932 
933 	/*
934 	 * Given that we do not allow direct reclaim to call us, we should
935 	 * never be called while in a filesystem transaction.
936 	 */
937 	if (WARN_ON(current->flags & PF_FSTRANS))
938 		goto redirty;
939 
940 	/* Is this page beyond the end of the file? */
941 	offset = i_size_read(inode);
942 	end_index = offset >> PAGE_CACHE_SHIFT;
943 	last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
944 	if (page->index >= end_index) {
945 		unsigned offset_into_page = offset & (PAGE_CACHE_SIZE - 1);
946 
947 		/*
948 		 * Just skip the page if it is fully outside i_size, e.g. due
949 		 * to a truncate operation that is in progress.
950 		 */
951 		if (page->index >= end_index + 1 || offset_into_page == 0) {
952 			unlock_page(page);
953 			return 0;
954 		}
955 
956 		/*
957 		 * The page straddles i_size.  It must be zeroed out on each
958 		 * and every writepage invocation because it may be mmapped.
959 		 * "A file is mapped in multiples of the page size.  For a file
960 		 * that is not a multiple of the  page size, the remaining
961 		 * memory is zeroed when mapped, and writes to that region are
962 		 * not written out to the file."
963 		 */
964 		zero_user_segment(page, offset_into_page, PAGE_CACHE_SIZE);
965 	}
966 
967 	end_offset = min_t(unsigned long long,
968 			(xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
969 			offset);
970 	len = 1 << inode->i_blkbits;
971 
972 	bh = head = page_buffers(page);
973 	offset = page_offset(page);
974 	type = XFS_IO_OVERWRITE;
975 
976 	if (wbc->sync_mode == WB_SYNC_NONE)
977 		nonblocking = 1;
978 
979 	do {
980 		int new_ioend = 0;
981 
982 		if (offset >= end_offset)
983 			break;
984 		if (!buffer_uptodate(bh))
985 			uptodate = 0;
986 
987 		/*
988 		 * set_page_dirty dirties all buffers in a page, independent
989 		 * of their state.  The dirty state however is entirely
990 		 * meaningless for holes (!mapped && uptodate), so skip
991 		 * buffers covering holes here.
992 		 */
993 		if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
994 			imap_valid = 0;
995 			continue;
996 		}
997 
998 		if (buffer_unwritten(bh)) {
999 			if (type != XFS_IO_UNWRITTEN) {
1000 				type = XFS_IO_UNWRITTEN;
1001 				imap_valid = 0;
1002 			}
1003 		} else if (buffer_delay(bh)) {
1004 			if (type != XFS_IO_DELALLOC) {
1005 				type = XFS_IO_DELALLOC;
1006 				imap_valid = 0;
1007 			}
1008 		} else if (buffer_uptodate(bh)) {
1009 			if (type != XFS_IO_OVERWRITE) {
1010 				type = XFS_IO_OVERWRITE;
1011 				imap_valid = 0;
1012 			}
1013 		} else {
1014 			if (PageUptodate(page))
1015 				ASSERT(buffer_mapped(bh));
1016 			/*
1017 			 * This buffer is not uptodate and will not be
1018 			 * written to disk.  Ensure that we will put any
1019 			 * subsequent writeable buffers into a new
1020 			 * ioend.
1021 			 */
1022 			imap_valid = 0;
1023 			continue;
1024 		}
1025 
1026 		if (imap_valid)
1027 			imap_valid = xfs_imap_valid(inode, &imap, offset);
1028 		if (!imap_valid) {
1029 			/*
1030 			 * If we didn't have a valid mapping then we need to
1031 			 * put the new mapping into a separate ioend structure.
1032 			 * This ensures non-contiguous extents always have
1033 			 * separate ioends, which is particularly important
1034 			 * for unwritten extent conversion at I/O completion
1035 			 * time.
1036 			 */
1037 			new_ioend = 1;
1038 			err = xfs_map_blocks(inode, offset, &imap, type,
1039 					     nonblocking);
1040 			if (err)
1041 				goto error;
1042 			imap_valid = xfs_imap_valid(inode, &imap, offset);
1043 		}
1044 		if (imap_valid) {
1045 			lock_buffer(bh);
1046 			if (type != XFS_IO_OVERWRITE)
1047 				xfs_map_at_offset(inode, bh, &imap, offset);
1048 			xfs_add_to_ioend(inode, bh, offset, type, &ioend,
1049 					 new_ioend);
1050 			count++;
1051 		}
1052 
1053 		if (!iohead)
1054 			iohead = ioend;
1055 
1056 	} while (offset += len, ((bh = bh->b_this_page) != head));
1057 
1058 	if (uptodate && bh == head)
1059 		SetPageUptodate(page);
1060 
1061 	xfs_start_page_writeback(page, 1, count);
1062 
1063 	if (ioend && imap_valid) {
1064 		xfs_off_t		end_index;
1065 
1066 		end_index = imap.br_startoff + imap.br_blockcount;
1067 
1068 		/* to bytes */
1069 		end_index <<= inode->i_blkbits;
1070 
1071 		/* to pages */
1072 		end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1073 
1074 		/* check against file size */
1075 		if (end_index > last_index)
1076 			end_index = last_index;
1077 
1078 		xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
1079 				  wbc, end_index);
1080 	}
1081 
1082 	if (iohead) {
1083 		/*
1084 		 * Reserve log space if we might write beyond the on-disk
1085 		 * inode size.
1086 		 */
1087 		if (ioend->io_type != XFS_IO_UNWRITTEN &&
1088 		    xfs_ioend_is_append(ioend)) {
1089 			err = xfs_setfilesize_trans_alloc(ioend);
1090 			if (err)
1091 				goto error;
1092 		}
1093 
1094 		xfs_submit_ioend(wbc, iohead);
1095 	}
1096 
1097 	return 0;
1098 
1099 error:
1100 	if (iohead)
1101 		xfs_cancel_ioend(iohead);
1102 
1103 	if (err == -EAGAIN)
1104 		goto redirty;
1105 
1106 	xfs_aops_discard_page(page);
1107 	ClearPageUptodate(page);
1108 	unlock_page(page);
1109 	return err;
1110 
1111 redirty:
1112 	redirty_page_for_writepage(wbc, page);
1113 	unlock_page(page);
1114 	return 0;
1115 }
1116 
1117 STATIC int
1118 xfs_vm_writepages(
1119 	struct address_space	*mapping,
1120 	struct writeback_control *wbc)
1121 {
1122 	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1123 	return generic_writepages(mapping, wbc);
1124 }
1125 
1126 /*
1127  * Called to move a page into cleanable state - and from there
1128  * to be released. The page should already be clean. We always
1129  * have buffer heads in this call.
1130  *
1131  * Returns 1 if the page is ok to release, 0 otherwise.
1132  */
1133 STATIC int
1134 xfs_vm_releasepage(
1135 	struct page		*page,
1136 	gfp_t			gfp_mask)
1137 {
1138 	int			delalloc, unwritten;
1139 
1140 	trace_xfs_releasepage(page->mapping->host, page, 0);
1141 
1142 	xfs_count_page_state(page, &delalloc, &unwritten);
1143 
1144 	if (WARN_ON(delalloc))
1145 		return 0;
1146 	if (WARN_ON(unwritten))
1147 		return 0;
1148 
1149 	return try_to_free_buffers(page);
1150 }
1151 
1152 STATIC int
1153 __xfs_get_blocks(
1154 	struct inode		*inode,
1155 	sector_t		iblock,
1156 	struct buffer_head	*bh_result,
1157 	int			create,
1158 	int			direct)
1159 {
1160 	struct xfs_inode	*ip = XFS_I(inode);
1161 	struct xfs_mount	*mp = ip->i_mount;
1162 	xfs_fileoff_t		offset_fsb, end_fsb;
1163 	int			error = 0;
1164 	int			lockmode = 0;
1165 	struct xfs_bmbt_irec	imap;
1166 	int			nimaps = 1;
1167 	xfs_off_t		offset;
1168 	ssize_t			size;
1169 	int			new = 0;
1170 
1171 	if (XFS_FORCED_SHUTDOWN(mp))
1172 		return -XFS_ERROR(EIO);
1173 
1174 	offset = (xfs_off_t)iblock << inode->i_blkbits;
1175 	ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1176 	size = bh_result->b_size;
1177 
1178 	if (!create && direct && offset >= i_size_read(inode))
1179 		return 0;
1180 
1181 	/*
1182 	 * Direct I/O is usually done on preallocated files, so try getting
1183 	 * a block mapping without an exclusive lock first.  For buffered
1184 	 * writes we already have the exclusive iolock anyway, so avoiding
1185 	 * a lock roundtrip here by taking the ilock exclusive from the
1186 	 * beginning is a useful micro optimization.
1187 	 */
1188 	if (create && !direct) {
1189 		lockmode = XFS_ILOCK_EXCL;
1190 		xfs_ilock(ip, lockmode);
1191 	} else {
1192 		lockmode = xfs_ilock_map_shared(ip);
1193 	}
1194 
1195 	ASSERT(offset <= mp->m_super->s_maxbytes);
1196 	if (offset + size > mp->m_super->s_maxbytes)
1197 		size = mp->m_super->s_maxbytes - offset;
1198 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1199 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
1200 
1201 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1202 				&imap, &nimaps, XFS_BMAPI_ENTIRE);
1203 	if (error)
1204 		goto out_unlock;
1205 
1206 	if (create &&
1207 	    (!nimaps ||
1208 	     (imap.br_startblock == HOLESTARTBLOCK ||
1209 	      imap.br_startblock == DELAYSTARTBLOCK))) {
1210 		if (direct || xfs_get_extsz_hint(ip)) {
1211 			/*
1212 			 * Drop the ilock in preparation for starting the block
1213 			 * allocation transaction.  It will be retaken
1214 			 * exclusively inside xfs_iomap_write_direct for the
1215 			 * actual allocation.
1216 			 */
1217 			xfs_iunlock(ip, lockmode);
1218 			error = xfs_iomap_write_direct(ip, offset, size,
1219 						       &imap, nimaps);
1220 			if (error)
1221 				return -error;
1222 			new = 1;
1223 		} else {
1224 			/*
1225 			 * Delalloc reservations do not require a transaction,
1226 			 * we can go on without dropping the lock here. If we
1227 			 * are allocating a new delalloc block, make sure that
1228 			 * we set the new flag so that we mark the buffer new so
1229 			 * that we know that it is newly allocated if the write
1230 			 * fails.
1231 			 */
1232 			if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
1233 				new = 1;
1234 			error = xfs_iomap_write_delay(ip, offset, size, &imap);
1235 			if (error)
1236 				goto out_unlock;
1237 
1238 			xfs_iunlock(ip, lockmode);
1239 		}
1240 
1241 		trace_xfs_get_blocks_alloc(ip, offset, size, 0, &imap);
1242 	} else if (nimaps) {
1243 		trace_xfs_get_blocks_found(ip, offset, size, 0, &imap);
1244 		xfs_iunlock(ip, lockmode);
1245 	} else {
1246 		trace_xfs_get_blocks_notfound(ip, offset, size);
1247 		goto out_unlock;
1248 	}
1249 
1250 	if (imap.br_startblock != HOLESTARTBLOCK &&
1251 	    imap.br_startblock != DELAYSTARTBLOCK) {
1252 		/*
1253 		 * For unwritten extents do not report a disk address on
1254 		 * the read case (treat as if we're reading into a hole).
1255 		 */
1256 		if (create || !ISUNWRITTEN(&imap))
1257 			xfs_map_buffer(inode, bh_result, &imap, offset);
1258 		if (create && ISUNWRITTEN(&imap)) {
1259 			if (direct)
1260 				bh_result->b_private = inode;
1261 			set_buffer_unwritten(bh_result);
1262 		}
1263 	}
1264 
1265 	/*
1266 	 * If this is a realtime file, data may be on a different device.
1267 	 * to that pointed to from the buffer_head b_bdev currently.
1268 	 */
1269 	bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1270 
1271 	/*
1272 	 * If we previously allocated a block out beyond eof and we are now
1273 	 * coming back to use it then we will need to flag it as new even if it
1274 	 * has a disk address.
1275 	 *
1276 	 * With sub-block writes into unwritten extents we also need to mark
1277 	 * the buffer as new so that the unwritten parts of the buffer gets
1278 	 * correctly zeroed.
1279 	 */
1280 	if (create &&
1281 	    ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1282 	     (offset >= i_size_read(inode)) ||
1283 	     (new || ISUNWRITTEN(&imap))))
1284 		set_buffer_new(bh_result);
1285 
1286 	if (imap.br_startblock == DELAYSTARTBLOCK) {
1287 		BUG_ON(direct);
1288 		if (create) {
1289 			set_buffer_uptodate(bh_result);
1290 			set_buffer_mapped(bh_result);
1291 			set_buffer_delay(bh_result);
1292 		}
1293 	}
1294 
1295 	/*
1296 	 * If this is O_DIRECT or the mpage code calling tell them how large
1297 	 * the mapping is, so that we can avoid repeated get_blocks calls.
1298 	 */
1299 	if (direct || size > (1 << inode->i_blkbits)) {
1300 		xfs_off_t		mapping_size;
1301 
1302 		mapping_size = imap.br_startoff + imap.br_blockcount - iblock;
1303 		mapping_size <<= inode->i_blkbits;
1304 
1305 		ASSERT(mapping_size > 0);
1306 		if (mapping_size > size)
1307 			mapping_size = size;
1308 		if (mapping_size > LONG_MAX)
1309 			mapping_size = LONG_MAX;
1310 
1311 		bh_result->b_size = mapping_size;
1312 	}
1313 
1314 	return 0;
1315 
1316 out_unlock:
1317 	xfs_iunlock(ip, lockmode);
1318 	return -error;
1319 }
1320 
1321 int
1322 xfs_get_blocks(
1323 	struct inode		*inode,
1324 	sector_t		iblock,
1325 	struct buffer_head	*bh_result,
1326 	int			create)
1327 {
1328 	return __xfs_get_blocks(inode, iblock, bh_result, create, 0);
1329 }
1330 
1331 STATIC int
1332 xfs_get_blocks_direct(
1333 	struct inode		*inode,
1334 	sector_t		iblock,
1335 	struct buffer_head	*bh_result,
1336 	int			create)
1337 {
1338 	return __xfs_get_blocks(inode, iblock, bh_result, create, 1);
1339 }
1340 
1341 /*
1342  * Complete a direct I/O write request.
1343  *
1344  * If the private argument is non-NULL __xfs_get_blocks signals us that we
1345  * need to issue a transaction to convert the range from unwritten to written
1346  * extents.  In case this is regular synchronous I/O we just call xfs_end_io
1347  * to do this and we are done.  But in case this was a successful AIO
1348  * request this handler is called from interrupt context, from which we
1349  * can't start transactions.  In that case offload the I/O completion to
1350  * the workqueues we also use for buffered I/O completion.
1351  */
1352 STATIC void
1353 xfs_end_io_direct_write(
1354 	struct kiocb		*iocb,
1355 	loff_t			offset,
1356 	ssize_t			size,
1357 	void			*private,
1358 	int			ret,
1359 	bool			is_async)
1360 {
1361 	struct xfs_ioend	*ioend = iocb->private;
1362 
1363 	/*
1364 	 * While the generic direct I/O code updates the inode size, it does
1365 	 * so only after the end_io handler is called, which means our
1366 	 * end_io handler thinks the on-disk size is outside the in-core
1367 	 * size.  To prevent this just update it a little bit earlier here.
1368 	 */
1369 	if (offset + size > i_size_read(ioend->io_inode))
1370 		i_size_write(ioend->io_inode, offset + size);
1371 
1372 	/*
1373 	 * blockdev_direct_IO can return an error even after the I/O
1374 	 * completion handler was called.  Thus we need to protect
1375 	 * against double-freeing.
1376 	 */
1377 	iocb->private = NULL;
1378 
1379 	ioend->io_offset = offset;
1380 	ioend->io_size = size;
1381 	ioend->io_iocb = iocb;
1382 	ioend->io_result = ret;
1383 	if (private && size > 0)
1384 		ioend->io_type = XFS_IO_UNWRITTEN;
1385 
1386 	if (is_async) {
1387 		ioend->io_isasync = 1;
1388 		xfs_finish_ioend(ioend);
1389 	} else {
1390 		xfs_finish_ioend_sync(ioend);
1391 	}
1392 }
1393 
1394 STATIC ssize_t
1395 xfs_vm_direct_IO(
1396 	int			rw,
1397 	struct kiocb		*iocb,
1398 	const struct iovec	*iov,
1399 	loff_t			offset,
1400 	unsigned long		nr_segs)
1401 {
1402 	struct inode		*inode = iocb->ki_filp->f_mapping->host;
1403 	struct block_device	*bdev = xfs_find_bdev_for_inode(inode);
1404 	struct xfs_ioend	*ioend = NULL;
1405 	ssize_t			ret;
1406 
1407 	if (rw & WRITE) {
1408 		size_t size = iov_length(iov, nr_segs);
1409 
1410 		/*
1411 		 * We need to preallocate a transaction for a size update
1412 		 * here.  In the case that this write both updates the size
1413 		 * and converts at least on unwritten extent we will cancel
1414 		 * the still clean transaction after the I/O has finished.
1415 		 */
1416 		iocb->private = ioend = xfs_alloc_ioend(inode, XFS_IO_DIRECT);
1417 		if (offset + size > XFS_I(inode)->i_d.di_size) {
1418 			ret = xfs_setfilesize_trans_alloc(ioend);
1419 			if (ret)
1420 				goto out_destroy_ioend;
1421 			ioend->io_isdirect = 1;
1422 		}
1423 
1424 		ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1425 					    offset, nr_segs,
1426 					    xfs_get_blocks_direct,
1427 					    xfs_end_io_direct_write, NULL, 0);
1428 		if (ret != -EIOCBQUEUED && iocb->private)
1429 			goto out_trans_cancel;
1430 	} else {
1431 		ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1432 					    offset, nr_segs,
1433 					    xfs_get_blocks_direct,
1434 					    NULL, NULL, 0);
1435 	}
1436 
1437 	return ret;
1438 
1439 out_trans_cancel:
1440 	if (ioend->io_append_trans) {
1441 		current_set_flags_nested(&ioend->io_append_trans->t_pflags,
1442 					 PF_FSTRANS);
1443 		rwsem_acquire_read(
1444 			&inode->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
1445 			0, 1, _THIS_IP_);
1446 		xfs_trans_cancel(ioend->io_append_trans, 0);
1447 	}
1448 out_destroy_ioend:
1449 	xfs_destroy_ioend(ioend);
1450 	return ret;
1451 }
1452 
1453 /*
1454  * Punch out the delalloc blocks we have already allocated.
1455  *
1456  * Don't bother with xfs_setattr given that nothing can have made it to disk yet
1457  * as the page is still locked at this point.
1458  */
1459 STATIC void
1460 xfs_vm_kill_delalloc_range(
1461 	struct inode		*inode,
1462 	loff_t			start,
1463 	loff_t			end)
1464 {
1465 	struct xfs_inode	*ip = XFS_I(inode);
1466 	xfs_fileoff_t		start_fsb;
1467 	xfs_fileoff_t		end_fsb;
1468 	int			error;
1469 
1470 	start_fsb = XFS_B_TO_FSB(ip->i_mount, start);
1471 	end_fsb = XFS_B_TO_FSB(ip->i_mount, end);
1472 	if (end_fsb <= start_fsb)
1473 		return;
1474 
1475 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1476 	error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1477 						end_fsb - start_fsb);
1478 	if (error) {
1479 		/* something screwed, just bail */
1480 		if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1481 			xfs_alert(ip->i_mount,
1482 		"xfs_vm_write_failed: unable to clean up ino %lld",
1483 					ip->i_ino);
1484 		}
1485 	}
1486 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1487 }
1488 
1489 STATIC void
1490 xfs_vm_write_failed(
1491 	struct inode		*inode,
1492 	struct page		*page,
1493 	loff_t			pos,
1494 	unsigned		len)
1495 {
1496 	loff_t			block_offset = pos & PAGE_MASK;
1497 	loff_t			block_start;
1498 	loff_t			block_end;
1499 	loff_t			from = pos & (PAGE_CACHE_SIZE - 1);
1500 	loff_t			to = from + len;
1501 	struct buffer_head	*bh, *head;
1502 
1503 	ASSERT(block_offset + from == pos);
1504 
1505 	head = page_buffers(page);
1506 	block_start = 0;
1507 	for (bh = head; bh != head || !block_start;
1508 	     bh = bh->b_this_page, block_start = block_end,
1509 				   block_offset += bh->b_size) {
1510 		block_end = block_start + bh->b_size;
1511 
1512 		/* skip buffers before the write */
1513 		if (block_end <= from)
1514 			continue;
1515 
1516 		/* if the buffer is after the write, we're done */
1517 		if (block_start >= to)
1518 			break;
1519 
1520 		if (!buffer_delay(bh))
1521 			continue;
1522 
1523 		if (!buffer_new(bh) && block_offset < i_size_read(inode))
1524 			continue;
1525 
1526 		xfs_vm_kill_delalloc_range(inode, block_offset,
1527 					   block_offset + bh->b_size);
1528 	}
1529 
1530 }
1531 
1532 /*
1533  * This used to call block_write_begin(), but it unlocks and releases the page
1534  * on error, and we need that page to be able to punch stale delalloc blocks out
1535  * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
1536  * the appropriate point.
1537  */
1538 STATIC int
1539 xfs_vm_write_begin(
1540 	struct file		*file,
1541 	struct address_space	*mapping,
1542 	loff_t			pos,
1543 	unsigned		len,
1544 	unsigned		flags,
1545 	struct page		**pagep,
1546 	void			**fsdata)
1547 {
1548 	pgoff_t			index = pos >> PAGE_CACHE_SHIFT;
1549 	struct page		*page;
1550 	int			status;
1551 
1552 	ASSERT(len <= PAGE_CACHE_SIZE);
1553 
1554 	page = grab_cache_page_write_begin(mapping, index,
1555 					   flags | AOP_FLAG_NOFS);
1556 	if (!page)
1557 		return -ENOMEM;
1558 
1559 	status = __block_write_begin(page, pos, len, xfs_get_blocks);
1560 	if (unlikely(status)) {
1561 		struct inode	*inode = mapping->host;
1562 
1563 		xfs_vm_write_failed(inode, page, pos, len);
1564 		unlock_page(page);
1565 
1566 		if (pos + len > i_size_read(inode))
1567 			truncate_pagecache(inode, pos + len, i_size_read(inode));
1568 
1569 		page_cache_release(page);
1570 		page = NULL;
1571 	}
1572 
1573 	*pagep = page;
1574 	return status;
1575 }
1576 
1577 /*
1578  * On failure, we only need to kill delalloc blocks beyond EOF because they
1579  * will never be written. For blocks within EOF, generic_write_end() zeros them
1580  * so they are safe to leave alone and be written with all the other valid data.
1581  */
1582 STATIC int
1583 xfs_vm_write_end(
1584 	struct file		*file,
1585 	struct address_space	*mapping,
1586 	loff_t			pos,
1587 	unsigned		len,
1588 	unsigned		copied,
1589 	struct page		*page,
1590 	void			*fsdata)
1591 {
1592 	int			ret;
1593 
1594 	ASSERT(len <= PAGE_CACHE_SIZE);
1595 
1596 	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
1597 	if (unlikely(ret < len)) {
1598 		struct inode	*inode = mapping->host;
1599 		size_t		isize = i_size_read(inode);
1600 		loff_t		to = pos + len;
1601 
1602 		if (to > isize) {
1603 			truncate_pagecache(inode, to, isize);
1604 			xfs_vm_kill_delalloc_range(inode, isize, to);
1605 		}
1606 	}
1607 	return ret;
1608 }
1609 
1610 STATIC sector_t
1611 xfs_vm_bmap(
1612 	struct address_space	*mapping,
1613 	sector_t		block)
1614 {
1615 	struct inode		*inode = (struct inode *)mapping->host;
1616 	struct xfs_inode	*ip = XFS_I(inode);
1617 
1618 	trace_xfs_vm_bmap(XFS_I(inode));
1619 	xfs_ilock(ip, XFS_IOLOCK_SHARED);
1620 	xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF);
1621 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1622 	return generic_block_bmap(mapping, block, xfs_get_blocks);
1623 }
1624 
1625 STATIC int
1626 xfs_vm_readpage(
1627 	struct file		*unused,
1628 	struct page		*page)
1629 {
1630 	return mpage_readpage(page, xfs_get_blocks);
1631 }
1632 
1633 STATIC int
1634 xfs_vm_readpages(
1635 	struct file		*unused,
1636 	struct address_space	*mapping,
1637 	struct list_head	*pages,
1638 	unsigned		nr_pages)
1639 {
1640 	return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1641 }
1642 
1643 const struct address_space_operations xfs_address_space_operations = {
1644 	.readpage		= xfs_vm_readpage,
1645 	.readpages		= xfs_vm_readpages,
1646 	.writepage		= xfs_vm_writepage,
1647 	.writepages		= xfs_vm_writepages,
1648 	.releasepage		= xfs_vm_releasepage,
1649 	.invalidatepage		= xfs_vm_invalidatepage,
1650 	.write_begin		= xfs_vm_write_begin,
1651 	.write_end		= xfs_vm_write_end,
1652 	.bmap			= xfs_vm_bmap,
1653 	.direct_IO		= xfs_vm_direct_IO,
1654 	.migratepage		= buffer_migrate_page,
1655 	.is_partially_uptodate  = block_is_partially_uptodate,
1656 	.error_remove_page	= generic_error_remove_page,
1657 };
1658