1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * Copyright (c) 2016-2018 Christoph Hellwig. 5 * All Rights Reserved. 6 */ 7 #include "xfs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_trans.h" 15 #include "xfs_iomap.h" 16 #include "xfs_trace.h" 17 #include "xfs_bmap.h" 18 #include "xfs_bmap_util.h" 19 #include "xfs_reflink.h" 20 21 struct xfs_writepage_ctx { 22 struct iomap_writepage_ctx ctx; 23 unsigned int data_seq; 24 unsigned int cow_seq; 25 }; 26 27 static inline struct xfs_writepage_ctx * 28 XFS_WPC(struct iomap_writepage_ctx *ctx) 29 { 30 return container_of(ctx, struct xfs_writepage_ctx, ctx); 31 } 32 33 /* 34 * Fast and loose check if this write could update the on-disk inode size. 35 */ 36 static inline bool xfs_ioend_is_append(struct iomap_ioend *ioend) 37 { 38 return ioend->io_offset + ioend->io_size > 39 XFS_I(ioend->io_inode)->i_disk_size; 40 } 41 42 /* 43 * Update on-disk file size now that data has been written to disk. 44 */ 45 int 46 xfs_setfilesize( 47 struct xfs_inode *ip, 48 xfs_off_t offset, 49 size_t size) 50 { 51 struct xfs_mount *mp = ip->i_mount; 52 struct xfs_trans *tp; 53 xfs_fsize_t isize; 54 int error; 55 56 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp); 57 if (error) 58 return error; 59 60 xfs_ilock(ip, XFS_ILOCK_EXCL); 61 isize = xfs_new_eof(ip, offset + size); 62 if (!isize) { 63 xfs_iunlock(ip, XFS_ILOCK_EXCL); 64 xfs_trans_cancel(tp); 65 return 0; 66 } 67 68 trace_xfs_setfilesize(ip, offset, size); 69 70 ip->i_disk_size = isize; 71 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 72 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 73 74 return xfs_trans_commit(tp); 75 } 76 77 /* 78 * IO write completion. 79 */ 80 STATIC void 81 xfs_end_ioend( 82 struct iomap_ioend *ioend) 83 { 84 struct xfs_inode *ip = XFS_I(ioend->io_inode); 85 xfs_off_t offset = ioend->io_offset; 86 size_t size = ioend->io_size; 87 unsigned int nofs_flag; 88 int error; 89 90 /* 91 * We can allocate memory here while doing writeback on behalf of 92 * memory reclaim. To avoid memory allocation deadlocks set the 93 * task-wide nofs context for the following operations. 94 */ 95 nofs_flag = memalloc_nofs_save(); 96 97 /* 98 * Just clean up the in-memory structures if the fs has been shut down. 99 */ 100 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { 101 error = -EIO; 102 goto done; 103 } 104 105 /* 106 * Clean up any COW blocks on an I/O error. 107 */ 108 error = blk_status_to_errno(ioend->io_bio->bi_status); 109 if (unlikely(error)) { 110 if (ioend->io_flags & IOMAP_F_SHARED) 111 xfs_reflink_cancel_cow_range(ip, offset, size, true); 112 goto done; 113 } 114 115 /* 116 * Success: commit the COW or unwritten blocks if needed. 117 */ 118 if (ioend->io_flags & IOMAP_F_SHARED) 119 error = xfs_reflink_end_cow(ip, offset, size); 120 else if (ioend->io_type == IOMAP_UNWRITTEN) 121 error = xfs_iomap_write_unwritten(ip, offset, size, false); 122 123 if (!error && xfs_ioend_is_append(ioend)) 124 error = xfs_setfilesize(ip, ioend->io_offset, ioend->io_size); 125 done: 126 iomap_finish_ioends(ioend, error); 127 memalloc_nofs_restore(nofs_flag); 128 } 129 130 /* Finish all pending io completions. */ 131 void 132 xfs_end_io( 133 struct work_struct *work) 134 { 135 struct xfs_inode *ip = 136 container_of(work, struct xfs_inode, i_ioend_work); 137 struct iomap_ioend *ioend; 138 struct list_head tmp; 139 unsigned long flags; 140 141 spin_lock_irqsave(&ip->i_ioend_lock, flags); 142 list_replace_init(&ip->i_ioend_list, &tmp); 143 spin_unlock_irqrestore(&ip->i_ioend_lock, flags); 144 145 iomap_sort_ioends(&tmp); 146 while ((ioend = list_first_entry_or_null(&tmp, struct iomap_ioend, 147 io_list))) { 148 list_del_init(&ioend->io_list); 149 iomap_ioend_try_merge(ioend, &tmp); 150 xfs_end_ioend(ioend); 151 } 152 } 153 154 STATIC void 155 xfs_end_bio( 156 struct bio *bio) 157 { 158 struct iomap_ioend *ioend = bio->bi_private; 159 struct xfs_inode *ip = XFS_I(ioend->io_inode); 160 unsigned long flags; 161 162 spin_lock_irqsave(&ip->i_ioend_lock, flags); 163 if (list_empty(&ip->i_ioend_list)) 164 WARN_ON_ONCE(!queue_work(ip->i_mount->m_unwritten_workqueue, 165 &ip->i_ioend_work)); 166 list_add_tail(&ioend->io_list, &ip->i_ioend_list); 167 spin_unlock_irqrestore(&ip->i_ioend_lock, flags); 168 } 169 170 /* 171 * Fast revalidation of the cached writeback mapping. Return true if the current 172 * mapping is valid, false otherwise. 173 */ 174 static bool 175 xfs_imap_valid( 176 struct iomap_writepage_ctx *wpc, 177 struct xfs_inode *ip, 178 loff_t offset) 179 { 180 if (offset < wpc->iomap.offset || 181 offset >= wpc->iomap.offset + wpc->iomap.length) 182 return false; 183 /* 184 * If this is a COW mapping, it is sufficient to check that the mapping 185 * covers the offset. Be careful to check this first because the caller 186 * can revalidate a COW mapping without updating the data seqno. 187 */ 188 if (wpc->iomap.flags & IOMAP_F_SHARED) 189 return true; 190 191 /* 192 * This is not a COW mapping. Check the sequence number of the data fork 193 * because concurrent changes could have invalidated the extent. Check 194 * the COW fork because concurrent changes since the last time we 195 * checked (and found nothing at this offset) could have added 196 * overlapping blocks. 197 */ 198 if (XFS_WPC(wpc)->data_seq != READ_ONCE(ip->i_df.if_seq)) 199 return false; 200 if (xfs_inode_has_cow_data(ip) && 201 XFS_WPC(wpc)->cow_seq != READ_ONCE(ip->i_cowfp->if_seq)) 202 return false; 203 return true; 204 } 205 206 /* 207 * Pass in a dellalloc extent and convert it to real extents, return the real 208 * extent that maps offset_fsb in wpc->iomap. 209 * 210 * The current page is held locked so nothing could have removed the block 211 * backing offset_fsb, although it could have moved from the COW to the data 212 * fork by another thread. 213 */ 214 static int 215 xfs_convert_blocks( 216 struct iomap_writepage_ctx *wpc, 217 struct xfs_inode *ip, 218 int whichfork, 219 loff_t offset) 220 { 221 int error; 222 unsigned *seq; 223 224 if (whichfork == XFS_COW_FORK) 225 seq = &XFS_WPC(wpc)->cow_seq; 226 else 227 seq = &XFS_WPC(wpc)->data_seq; 228 229 /* 230 * Attempt to allocate whatever delalloc extent currently backs offset 231 * and put the result into wpc->iomap. Allocate in a loop because it 232 * may take several attempts to allocate real blocks for a contiguous 233 * delalloc extent if free space is sufficiently fragmented. 234 */ 235 do { 236 error = xfs_bmapi_convert_delalloc(ip, whichfork, offset, 237 &wpc->iomap, seq); 238 if (error) 239 return error; 240 } while (wpc->iomap.offset + wpc->iomap.length <= offset); 241 242 return 0; 243 } 244 245 static int 246 xfs_map_blocks( 247 struct iomap_writepage_ctx *wpc, 248 struct inode *inode, 249 loff_t offset) 250 { 251 struct xfs_inode *ip = XFS_I(inode); 252 struct xfs_mount *mp = ip->i_mount; 253 ssize_t count = i_blocksize(inode); 254 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 255 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count); 256 xfs_fileoff_t cow_fsb; 257 int whichfork; 258 struct xfs_bmbt_irec imap; 259 struct xfs_iext_cursor icur; 260 int retries = 0; 261 int error = 0; 262 263 if (XFS_FORCED_SHUTDOWN(mp)) 264 return -EIO; 265 266 /* 267 * COW fork blocks can overlap data fork blocks even if the blocks 268 * aren't shared. COW I/O always takes precedent, so we must always 269 * check for overlap on reflink inodes unless the mapping is already a 270 * COW one, or the COW fork hasn't changed from the last time we looked 271 * at it. 272 * 273 * It's safe to check the COW fork if_seq here without the ILOCK because 274 * we've indirectly protected against concurrent updates: writeback has 275 * the page locked, which prevents concurrent invalidations by reflink 276 * and directio and prevents concurrent buffered writes to the same 277 * page. Changes to if_seq always happen under i_lock, which protects 278 * against concurrent updates and provides a memory barrier on the way 279 * out that ensures that we always see the current value. 280 */ 281 if (xfs_imap_valid(wpc, ip, offset)) 282 return 0; 283 284 /* 285 * If we don't have a valid map, now it's time to get a new one for this 286 * offset. This will convert delayed allocations (including COW ones) 287 * into real extents. If we return without a valid map, it means we 288 * landed in a hole and we skip the block. 289 */ 290 retry: 291 cow_fsb = NULLFILEOFF; 292 whichfork = XFS_DATA_FORK; 293 xfs_ilock(ip, XFS_ILOCK_SHARED); 294 ASSERT(!xfs_need_iread_extents(&ip->i_df)); 295 296 /* 297 * Check if this is offset is covered by a COW extents, and if yes use 298 * it directly instead of looking up anything in the data fork. 299 */ 300 if (xfs_inode_has_cow_data(ip) && 301 xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap)) 302 cow_fsb = imap.br_startoff; 303 if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) { 304 XFS_WPC(wpc)->cow_seq = READ_ONCE(ip->i_cowfp->if_seq); 305 xfs_iunlock(ip, XFS_ILOCK_SHARED); 306 307 whichfork = XFS_COW_FORK; 308 goto allocate_blocks; 309 } 310 311 /* 312 * No COW extent overlap. Revalidate now that we may have updated 313 * ->cow_seq. If the data mapping is still valid, we're done. 314 */ 315 if (xfs_imap_valid(wpc, ip, offset)) { 316 xfs_iunlock(ip, XFS_ILOCK_SHARED); 317 return 0; 318 } 319 320 /* 321 * If we don't have a valid map, now it's time to get a new one for this 322 * offset. This will convert delayed allocations (including COW ones) 323 * into real extents. 324 */ 325 if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap)) 326 imap.br_startoff = end_fsb; /* fake a hole past EOF */ 327 XFS_WPC(wpc)->data_seq = READ_ONCE(ip->i_df.if_seq); 328 xfs_iunlock(ip, XFS_ILOCK_SHARED); 329 330 /* landed in a hole or beyond EOF? */ 331 if (imap.br_startoff > offset_fsb) { 332 imap.br_blockcount = imap.br_startoff - offset_fsb; 333 imap.br_startoff = offset_fsb; 334 imap.br_startblock = HOLESTARTBLOCK; 335 imap.br_state = XFS_EXT_NORM; 336 } 337 338 /* 339 * Truncate to the next COW extent if there is one. This is the only 340 * opportunity to do this because we can skip COW fork lookups for the 341 * subsequent blocks in the mapping; however, the requirement to treat 342 * the COW range separately remains. 343 */ 344 if (cow_fsb != NULLFILEOFF && 345 cow_fsb < imap.br_startoff + imap.br_blockcount) 346 imap.br_blockcount = cow_fsb - imap.br_startoff; 347 348 /* got a delalloc extent? */ 349 if (imap.br_startblock != HOLESTARTBLOCK && 350 isnullstartblock(imap.br_startblock)) 351 goto allocate_blocks; 352 353 xfs_bmbt_to_iomap(ip, &wpc->iomap, &imap, 0); 354 trace_xfs_map_blocks_found(ip, offset, count, whichfork, &imap); 355 return 0; 356 allocate_blocks: 357 error = xfs_convert_blocks(wpc, ip, whichfork, offset); 358 if (error) { 359 /* 360 * If we failed to find the extent in the COW fork we might have 361 * raced with a COW to data fork conversion or truncate. 362 * Restart the lookup to catch the extent in the data fork for 363 * the former case, but prevent additional retries to avoid 364 * looping forever for the latter case. 365 */ 366 if (error == -EAGAIN && whichfork == XFS_COW_FORK && !retries++) 367 goto retry; 368 ASSERT(error != -EAGAIN); 369 return error; 370 } 371 372 /* 373 * Due to merging the return real extent might be larger than the 374 * original delalloc one. Trim the return extent to the next COW 375 * boundary again to force a re-lookup. 376 */ 377 if (whichfork != XFS_COW_FORK && cow_fsb != NULLFILEOFF) { 378 loff_t cow_offset = XFS_FSB_TO_B(mp, cow_fsb); 379 380 if (cow_offset < wpc->iomap.offset + wpc->iomap.length) 381 wpc->iomap.length = cow_offset - wpc->iomap.offset; 382 } 383 384 ASSERT(wpc->iomap.offset <= offset); 385 ASSERT(wpc->iomap.offset + wpc->iomap.length > offset); 386 trace_xfs_map_blocks_alloc(ip, offset, count, whichfork, &imap); 387 return 0; 388 } 389 390 static int 391 xfs_prepare_ioend( 392 struct iomap_ioend *ioend, 393 int status) 394 { 395 unsigned int nofs_flag; 396 397 /* 398 * We can allocate memory here while doing writeback on behalf of 399 * memory reclaim. To avoid memory allocation deadlocks set the 400 * task-wide nofs context for the following operations. 401 */ 402 nofs_flag = memalloc_nofs_save(); 403 404 /* Convert CoW extents to regular */ 405 if (!status && (ioend->io_flags & IOMAP_F_SHARED)) { 406 status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode), 407 ioend->io_offset, ioend->io_size); 408 } 409 410 memalloc_nofs_restore(nofs_flag); 411 412 /* send ioends that might require a transaction to the completion wq */ 413 if (xfs_ioend_is_append(ioend) || ioend->io_type == IOMAP_UNWRITTEN || 414 (ioend->io_flags & IOMAP_F_SHARED)) 415 ioend->io_bio->bi_end_io = xfs_end_bio; 416 return status; 417 } 418 419 /* 420 * If the page has delalloc blocks on it, we need to punch them out before we 421 * invalidate the page. If we don't, we leave a stale delalloc mapping on the 422 * inode that can trip up a later direct I/O read operation on the same region. 423 * 424 * We prevent this by truncating away the delalloc regions on the page. Because 425 * they are delalloc, we can do this without needing a transaction. Indeed - if 426 * we get ENOSPC errors, we have to be able to do this truncation without a 427 * transaction as there is no space left for block reservation (typically why we 428 * see a ENOSPC in writeback). 429 */ 430 static void 431 xfs_discard_page( 432 struct page *page, 433 loff_t fileoff) 434 { 435 struct inode *inode = page->mapping->host; 436 struct xfs_inode *ip = XFS_I(inode); 437 struct xfs_mount *mp = ip->i_mount; 438 unsigned int pageoff = offset_in_page(fileoff); 439 xfs_fileoff_t start_fsb = XFS_B_TO_FSBT(mp, fileoff); 440 xfs_fileoff_t pageoff_fsb = XFS_B_TO_FSBT(mp, pageoff); 441 int error; 442 443 if (XFS_FORCED_SHUTDOWN(mp)) 444 goto out_invalidate; 445 446 xfs_alert_ratelimited(mp, 447 "page discard on page "PTR_FMT", inode 0x%llx, offset %llu.", 448 page, ip->i_ino, fileoff); 449 450 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 451 i_blocks_per_page(inode, page) - pageoff_fsb); 452 if (error && !XFS_FORCED_SHUTDOWN(mp)) 453 xfs_alert(mp, "page discard unable to remove delalloc mapping."); 454 out_invalidate: 455 iomap_invalidatepage(page, pageoff, PAGE_SIZE - pageoff); 456 } 457 458 static const struct iomap_writeback_ops xfs_writeback_ops = { 459 .map_blocks = xfs_map_blocks, 460 .prepare_ioend = xfs_prepare_ioend, 461 .discard_page = xfs_discard_page, 462 }; 463 464 STATIC int 465 xfs_vm_writepage( 466 struct page *page, 467 struct writeback_control *wbc) 468 { 469 struct xfs_writepage_ctx wpc = { }; 470 471 if (WARN_ON_ONCE(current->journal_info)) { 472 redirty_page_for_writepage(wbc, page); 473 unlock_page(page); 474 return 0; 475 } 476 477 return iomap_writepage(page, wbc, &wpc.ctx, &xfs_writeback_ops); 478 } 479 480 STATIC int 481 xfs_vm_writepages( 482 struct address_space *mapping, 483 struct writeback_control *wbc) 484 { 485 struct xfs_writepage_ctx wpc = { }; 486 487 /* 488 * Writing back data in a transaction context can result in recursive 489 * transactions. This is bad, so issue a warning and get out of here. 490 */ 491 if (WARN_ON_ONCE(current->journal_info)) 492 return 0; 493 494 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED); 495 return iomap_writepages(mapping, wbc, &wpc.ctx, &xfs_writeback_ops); 496 } 497 498 STATIC int 499 xfs_dax_writepages( 500 struct address_space *mapping, 501 struct writeback_control *wbc) 502 { 503 struct xfs_inode *ip = XFS_I(mapping->host); 504 505 xfs_iflags_clear(ip, XFS_ITRUNCATED); 506 return dax_writeback_mapping_range(mapping, 507 xfs_inode_buftarg(ip)->bt_daxdev, wbc); 508 } 509 510 STATIC sector_t 511 xfs_vm_bmap( 512 struct address_space *mapping, 513 sector_t block) 514 { 515 struct xfs_inode *ip = XFS_I(mapping->host); 516 517 trace_xfs_vm_bmap(ip); 518 519 /* 520 * The swap code (ab-)uses ->bmap to get a block mapping and then 521 * bypasses the file system for actual I/O. We really can't allow 522 * that on reflinks inodes, so we have to skip out here. And yes, 523 * 0 is the magic code for a bmap error. 524 * 525 * Since we don't pass back blockdev info, we can't return bmap 526 * information for rt files either. 527 */ 528 if (xfs_is_cow_inode(ip) || XFS_IS_REALTIME_INODE(ip)) 529 return 0; 530 return iomap_bmap(mapping, block, &xfs_read_iomap_ops); 531 } 532 533 STATIC int 534 xfs_vm_readpage( 535 struct file *unused, 536 struct page *page) 537 { 538 return iomap_readpage(page, &xfs_read_iomap_ops); 539 } 540 541 STATIC void 542 xfs_vm_readahead( 543 struct readahead_control *rac) 544 { 545 iomap_readahead(rac, &xfs_read_iomap_ops); 546 } 547 548 static int 549 xfs_iomap_swapfile_activate( 550 struct swap_info_struct *sis, 551 struct file *swap_file, 552 sector_t *span) 553 { 554 sis->bdev = xfs_inode_buftarg(XFS_I(file_inode(swap_file)))->bt_bdev; 555 return iomap_swapfile_activate(sis, swap_file, span, 556 &xfs_read_iomap_ops); 557 } 558 559 const struct address_space_operations xfs_address_space_operations = { 560 .readpage = xfs_vm_readpage, 561 .readahead = xfs_vm_readahead, 562 .writepage = xfs_vm_writepage, 563 .writepages = xfs_vm_writepages, 564 .set_page_dirty = iomap_set_page_dirty, 565 .releasepage = iomap_releasepage, 566 .invalidatepage = iomap_invalidatepage, 567 .bmap = xfs_vm_bmap, 568 .direct_IO = noop_direct_IO, 569 .migratepage = iomap_migrate_page, 570 .is_partially_uptodate = iomap_is_partially_uptodate, 571 .error_remove_page = generic_error_remove_page, 572 .swap_activate = xfs_iomap_swapfile_activate, 573 }; 574 575 const struct address_space_operations xfs_dax_aops = { 576 .writepages = xfs_dax_writepages, 577 .direct_IO = noop_direct_IO, 578 .set_page_dirty = noop_set_page_dirty, 579 .invalidatepage = noop_invalidatepage, 580 .swap_activate = xfs_iomap_swapfile_activate, 581 }; 582