xref: /linux/fs/xfs/xfs_aops.c (revision 827634added7f38b7d724cab1dccdb2b004c13c3)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_shared.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_mount.h"
24 #include "xfs_inode.h"
25 #include "xfs_trans.h"
26 #include "xfs_inode_item.h"
27 #include "xfs_alloc.h"
28 #include "xfs_error.h"
29 #include "xfs_iomap.h"
30 #include "xfs_trace.h"
31 #include "xfs_bmap.h"
32 #include "xfs_bmap_util.h"
33 #include "xfs_bmap_btree.h"
34 #include <linux/gfp.h>
35 #include <linux/mpage.h>
36 #include <linux/pagevec.h>
37 #include <linux/writeback.h>
38 
39 void
40 xfs_count_page_state(
41 	struct page		*page,
42 	int			*delalloc,
43 	int			*unwritten)
44 {
45 	struct buffer_head	*bh, *head;
46 
47 	*delalloc = *unwritten = 0;
48 
49 	bh = head = page_buffers(page);
50 	do {
51 		if (buffer_unwritten(bh))
52 			(*unwritten) = 1;
53 		else if (buffer_delay(bh))
54 			(*delalloc) = 1;
55 	} while ((bh = bh->b_this_page) != head);
56 }
57 
58 STATIC struct block_device *
59 xfs_find_bdev_for_inode(
60 	struct inode		*inode)
61 {
62 	struct xfs_inode	*ip = XFS_I(inode);
63 	struct xfs_mount	*mp = ip->i_mount;
64 
65 	if (XFS_IS_REALTIME_INODE(ip))
66 		return mp->m_rtdev_targp->bt_bdev;
67 	else
68 		return mp->m_ddev_targp->bt_bdev;
69 }
70 
71 /*
72  * We're now finished for good with this ioend structure.
73  * Update the page state via the associated buffer_heads,
74  * release holds on the inode and bio, and finally free
75  * up memory.  Do not use the ioend after this.
76  */
77 STATIC void
78 xfs_destroy_ioend(
79 	xfs_ioend_t		*ioend)
80 {
81 	struct buffer_head	*bh, *next;
82 
83 	for (bh = ioend->io_buffer_head; bh; bh = next) {
84 		next = bh->b_private;
85 		bh->b_end_io(bh, !ioend->io_error);
86 	}
87 
88 	mempool_free(ioend, xfs_ioend_pool);
89 }
90 
91 /*
92  * Fast and loose check if this write could update the on-disk inode size.
93  */
94 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
95 {
96 	return ioend->io_offset + ioend->io_size >
97 		XFS_I(ioend->io_inode)->i_d.di_size;
98 }
99 
100 STATIC int
101 xfs_setfilesize_trans_alloc(
102 	struct xfs_ioend	*ioend)
103 {
104 	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
105 	struct xfs_trans	*tp;
106 	int			error;
107 
108 	tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
109 
110 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0);
111 	if (error) {
112 		xfs_trans_cancel(tp, 0);
113 		return error;
114 	}
115 
116 	ioend->io_append_trans = tp;
117 
118 	/*
119 	 * We may pass freeze protection with a transaction.  So tell lockdep
120 	 * we released it.
121 	 */
122 	rwsem_release(&ioend->io_inode->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
123 		      1, _THIS_IP_);
124 	/*
125 	 * We hand off the transaction to the completion thread now, so
126 	 * clear the flag here.
127 	 */
128 	current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
129 	return 0;
130 }
131 
132 /*
133  * Update on-disk file size now that data has been written to disk.
134  */
135 STATIC int
136 xfs_setfilesize(
137 	struct xfs_inode	*ip,
138 	struct xfs_trans	*tp,
139 	xfs_off_t		offset,
140 	size_t			size)
141 {
142 	xfs_fsize_t		isize;
143 
144 	xfs_ilock(ip, XFS_ILOCK_EXCL);
145 	isize = xfs_new_eof(ip, offset + size);
146 	if (!isize) {
147 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
148 		xfs_trans_cancel(tp, 0);
149 		return 0;
150 	}
151 
152 	trace_xfs_setfilesize(ip, offset, size);
153 
154 	ip->i_d.di_size = isize;
155 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
156 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
157 
158 	return xfs_trans_commit(tp, 0);
159 }
160 
161 STATIC int
162 xfs_setfilesize_ioend(
163 	struct xfs_ioend	*ioend)
164 {
165 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
166 	struct xfs_trans	*tp = ioend->io_append_trans;
167 
168 	/*
169 	 * The transaction may have been allocated in the I/O submission thread,
170 	 * thus we need to mark ourselves as being in a transaction manually.
171 	 * Similarly for freeze protection.
172 	 */
173 	current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
174 	rwsem_acquire_read(&VFS_I(ip)->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
175 			   0, 1, _THIS_IP_);
176 
177 	return xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
178 }
179 
180 /*
181  * Schedule IO completion handling on the final put of an ioend.
182  *
183  * If there is no work to do we might as well call it a day and free the
184  * ioend right now.
185  */
186 STATIC void
187 xfs_finish_ioend(
188 	struct xfs_ioend	*ioend)
189 {
190 	if (atomic_dec_and_test(&ioend->io_remaining)) {
191 		struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
192 
193 		if (ioend->io_type == XFS_IO_UNWRITTEN)
194 			queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
195 		else if (ioend->io_append_trans)
196 			queue_work(mp->m_data_workqueue, &ioend->io_work);
197 		else
198 			xfs_destroy_ioend(ioend);
199 	}
200 }
201 
202 /*
203  * IO write completion.
204  */
205 STATIC void
206 xfs_end_io(
207 	struct work_struct *work)
208 {
209 	xfs_ioend_t	*ioend = container_of(work, xfs_ioend_t, io_work);
210 	struct xfs_inode *ip = XFS_I(ioend->io_inode);
211 	int		error = 0;
212 
213 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
214 		ioend->io_error = -EIO;
215 		goto done;
216 	}
217 	if (ioend->io_error)
218 		goto done;
219 
220 	/*
221 	 * For unwritten extents we need to issue transactions to convert a
222 	 * range to normal written extens after the data I/O has finished.
223 	 */
224 	if (ioend->io_type == XFS_IO_UNWRITTEN) {
225 		error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
226 						  ioend->io_size);
227 	} else if (ioend->io_append_trans) {
228 		error = xfs_setfilesize_ioend(ioend);
229 	} else {
230 		ASSERT(!xfs_ioend_is_append(ioend));
231 	}
232 
233 done:
234 	if (error)
235 		ioend->io_error = error;
236 	xfs_destroy_ioend(ioend);
237 }
238 
239 /*
240  * Allocate and initialise an IO completion structure.
241  * We need to track unwritten extent write completion here initially.
242  * We'll need to extend this for updating the ondisk inode size later
243  * (vs. incore size).
244  */
245 STATIC xfs_ioend_t *
246 xfs_alloc_ioend(
247 	struct inode		*inode,
248 	unsigned int		type)
249 {
250 	xfs_ioend_t		*ioend;
251 
252 	ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
253 
254 	/*
255 	 * Set the count to 1 initially, which will prevent an I/O
256 	 * completion callback from happening before we have started
257 	 * all the I/O from calling the completion routine too early.
258 	 */
259 	atomic_set(&ioend->io_remaining, 1);
260 	ioend->io_error = 0;
261 	ioend->io_list = NULL;
262 	ioend->io_type = type;
263 	ioend->io_inode = inode;
264 	ioend->io_buffer_head = NULL;
265 	ioend->io_buffer_tail = NULL;
266 	ioend->io_offset = 0;
267 	ioend->io_size = 0;
268 	ioend->io_append_trans = NULL;
269 
270 	INIT_WORK(&ioend->io_work, xfs_end_io);
271 	return ioend;
272 }
273 
274 STATIC int
275 xfs_map_blocks(
276 	struct inode		*inode,
277 	loff_t			offset,
278 	struct xfs_bmbt_irec	*imap,
279 	int			type,
280 	int			nonblocking)
281 {
282 	struct xfs_inode	*ip = XFS_I(inode);
283 	struct xfs_mount	*mp = ip->i_mount;
284 	ssize_t			count = 1 << inode->i_blkbits;
285 	xfs_fileoff_t		offset_fsb, end_fsb;
286 	int			error = 0;
287 	int			bmapi_flags = XFS_BMAPI_ENTIRE;
288 	int			nimaps = 1;
289 
290 	if (XFS_FORCED_SHUTDOWN(mp))
291 		return -EIO;
292 
293 	if (type == XFS_IO_UNWRITTEN)
294 		bmapi_flags |= XFS_BMAPI_IGSTATE;
295 
296 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
297 		if (nonblocking)
298 			return -EAGAIN;
299 		xfs_ilock(ip, XFS_ILOCK_SHARED);
300 	}
301 
302 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
303 	       (ip->i_df.if_flags & XFS_IFEXTENTS));
304 	ASSERT(offset <= mp->m_super->s_maxbytes);
305 
306 	if (offset + count > mp->m_super->s_maxbytes)
307 		count = mp->m_super->s_maxbytes - offset;
308 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
309 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
310 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
311 				imap, &nimaps, bmapi_flags);
312 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
313 
314 	if (error)
315 		return error;
316 
317 	if (type == XFS_IO_DELALLOC &&
318 	    (!nimaps || isnullstartblock(imap->br_startblock))) {
319 		error = xfs_iomap_write_allocate(ip, offset, imap);
320 		if (!error)
321 			trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
322 		return error;
323 	}
324 
325 #ifdef DEBUG
326 	if (type == XFS_IO_UNWRITTEN) {
327 		ASSERT(nimaps);
328 		ASSERT(imap->br_startblock != HOLESTARTBLOCK);
329 		ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
330 	}
331 #endif
332 	if (nimaps)
333 		trace_xfs_map_blocks_found(ip, offset, count, type, imap);
334 	return 0;
335 }
336 
337 STATIC int
338 xfs_imap_valid(
339 	struct inode		*inode,
340 	struct xfs_bmbt_irec	*imap,
341 	xfs_off_t		offset)
342 {
343 	offset >>= inode->i_blkbits;
344 
345 	return offset >= imap->br_startoff &&
346 		offset < imap->br_startoff + imap->br_blockcount;
347 }
348 
349 /*
350  * BIO completion handler for buffered IO.
351  */
352 STATIC void
353 xfs_end_bio(
354 	struct bio		*bio,
355 	int			error)
356 {
357 	xfs_ioend_t		*ioend = bio->bi_private;
358 
359 	ASSERT(atomic_read(&bio->bi_cnt) >= 1);
360 	ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
361 
362 	/* Toss bio and pass work off to an xfsdatad thread */
363 	bio->bi_private = NULL;
364 	bio->bi_end_io = NULL;
365 	bio_put(bio);
366 
367 	xfs_finish_ioend(ioend);
368 }
369 
370 STATIC void
371 xfs_submit_ioend_bio(
372 	struct writeback_control *wbc,
373 	xfs_ioend_t		*ioend,
374 	struct bio		*bio)
375 {
376 	atomic_inc(&ioend->io_remaining);
377 	bio->bi_private = ioend;
378 	bio->bi_end_io = xfs_end_bio;
379 	submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
380 }
381 
382 STATIC struct bio *
383 xfs_alloc_ioend_bio(
384 	struct buffer_head	*bh)
385 {
386 	int			nvecs = bio_get_nr_vecs(bh->b_bdev);
387 	struct bio		*bio = bio_alloc(GFP_NOIO, nvecs);
388 
389 	ASSERT(bio->bi_private == NULL);
390 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
391 	bio->bi_bdev = bh->b_bdev;
392 	return bio;
393 }
394 
395 STATIC void
396 xfs_start_buffer_writeback(
397 	struct buffer_head	*bh)
398 {
399 	ASSERT(buffer_mapped(bh));
400 	ASSERT(buffer_locked(bh));
401 	ASSERT(!buffer_delay(bh));
402 	ASSERT(!buffer_unwritten(bh));
403 
404 	mark_buffer_async_write(bh);
405 	set_buffer_uptodate(bh);
406 	clear_buffer_dirty(bh);
407 }
408 
409 STATIC void
410 xfs_start_page_writeback(
411 	struct page		*page,
412 	int			clear_dirty,
413 	int			buffers)
414 {
415 	ASSERT(PageLocked(page));
416 	ASSERT(!PageWriteback(page));
417 
418 	/*
419 	 * if the page was not fully cleaned, we need to ensure that the higher
420 	 * layers come back to it correctly. That means we need to keep the page
421 	 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
422 	 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
423 	 * write this page in this writeback sweep will be made.
424 	 */
425 	if (clear_dirty) {
426 		clear_page_dirty_for_io(page);
427 		set_page_writeback(page);
428 	} else
429 		set_page_writeback_keepwrite(page);
430 
431 	unlock_page(page);
432 
433 	/* If no buffers on the page are to be written, finish it here */
434 	if (!buffers)
435 		end_page_writeback(page);
436 }
437 
438 static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
439 {
440 	return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
441 }
442 
443 /*
444  * Submit all of the bios for all of the ioends we have saved up, covering the
445  * initial writepage page and also any probed pages.
446  *
447  * Because we may have multiple ioends spanning a page, we need to start
448  * writeback on all the buffers before we submit them for I/O. If we mark the
449  * buffers as we got, then we can end up with a page that only has buffers
450  * marked async write and I/O complete on can occur before we mark the other
451  * buffers async write.
452  *
453  * The end result of this is that we trip a bug in end_page_writeback() because
454  * we call it twice for the one page as the code in end_buffer_async_write()
455  * assumes that all buffers on the page are started at the same time.
456  *
457  * The fix is two passes across the ioend list - one to start writeback on the
458  * buffer_heads, and then submit them for I/O on the second pass.
459  *
460  * If @fail is non-zero, it means that we have a situation where some part of
461  * the submission process has failed after we have marked paged for writeback
462  * and unlocked them. In this situation, we need to fail the ioend chain rather
463  * than submit it to IO. This typically only happens on a filesystem shutdown.
464  */
465 STATIC void
466 xfs_submit_ioend(
467 	struct writeback_control *wbc,
468 	xfs_ioend_t		*ioend,
469 	int			fail)
470 {
471 	xfs_ioend_t		*head = ioend;
472 	xfs_ioend_t		*next;
473 	struct buffer_head	*bh;
474 	struct bio		*bio;
475 	sector_t		lastblock = 0;
476 
477 	/* Pass 1 - start writeback */
478 	do {
479 		next = ioend->io_list;
480 		for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
481 			xfs_start_buffer_writeback(bh);
482 	} while ((ioend = next) != NULL);
483 
484 	/* Pass 2 - submit I/O */
485 	ioend = head;
486 	do {
487 		next = ioend->io_list;
488 		bio = NULL;
489 
490 		/*
491 		 * If we are failing the IO now, just mark the ioend with an
492 		 * error and finish it. This will run IO completion immediately
493 		 * as there is only one reference to the ioend at this point in
494 		 * time.
495 		 */
496 		if (fail) {
497 			ioend->io_error = fail;
498 			xfs_finish_ioend(ioend);
499 			continue;
500 		}
501 
502 		for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
503 
504 			if (!bio) {
505  retry:
506 				bio = xfs_alloc_ioend_bio(bh);
507 			} else if (bh->b_blocknr != lastblock + 1) {
508 				xfs_submit_ioend_bio(wbc, ioend, bio);
509 				goto retry;
510 			}
511 
512 			if (xfs_bio_add_buffer(bio, bh) != bh->b_size) {
513 				xfs_submit_ioend_bio(wbc, ioend, bio);
514 				goto retry;
515 			}
516 
517 			lastblock = bh->b_blocknr;
518 		}
519 		if (bio)
520 			xfs_submit_ioend_bio(wbc, ioend, bio);
521 		xfs_finish_ioend(ioend);
522 	} while ((ioend = next) != NULL);
523 }
524 
525 /*
526  * Cancel submission of all buffer_heads so far in this endio.
527  * Toss the endio too.  Only ever called for the initial page
528  * in a writepage request, so only ever one page.
529  */
530 STATIC void
531 xfs_cancel_ioend(
532 	xfs_ioend_t		*ioend)
533 {
534 	xfs_ioend_t		*next;
535 	struct buffer_head	*bh, *next_bh;
536 
537 	do {
538 		next = ioend->io_list;
539 		bh = ioend->io_buffer_head;
540 		do {
541 			next_bh = bh->b_private;
542 			clear_buffer_async_write(bh);
543 			/*
544 			 * The unwritten flag is cleared when added to the
545 			 * ioend. We're not submitting for I/O so mark the
546 			 * buffer unwritten again for next time around.
547 			 */
548 			if (ioend->io_type == XFS_IO_UNWRITTEN)
549 				set_buffer_unwritten(bh);
550 			unlock_buffer(bh);
551 		} while ((bh = next_bh) != NULL);
552 
553 		mempool_free(ioend, xfs_ioend_pool);
554 	} while ((ioend = next) != NULL);
555 }
556 
557 /*
558  * Test to see if we've been building up a completion structure for
559  * earlier buffers -- if so, we try to append to this ioend if we
560  * can, otherwise we finish off any current ioend and start another.
561  * Return true if we've finished the given ioend.
562  */
563 STATIC void
564 xfs_add_to_ioend(
565 	struct inode		*inode,
566 	struct buffer_head	*bh,
567 	xfs_off_t		offset,
568 	unsigned int		type,
569 	xfs_ioend_t		**result,
570 	int			need_ioend)
571 {
572 	xfs_ioend_t		*ioend = *result;
573 
574 	if (!ioend || need_ioend || type != ioend->io_type) {
575 		xfs_ioend_t	*previous = *result;
576 
577 		ioend = xfs_alloc_ioend(inode, type);
578 		ioend->io_offset = offset;
579 		ioend->io_buffer_head = bh;
580 		ioend->io_buffer_tail = bh;
581 		if (previous)
582 			previous->io_list = ioend;
583 		*result = ioend;
584 	} else {
585 		ioend->io_buffer_tail->b_private = bh;
586 		ioend->io_buffer_tail = bh;
587 	}
588 
589 	bh->b_private = NULL;
590 	ioend->io_size += bh->b_size;
591 }
592 
593 STATIC void
594 xfs_map_buffer(
595 	struct inode		*inode,
596 	struct buffer_head	*bh,
597 	struct xfs_bmbt_irec	*imap,
598 	xfs_off_t		offset)
599 {
600 	sector_t		bn;
601 	struct xfs_mount	*m = XFS_I(inode)->i_mount;
602 	xfs_off_t		iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
603 	xfs_daddr_t		iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
604 
605 	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
606 	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
607 
608 	bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
609 	      ((offset - iomap_offset) >> inode->i_blkbits);
610 
611 	ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
612 
613 	bh->b_blocknr = bn;
614 	set_buffer_mapped(bh);
615 }
616 
617 STATIC void
618 xfs_map_at_offset(
619 	struct inode		*inode,
620 	struct buffer_head	*bh,
621 	struct xfs_bmbt_irec	*imap,
622 	xfs_off_t		offset)
623 {
624 	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
625 	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
626 
627 	xfs_map_buffer(inode, bh, imap, offset);
628 	set_buffer_mapped(bh);
629 	clear_buffer_delay(bh);
630 	clear_buffer_unwritten(bh);
631 }
632 
633 /*
634  * Test if a given page contains at least one buffer of a given @type.
635  * If @check_all_buffers is true, then we walk all the buffers in the page to
636  * try to find one of the type passed in. If it is not set, then the caller only
637  * needs to check the first buffer on the page for a match.
638  */
639 STATIC bool
640 xfs_check_page_type(
641 	struct page		*page,
642 	unsigned int		type,
643 	bool			check_all_buffers)
644 {
645 	struct buffer_head	*bh;
646 	struct buffer_head	*head;
647 
648 	if (PageWriteback(page))
649 		return false;
650 	if (!page->mapping)
651 		return false;
652 	if (!page_has_buffers(page))
653 		return false;
654 
655 	bh = head = page_buffers(page);
656 	do {
657 		if (buffer_unwritten(bh)) {
658 			if (type == XFS_IO_UNWRITTEN)
659 				return true;
660 		} else if (buffer_delay(bh)) {
661 			if (type == XFS_IO_DELALLOC)
662 				return true;
663 		} else if (buffer_dirty(bh) && buffer_mapped(bh)) {
664 			if (type == XFS_IO_OVERWRITE)
665 				return true;
666 		}
667 
668 		/* If we are only checking the first buffer, we are done now. */
669 		if (!check_all_buffers)
670 			break;
671 	} while ((bh = bh->b_this_page) != head);
672 
673 	return false;
674 }
675 
676 /*
677  * Allocate & map buffers for page given the extent map. Write it out.
678  * except for the original page of a writepage, this is called on
679  * delalloc/unwritten pages only, for the original page it is possible
680  * that the page has no mapping at all.
681  */
682 STATIC int
683 xfs_convert_page(
684 	struct inode		*inode,
685 	struct page		*page,
686 	loff_t			tindex,
687 	struct xfs_bmbt_irec	*imap,
688 	xfs_ioend_t		**ioendp,
689 	struct writeback_control *wbc)
690 {
691 	struct buffer_head	*bh, *head;
692 	xfs_off_t		end_offset;
693 	unsigned long		p_offset;
694 	unsigned int		type;
695 	int			len, page_dirty;
696 	int			count = 0, done = 0, uptodate = 1;
697  	xfs_off_t		offset = page_offset(page);
698 
699 	if (page->index != tindex)
700 		goto fail;
701 	if (!trylock_page(page))
702 		goto fail;
703 	if (PageWriteback(page))
704 		goto fail_unlock_page;
705 	if (page->mapping != inode->i_mapping)
706 		goto fail_unlock_page;
707 	if (!xfs_check_page_type(page, (*ioendp)->io_type, false))
708 		goto fail_unlock_page;
709 
710 	/*
711 	 * page_dirty is initially a count of buffers on the page before
712 	 * EOF and is decremented as we move each into a cleanable state.
713 	 *
714 	 * Derivation:
715 	 *
716 	 * End offset is the highest offset that this page should represent.
717 	 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
718 	 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
719 	 * hence give us the correct page_dirty count. On any other page,
720 	 * it will be zero and in that case we need page_dirty to be the
721 	 * count of buffers on the page.
722 	 */
723 	end_offset = min_t(unsigned long long,
724 			(xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
725 			i_size_read(inode));
726 
727 	/*
728 	 * If the current map does not span the entire page we are about to try
729 	 * to write, then give up. The only way we can write a page that spans
730 	 * multiple mappings in a single writeback iteration is via the
731 	 * xfs_vm_writepage() function. Data integrity writeback requires the
732 	 * entire page to be written in a single attempt, otherwise the part of
733 	 * the page we don't write here doesn't get written as part of the data
734 	 * integrity sync.
735 	 *
736 	 * For normal writeback, we also don't attempt to write partial pages
737 	 * here as it simply means that write_cache_pages() will see it under
738 	 * writeback and ignore the page until some point in the future, at
739 	 * which time this will be the only page in the file that needs
740 	 * writeback.  Hence for more optimal IO patterns, we should always
741 	 * avoid partial page writeback due to multiple mappings on a page here.
742 	 */
743 	if (!xfs_imap_valid(inode, imap, end_offset))
744 		goto fail_unlock_page;
745 
746 	len = 1 << inode->i_blkbits;
747 	p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
748 					PAGE_CACHE_SIZE);
749 	p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
750 	page_dirty = p_offset / len;
751 
752 	/*
753 	 * The moment we find a buffer that doesn't match our current type
754 	 * specification or can't be written, abort the loop and start
755 	 * writeback. As per the above xfs_imap_valid() check, only
756 	 * xfs_vm_writepage() can handle partial page writeback fully - we are
757 	 * limited here to the buffers that are contiguous with the current
758 	 * ioend, and hence a buffer we can't write breaks that contiguity and
759 	 * we have to defer the rest of the IO to xfs_vm_writepage().
760 	 */
761 	bh = head = page_buffers(page);
762 	do {
763 		if (offset >= end_offset)
764 			break;
765 		if (!buffer_uptodate(bh))
766 			uptodate = 0;
767 		if (!(PageUptodate(page) || buffer_uptodate(bh))) {
768 			done = 1;
769 			break;
770 		}
771 
772 		if (buffer_unwritten(bh) || buffer_delay(bh) ||
773 		    buffer_mapped(bh)) {
774 			if (buffer_unwritten(bh))
775 				type = XFS_IO_UNWRITTEN;
776 			else if (buffer_delay(bh))
777 				type = XFS_IO_DELALLOC;
778 			else
779 				type = XFS_IO_OVERWRITE;
780 
781 			/*
782 			 * imap should always be valid because of the above
783 			 * partial page end_offset check on the imap.
784 			 */
785 			ASSERT(xfs_imap_valid(inode, imap, offset));
786 
787 			lock_buffer(bh);
788 			if (type != XFS_IO_OVERWRITE)
789 				xfs_map_at_offset(inode, bh, imap, offset);
790 			xfs_add_to_ioend(inode, bh, offset, type,
791 					 ioendp, done);
792 
793 			page_dirty--;
794 			count++;
795 		} else {
796 			done = 1;
797 			break;
798 		}
799 	} while (offset += len, (bh = bh->b_this_page) != head);
800 
801 	if (uptodate && bh == head)
802 		SetPageUptodate(page);
803 
804 	if (count) {
805 		if (--wbc->nr_to_write <= 0 &&
806 		    wbc->sync_mode == WB_SYNC_NONE)
807 			done = 1;
808 	}
809 	xfs_start_page_writeback(page, !page_dirty, count);
810 
811 	return done;
812  fail_unlock_page:
813 	unlock_page(page);
814  fail:
815 	return 1;
816 }
817 
818 /*
819  * Convert & write out a cluster of pages in the same extent as defined
820  * by mp and following the start page.
821  */
822 STATIC void
823 xfs_cluster_write(
824 	struct inode		*inode,
825 	pgoff_t			tindex,
826 	struct xfs_bmbt_irec	*imap,
827 	xfs_ioend_t		**ioendp,
828 	struct writeback_control *wbc,
829 	pgoff_t			tlast)
830 {
831 	struct pagevec		pvec;
832 	int			done = 0, i;
833 
834 	pagevec_init(&pvec, 0);
835 	while (!done && tindex <= tlast) {
836 		unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
837 
838 		if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
839 			break;
840 
841 		for (i = 0; i < pagevec_count(&pvec); i++) {
842 			done = xfs_convert_page(inode, pvec.pages[i], tindex++,
843 					imap, ioendp, wbc);
844 			if (done)
845 				break;
846 		}
847 
848 		pagevec_release(&pvec);
849 		cond_resched();
850 	}
851 }
852 
853 STATIC void
854 xfs_vm_invalidatepage(
855 	struct page		*page,
856 	unsigned int		offset,
857 	unsigned int		length)
858 {
859 	trace_xfs_invalidatepage(page->mapping->host, page, offset,
860 				 length);
861 	block_invalidatepage(page, offset, length);
862 }
863 
864 /*
865  * If the page has delalloc buffers on it, we need to punch them out before we
866  * invalidate the page. If we don't, we leave a stale delalloc mapping on the
867  * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
868  * is done on that same region - the delalloc extent is returned when none is
869  * supposed to be there.
870  *
871  * We prevent this by truncating away the delalloc regions on the page before
872  * invalidating it. Because they are delalloc, we can do this without needing a
873  * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
874  * truncation without a transaction as there is no space left for block
875  * reservation (typically why we see a ENOSPC in writeback).
876  *
877  * This is not a performance critical path, so for now just do the punching a
878  * buffer head at a time.
879  */
880 STATIC void
881 xfs_aops_discard_page(
882 	struct page		*page)
883 {
884 	struct inode		*inode = page->mapping->host;
885 	struct xfs_inode	*ip = XFS_I(inode);
886 	struct buffer_head	*bh, *head;
887 	loff_t			offset = page_offset(page);
888 
889 	if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
890 		goto out_invalidate;
891 
892 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
893 		goto out_invalidate;
894 
895 	xfs_alert(ip->i_mount,
896 		"page discard on page %p, inode 0x%llx, offset %llu.",
897 			page, ip->i_ino, offset);
898 
899 	xfs_ilock(ip, XFS_ILOCK_EXCL);
900 	bh = head = page_buffers(page);
901 	do {
902 		int		error;
903 		xfs_fileoff_t	start_fsb;
904 
905 		if (!buffer_delay(bh))
906 			goto next_buffer;
907 
908 		start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
909 		error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
910 		if (error) {
911 			/* something screwed, just bail */
912 			if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
913 				xfs_alert(ip->i_mount,
914 			"page discard unable to remove delalloc mapping.");
915 			}
916 			break;
917 		}
918 next_buffer:
919 		offset += 1 << inode->i_blkbits;
920 
921 	} while ((bh = bh->b_this_page) != head);
922 
923 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
924 out_invalidate:
925 	xfs_vm_invalidatepage(page, 0, PAGE_CACHE_SIZE);
926 	return;
927 }
928 
929 /*
930  * Write out a dirty page.
931  *
932  * For delalloc space on the page we need to allocate space and flush it.
933  * For unwritten space on the page we need to start the conversion to
934  * regular allocated space.
935  * For any other dirty buffer heads on the page we should flush them.
936  */
937 STATIC int
938 xfs_vm_writepage(
939 	struct page		*page,
940 	struct writeback_control *wbc)
941 {
942 	struct inode		*inode = page->mapping->host;
943 	struct buffer_head	*bh, *head;
944 	struct xfs_bmbt_irec	imap;
945 	xfs_ioend_t		*ioend = NULL, *iohead = NULL;
946 	loff_t			offset;
947 	unsigned int		type;
948 	__uint64_t              end_offset;
949 	pgoff_t                 end_index, last_index;
950 	ssize_t			len;
951 	int			err, imap_valid = 0, uptodate = 1;
952 	int			count = 0;
953 	int			nonblocking = 0;
954 
955 	trace_xfs_writepage(inode, page, 0, 0);
956 
957 	ASSERT(page_has_buffers(page));
958 
959 	/*
960 	 * Refuse to write the page out if we are called from reclaim context.
961 	 *
962 	 * This avoids stack overflows when called from deeply used stacks in
963 	 * random callers for direct reclaim or memcg reclaim.  We explicitly
964 	 * allow reclaim from kswapd as the stack usage there is relatively low.
965 	 *
966 	 * This should never happen except in the case of a VM regression so
967 	 * warn about it.
968 	 */
969 	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
970 			PF_MEMALLOC))
971 		goto redirty;
972 
973 	/*
974 	 * Given that we do not allow direct reclaim to call us, we should
975 	 * never be called while in a filesystem transaction.
976 	 */
977 	if (WARN_ON_ONCE(current->flags & PF_FSTRANS))
978 		goto redirty;
979 
980 	/* Is this page beyond the end of the file? */
981 	offset = i_size_read(inode);
982 	end_index = offset >> PAGE_CACHE_SHIFT;
983 	last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
984 
985 	/*
986 	 * The page index is less than the end_index, adjust the end_offset
987 	 * to the highest offset that this page should represent.
988 	 * -----------------------------------------------------
989 	 * |			file mapping	       | <EOF> |
990 	 * -----------------------------------------------------
991 	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
992 	 * ^--------------------------------^----------|--------
993 	 * |     desired writeback range    |      see else    |
994 	 * ---------------------------------^------------------|
995 	 */
996 	if (page->index < end_index)
997 		end_offset = (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT;
998 	else {
999 		/*
1000 		 * Check whether the page to write out is beyond or straddles
1001 		 * i_size or not.
1002 		 * -------------------------------------------------------
1003 		 * |		file mapping		        | <EOF>  |
1004 		 * -------------------------------------------------------
1005 		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
1006 		 * ^--------------------------------^-----------|---------
1007 		 * |				    |      Straddles     |
1008 		 * ---------------------------------^-----------|--------|
1009 		 */
1010 		unsigned offset_into_page = offset & (PAGE_CACHE_SIZE - 1);
1011 
1012 		/*
1013 		 * Skip the page if it is fully outside i_size, e.g. due to a
1014 		 * truncate operation that is in progress. We must redirty the
1015 		 * page so that reclaim stops reclaiming it. Otherwise
1016 		 * xfs_vm_releasepage() is called on it and gets confused.
1017 		 *
1018 		 * Note that the end_index is unsigned long, it would overflow
1019 		 * if the given offset is greater than 16TB on 32-bit system
1020 		 * and if we do check the page is fully outside i_size or not
1021 		 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1022 		 * will be evaluated to 0.  Hence this page will be redirtied
1023 		 * and be written out repeatedly which would result in an
1024 		 * infinite loop, the user program that perform this operation
1025 		 * will hang.  Instead, we can verify this situation by checking
1026 		 * if the page to write is totally beyond the i_size or if it's
1027 		 * offset is just equal to the EOF.
1028 		 */
1029 		if (page->index > end_index ||
1030 		    (page->index == end_index && offset_into_page == 0))
1031 			goto redirty;
1032 
1033 		/*
1034 		 * The page straddles i_size.  It must be zeroed out on each
1035 		 * and every writepage invocation because it may be mmapped.
1036 		 * "A file is mapped in multiples of the page size.  For a file
1037 		 * that is not a multiple of the page size, the remaining
1038 		 * memory is zeroed when mapped, and writes to that region are
1039 		 * not written out to the file."
1040 		 */
1041 		zero_user_segment(page, offset_into_page, PAGE_CACHE_SIZE);
1042 
1043 		/* Adjust the end_offset to the end of file */
1044 		end_offset = offset;
1045 	}
1046 
1047 	len = 1 << inode->i_blkbits;
1048 
1049 	bh = head = page_buffers(page);
1050 	offset = page_offset(page);
1051 	type = XFS_IO_OVERWRITE;
1052 
1053 	if (wbc->sync_mode == WB_SYNC_NONE)
1054 		nonblocking = 1;
1055 
1056 	do {
1057 		int new_ioend = 0;
1058 
1059 		if (offset >= end_offset)
1060 			break;
1061 		if (!buffer_uptodate(bh))
1062 			uptodate = 0;
1063 
1064 		/*
1065 		 * set_page_dirty dirties all buffers in a page, independent
1066 		 * of their state.  The dirty state however is entirely
1067 		 * meaningless for holes (!mapped && uptodate), so skip
1068 		 * buffers covering holes here.
1069 		 */
1070 		if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
1071 			imap_valid = 0;
1072 			continue;
1073 		}
1074 
1075 		if (buffer_unwritten(bh)) {
1076 			if (type != XFS_IO_UNWRITTEN) {
1077 				type = XFS_IO_UNWRITTEN;
1078 				imap_valid = 0;
1079 			}
1080 		} else if (buffer_delay(bh)) {
1081 			if (type != XFS_IO_DELALLOC) {
1082 				type = XFS_IO_DELALLOC;
1083 				imap_valid = 0;
1084 			}
1085 		} else if (buffer_uptodate(bh)) {
1086 			if (type != XFS_IO_OVERWRITE) {
1087 				type = XFS_IO_OVERWRITE;
1088 				imap_valid = 0;
1089 			}
1090 		} else {
1091 			if (PageUptodate(page))
1092 				ASSERT(buffer_mapped(bh));
1093 			/*
1094 			 * This buffer is not uptodate and will not be
1095 			 * written to disk.  Ensure that we will put any
1096 			 * subsequent writeable buffers into a new
1097 			 * ioend.
1098 			 */
1099 			imap_valid = 0;
1100 			continue;
1101 		}
1102 
1103 		if (imap_valid)
1104 			imap_valid = xfs_imap_valid(inode, &imap, offset);
1105 		if (!imap_valid) {
1106 			/*
1107 			 * If we didn't have a valid mapping then we need to
1108 			 * put the new mapping into a separate ioend structure.
1109 			 * This ensures non-contiguous extents always have
1110 			 * separate ioends, which is particularly important
1111 			 * for unwritten extent conversion at I/O completion
1112 			 * time.
1113 			 */
1114 			new_ioend = 1;
1115 			err = xfs_map_blocks(inode, offset, &imap, type,
1116 					     nonblocking);
1117 			if (err)
1118 				goto error;
1119 			imap_valid = xfs_imap_valid(inode, &imap, offset);
1120 		}
1121 		if (imap_valid) {
1122 			lock_buffer(bh);
1123 			if (type != XFS_IO_OVERWRITE)
1124 				xfs_map_at_offset(inode, bh, &imap, offset);
1125 			xfs_add_to_ioend(inode, bh, offset, type, &ioend,
1126 					 new_ioend);
1127 			count++;
1128 		}
1129 
1130 		if (!iohead)
1131 			iohead = ioend;
1132 
1133 	} while (offset += len, ((bh = bh->b_this_page) != head));
1134 
1135 	if (uptodate && bh == head)
1136 		SetPageUptodate(page);
1137 
1138 	xfs_start_page_writeback(page, 1, count);
1139 
1140 	/* if there is no IO to be submitted for this page, we are done */
1141 	if (!ioend)
1142 		return 0;
1143 
1144 	ASSERT(iohead);
1145 
1146 	/*
1147 	 * Any errors from this point onwards need tobe reported through the IO
1148 	 * completion path as we have marked the initial page as under writeback
1149 	 * and unlocked it.
1150 	 */
1151 	if (imap_valid) {
1152 		xfs_off_t		end_index;
1153 
1154 		end_index = imap.br_startoff + imap.br_blockcount;
1155 
1156 		/* to bytes */
1157 		end_index <<= inode->i_blkbits;
1158 
1159 		/* to pages */
1160 		end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1161 
1162 		/* check against file size */
1163 		if (end_index > last_index)
1164 			end_index = last_index;
1165 
1166 		xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
1167 				  wbc, end_index);
1168 	}
1169 
1170 
1171 	/*
1172 	 * Reserve log space if we might write beyond the on-disk inode size.
1173 	 */
1174 	err = 0;
1175 	if (ioend->io_type != XFS_IO_UNWRITTEN && xfs_ioend_is_append(ioend))
1176 		err = xfs_setfilesize_trans_alloc(ioend);
1177 
1178 	xfs_submit_ioend(wbc, iohead, err);
1179 
1180 	return 0;
1181 
1182 error:
1183 	if (iohead)
1184 		xfs_cancel_ioend(iohead);
1185 
1186 	if (err == -EAGAIN)
1187 		goto redirty;
1188 
1189 	xfs_aops_discard_page(page);
1190 	ClearPageUptodate(page);
1191 	unlock_page(page);
1192 	return err;
1193 
1194 redirty:
1195 	redirty_page_for_writepage(wbc, page);
1196 	unlock_page(page);
1197 	return 0;
1198 }
1199 
1200 STATIC int
1201 xfs_vm_writepages(
1202 	struct address_space	*mapping,
1203 	struct writeback_control *wbc)
1204 {
1205 	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1206 	return generic_writepages(mapping, wbc);
1207 }
1208 
1209 /*
1210  * Called to move a page into cleanable state - and from there
1211  * to be released. The page should already be clean. We always
1212  * have buffer heads in this call.
1213  *
1214  * Returns 1 if the page is ok to release, 0 otherwise.
1215  */
1216 STATIC int
1217 xfs_vm_releasepage(
1218 	struct page		*page,
1219 	gfp_t			gfp_mask)
1220 {
1221 	int			delalloc, unwritten;
1222 
1223 	trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1224 
1225 	xfs_count_page_state(page, &delalloc, &unwritten);
1226 
1227 	if (WARN_ON_ONCE(delalloc))
1228 		return 0;
1229 	if (WARN_ON_ONCE(unwritten))
1230 		return 0;
1231 
1232 	return try_to_free_buffers(page);
1233 }
1234 
1235 /*
1236  * When we map a DIO buffer, we may need to attach an ioend that describes the
1237  * type of write IO we are doing. This passes to the completion function the
1238  * operations it needs to perform. If the mapping is for an overwrite wholly
1239  * within the EOF then we don't need an ioend and so we don't allocate one.
1240  * This avoids the unnecessary overhead of allocating and freeing ioends for
1241  * workloads that don't require transactions on IO completion.
1242  *
1243  * If we get multiple mappings in a single IO, we might be mapping different
1244  * types. But because the direct IO can only have a single private pointer, we
1245  * need to ensure that:
1246  *
1247  * a) i) the ioend spans the entire region of unwritten mappings; or
1248  *    ii) the ioend spans all the mappings that cross or are beyond EOF; and
1249  * b) if it contains unwritten extents, it is *permanently* marked as such
1250  *
1251  * We could do this by chaining ioends like buffered IO does, but we only
1252  * actually get one IO completion callback from the direct IO, and that spans
1253  * the entire IO regardless of how many mappings and IOs are needed to complete
1254  * the DIO. There is only going to be one reference to the ioend and its life
1255  * cycle is constrained by the DIO completion code. hence we don't need
1256  * reference counting here.
1257  */
1258 static void
1259 xfs_map_direct(
1260 	struct inode		*inode,
1261 	struct buffer_head	*bh_result,
1262 	struct xfs_bmbt_irec	*imap,
1263 	xfs_off_t		offset)
1264 {
1265 	struct xfs_ioend	*ioend;
1266 	xfs_off_t		size = bh_result->b_size;
1267 	int			type;
1268 
1269 	if (ISUNWRITTEN(imap))
1270 		type = XFS_IO_UNWRITTEN;
1271 	else
1272 		type = XFS_IO_OVERWRITE;
1273 
1274 	trace_xfs_gbmap_direct(XFS_I(inode), offset, size, type, imap);
1275 
1276 	if (bh_result->b_private) {
1277 		ioend = bh_result->b_private;
1278 		ASSERT(ioend->io_size > 0);
1279 		ASSERT(offset >= ioend->io_offset);
1280 		if (offset + size > ioend->io_offset + ioend->io_size)
1281 			ioend->io_size = offset - ioend->io_offset + size;
1282 
1283 		if (type == XFS_IO_UNWRITTEN && type != ioend->io_type)
1284 			ioend->io_type = XFS_IO_UNWRITTEN;
1285 
1286 		trace_xfs_gbmap_direct_update(XFS_I(inode), ioend->io_offset,
1287 					      ioend->io_size, ioend->io_type,
1288 					      imap);
1289 	} else if (type == XFS_IO_UNWRITTEN ||
1290 		   offset + size > i_size_read(inode)) {
1291 		ioend = xfs_alloc_ioend(inode, type);
1292 		ioend->io_offset = offset;
1293 		ioend->io_size = size;
1294 
1295 		bh_result->b_private = ioend;
1296 		set_buffer_defer_completion(bh_result);
1297 
1298 		trace_xfs_gbmap_direct_new(XFS_I(inode), offset, size, type,
1299 					   imap);
1300 	} else {
1301 		trace_xfs_gbmap_direct_none(XFS_I(inode), offset, size, type,
1302 					    imap);
1303 	}
1304 }
1305 
1306 /*
1307  * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1308  * is, so that we can avoid repeated get_blocks calls.
1309  *
1310  * If the mapping spans EOF, then we have to break the mapping up as the mapping
1311  * for blocks beyond EOF must be marked new so that sub block regions can be
1312  * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1313  * was just allocated or is unwritten, otherwise the callers would overwrite
1314  * existing data with zeros. Hence we have to split the mapping into a range up
1315  * to and including EOF, and a second mapping for beyond EOF.
1316  */
1317 static void
1318 xfs_map_trim_size(
1319 	struct inode		*inode,
1320 	sector_t		iblock,
1321 	struct buffer_head	*bh_result,
1322 	struct xfs_bmbt_irec	*imap,
1323 	xfs_off_t		offset,
1324 	ssize_t			size)
1325 {
1326 	xfs_off_t		mapping_size;
1327 
1328 	mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
1329 	mapping_size <<= inode->i_blkbits;
1330 
1331 	ASSERT(mapping_size > 0);
1332 	if (mapping_size > size)
1333 		mapping_size = size;
1334 	if (offset < i_size_read(inode) &&
1335 	    offset + mapping_size >= i_size_read(inode)) {
1336 		/* limit mapping to block that spans EOF */
1337 		mapping_size = roundup_64(i_size_read(inode) - offset,
1338 					  1 << inode->i_blkbits);
1339 	}
1340 	if (mapping_size > LONG_MAX)
1341 		mapping_size = LONG_MAX;
1342 
1343 	bh_result->b_size = mapping_size;
1344 }
1345 
1346 STATIC int
1347 __xfs_get_blocks(
1348 	struct inode		*inode,
1349 	sector_t		iblock,
1350 	struct buffer_head	*bh_result,
1351 	int			create,
1352 	int			direct)
1353 {
1354 	struct xfs_inode	*ip = XFS_I(inode);
1355 	struct xfs_mount	*mp = ip->i_mount;
1356 	xfs_fileoff_t		offset_fsb, end_fsb;
1357 	int			error = 0;
1358 	int			lockmode = 0;
1359 	struct xfs_bmbt_irec	imap;
1360 	int			nimaps = 1;
1361 	xfs_off_t		offset;
1362 	ssize_t			size;
1363 	int			new = 0;
1364 
1365 	if (XFS_FORCED_SHUTDOWN(mp))
1366 		return -EIO;
1367 
1368 	offset = (xfs_off_t)iblock << inode->i_blkbits;
1369 	ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1370 	size = bh_result->b_size;
1371 
1372 	if (!create && direct && offset >= i_size_read(inode))
1373 		return 0;
1374 
1375 	/*
1376 	 * Direct I/O is usually done on preallocated files, so try getting
1377 	 * a block mapping without an exclusive lock first.  For buffered
1378 	 * writes we already have the exclusive iolock anyway, so avoiding
1379 	 * a lock roundtrip here by taking the ilock exclusive from the
1380 	 * beginning is a useful micro optimization.
1381 	 */
1382 	if (create && !direct) {
1383 		lockmode = XFS_ILOCK_EXCL;
1384 		xfs_ilock(ip, lockmode);
1385 	} else {
1386 		lockmode = xfs_ilock_data_map_shared(ip);
1387 	}
1388 
1389 	ASSERT(offset <= mp->m_super->s_maxbytes);
1390 	if (offset + size > mp->m_super->s_maxbytes)
1391 		size = mp->m_super->s_maxbytes - offset;
1392 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1393 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
1394 
1395 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1396 				&imap, &nimaps, XFS_BMAPI_ENTIRE);
1397 	if (error)
1398 		goto out_unlock;
1399 
1400 	if (create &&
1401 	    (!nimaps ||
1402 	     (imap.br_startblock == HOLESTARTBLOCK ||
1403 	      imap.br_startblock == DELAYSTARTBLOCK))) {
1404 		if (direct || xfs_get_extsz_hint(ip)) {
1405 			/*
1406 			 * Drop the ilock in preparation for starting the block
1407 			 * allocation transaction.  It will be retaken
1408 			 * exclusively inside xfs_iomap_write_direct for the
1409 			 * actual allocation.
1410 			 */
1411 			xfs_iunlock(ip, lockmode);
1412 			error = xfs_iomap_write_direct(ip, offset, size,
1413 						       &imap, nimaps);
1414 			if (error)
1415 				return error;
1416 			new = 1;
1417 		} else {
1418 			/*
1419 			 * Delalloc reservations do not require a transaction,
1420 			 * we can go on without dropping the lock here. If we
1421 			 * are allocating a new delalloc block, make sure that
1422 			 * we set the new flag so that we mark the buffer new so
1423 			 * that we know that it is newly allocated if the write
1424 			 * fails.
1425 			 */
1426 			if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
1427 				new = 1;
1428 			error = xfs_iomap_write_delay(ip, offset, size, &imap);
1429 			if (error)
1430 				goto out_unlock;
1431 
1432 			xfs_iunlock(ip, lockmode);
1433 		}
1434 		trace_xfs_get_blocks_alloc(ip, offset, size,
1435 				ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1436 						   : XFS_IO_DELALLOC, &imap);
1437 	} else if (nimaps) {
1438 		trace_xfs_get_blocks_found(ip, offset, size,
1439 				ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1440 						   : XFS_IO_OVERWRITE, &imap);
1441 		xfs_iunlock(ip, lockmode);
1442 	} else {
1443 		trace_xfs_get_blocks_notfound(ip, offset, size);
1444 		goto out_unlock;
1445 	}
1446 
1447 	/* trim mapping down to size requested */
1448 	if (direct || size > (1 << inode->i_blkbits))
1449 		xfs_map_trim_size(inode, iblock, bh_result,
1450 				  &imap, offset, size);
1451 
1452 	/*
1453 	 * For unwritten extents do not report a disk address in the buffered
1454 	 * read case (treat as if we're reading into a hole).
1455 	 */
1456 	if (imap.br_startblock != HOLESTARTBLOCK &&
1457 	    imap.br_startblock != DELAYSTARTBLOCK &&
1458 	    (create || !ISUNWRITTEN(&imap))) {
1459 		xfs_map_buffer(inode, bh_result, &imap, offset);
1460 		if (ISUNWRITTEN(&imap))
1461 			set_buffer_unwritten(bh_result);
1462 		/* direct IO needs special help */
1463 		if (create && direct)
1464 			xfs_map_direct(inode, bh_result, &imap, offset);
1465 	}
1466 
1467 	/*
1468 	 * If this is a realtime file, data may be on a different device.
1469 	 * to that pointed to from the buffer_head b_bdev currently.
1470 	 */
1471 	bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1472 
1473 	/*
1474 	 * If we previously allocated a block out beyond eof and we are now
1475 	 * coming back to use it then we will need to flag it as new even if it
1476 	 * has a disk address.
1477 	 *
1478 	 * With sub-block writes into unwritten extents we also need to mark
1479 	 * the buffer as new so that the unwritten parts of the buffer gets
1480 	 * correctly zeroed.
1481 	 */
1482 	if (create &&
1483 	    ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1484 	     (offset >= i_size_read(inode)) ||
1485 	     (new || ISUNWRITTEN(&imap))))
1486 		set_buffer_new(bh_result);
1487 
1488 	if (imap.br_startblock == DELAYSTARTBLOCK) {
1489 		BUG_ON(direct);
1490 		if (create) {
1491 			set_buffer_uptodate(bh_result);
1492 			set_buffer_mapped(bh_result);
1493 			set_buffer_delay(bh_result);
1494 		}
1495 	}
1496 
1497 	return 0;
1498 
1499 out_unlock:
1500 	xfs_iunlock(ip, lockmode);
1501 	return error;
1502 }
1503 
1504 int
1505 xfs_get_blocks(
1506 	struct inode		*inode,
1507 	sector_t		iblock,
1508 	struct buffer_head	*bh_result,
1509 	int			create)
1510 {
1511 	return __xfs_get_blocks(inode, iblock, bh_result, create, 0);
1512 }
1513 
1514 STATIC int
1515 xfs_get_blocks_direct(
1516 	struct inode		*inode,
1517 	sector_t		iblock,
1518 	struct buffer_head	*bh_result,
1519 	int			create)
1520 {
1521 	return __xfs_get_blocks(inode, iblock, bh_result, create, 1);
1522 }
1523 
1524 /*
1525  * Complete a direct I/O write request.
1526  *
1527  * The ioend structure is passed from __xfs_get_blocks() to tell us what to do.
1528  * If no ioend exists (i.e. @private == NULL) then the write IO is an overwrite
1529  * wholly within the EOF and so there is nothing for us to do. Note that in this
1530  * case the completion can be called in interrupt context, whereas if we have an
1531  * ioend we will always be called in task context (i.e. from a workqueue).
1532  */
1533 STATIC void
1534 xfs_end_io_direct_write(
1535 	struct kiocb		*iocb,
1536 	loff_t			offset,
1537 	ssize_t			size,
1538 	void			*private)
1539 {
1540 	struct inode		*inode = file_inode(iocb->ki_filp);
1541 	struct xfs_inode	*ip = XFS_I(inode);
1542 	struct xfs_mount	*mp = ip->i_mount;
1543 	struct xfs_ioend	*ioend = private;
1544 
1545 	trace_xfs_gbmap_direct_endio(ip, offset, size,
1546 				     ioend ? ioend->io_type : 0, NULL);
1547 
1548 	if (!ioend) {
1549 		ASSERT(offset + size <= i_size_read(inode));
1550 		return;
1551 	}
1552 
1553 	if (XFS_FORCED_SHUTDOWN(mp))
1554 		goto out_end_io;
1555 
1556 	/*
1557 	 * dio completion end_io functions are only called on writes if more
1558 	 * than 0 bytes was written.
1559 	 */
1560 	ASSERT(size > 0);
1561 
1562 	/*
1563 	 * The ioend only maps whole blocks, while the IO may be sector aligned.
1564 	 * Hence the ioend offset/size may not match the IO offset/size exactly.
1565 	 * Because we don't map overwrites within EOF into the ioend, the offset
1566 	 * may not match, but only if the endio spans EOF.  Either way, write
1567 	 * the IO sizes into the ioend so that completion processing does the
1568 	 * right thing.
1569 	 */
1570 	ASSERT(offset + size <= ioend->io_offset + ioend->io_size);
1571 	ioend->io_size = size;
1572 	ioend->io_offset = offset;
1573 
1574 	/*
1575 	 * The ioend tells us whether we are doing unwritten extent conversion
1576 	 * or an append transaction that updates the on-disk file size. These
1577 	 * cases are the only cases where we should *potentially* be needing
1578 	 * to update the VFS inode size.
1579 	 *
1580 	 * We need to update the in-core inode size here so that we don't end up
1581 	 * with the on-disk inode size being outside the in-core inode size. We
1582 	 * have no other method of updating EOF for AIO, so always do it here
1583 	 * if necessary.
1584 	 *
1585 	 * We need to lock the test/set EOF update as we can be racing with
1586 	 * other IO completions here to update the EOF. Failing to serialise
1587 	 * here can result in EOF moving backwards and Bad Things Happen when
1588 	 * that occurs.
1589 	 */
1590 	spin_lock(&ip->i_flags_lock);
1591 	if (offset + size > i_size_read(inode))
1592 		i_size_write(inode, offset + size);
1593 	spin_unlock(&ip->i_flags_lock);
1594 
1595 	/*
1596 	 * If we are doing an append IO that needs to update the EOF on disk,
1597 	 * do the transaction reserve now so we can use common end io
1598 	 * processing. Stashing the error (if there is one) in the ioend will
1599 	 * result in the ioend processing passing on the error if it is
1600 	 * possible as we can't return it from here.
1601 	 */
1602 	if (ioend->io_type == XFS_IO_OVERWRITE)
1603 		ioend->io_error = xfs_setfilesize_trans_alloc(ioend);
1604 
1605 out_end_io:
1606 	xfs_end_io(&ioend->io_work);
1607 	return;
1608 }
1609 
1610 STATIC ssize_t
1611 xfs_vm_direct_IO(
1612 	struct kiocb		*iocb,
1613 	struct iov_iter		*iter,
1614 	loff_t			offset)
1615 {
1616 	struct inode		*inode = iocb->ki_filp->f_mapping->host;
1617 	struct block_device	*bdev = xfs_find_bdev_for_inode(inode);
1618 
1619 	if (iov_iter_rw(iter) == WRITE) {
1620 		return __blockdev_direct_IO(iocb, inode, bdev, iter, offset,
1621 					    xfs_get_blocks_direct,
1622 					    xfs_end_io_direct_write, NULL,
1623 					    DIO_ASYNC_EXTEND);
1624 	}
1625 	return __blockdev_direct_IO(iocb, inode, bdev, iter, offset,
1626 				    xfs_get_blocks_direct, NULL, NULL, 0);
1627 }
1628 
1629 /*
1630  * Punch out the delalloc blocks we have already allocated.
1631  *
1632  * Don't bother with xfs_setattr given that nothing can have made it to disk yet
1633  * as the page is still locked at this point.
1634  */
1635 STATIC void
1636 xfs_vm_kill_delalloc_range(
1637 	struct inode		*inode,
1638 	loff_t			start,
1639 	loff_t			end)
1640 {
1641 	struct xfs_inode	*ip = XFS_I(inode);
1642 	xfs_fileoff_t		start_fsb;
1643 	xfs_fileoff_t		end_fsb;
1644 	int			error;
1645 
1646 	start_fsb = XFS_B_TO_FSB(ip->i_mount, start);
1647 	end_fsb = XFS_B_TO_FSB(ip->i_mount, end);
1648 	if (end_fsb <= start_fsb)
1649 		return;
1650 
1651 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1652 	error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1653 						end_fsb - start_fsb);
1654 	if (error) {
1655 		/* something screwed, just bail */
1656 		if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1657 			xfs_alert(ip->i_mount,
1658 		"xfs_vm_write_failed: unable to clean up ino %lld",
1659 					ip->i_ino);
1660 		}
1661 	}
1662 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1663 }
1664 
1665 STATIC void
1666 xfs_vm_write_failed(
1667 	struct inode		*inode,
1668 	struct page		*page,
1669 	loff_t			pos,
1670 	unsigned		len)
1671 {
1672 	loff_t			block_offset;
1673 	loff_t			block_start;
1674 	loff_t			block_end;
1675 	loff_t			from = pos & (PAGE_CACHE_SIZE - 1);
1676 	loff_t			to = from + len;
1677 	struct buffer_head	*bh, *head;
1678 
1679 	/*
1680 	 * The request pos offset might be 32 or 64 bit, this is all fine
1681 	 * on 64-bit platform.  However, for 64-bit pos request on 32-bit
1682 	 * platform, the high 32-bit will be masked off if we evaluate the
1683 	 * block_offset via (pos & PAGE_MASK) because the PAGE_MASK is
1684 	 * 0xfffff000 as an unsigned long, hence the result is incorrect
1685 	 * which could cause the following ASSERT failed in most cases.
1686 	 * In order to avoid this, we can evaluate the block_offset of the
1687 	 * start of the page by using shifts rather than masks the mismatch
1688 	 * problem.
1689 	 */
1690 	block_offset = (pos >> PAGE_CACHE_SHIFT) << PAGE_CACHE_SHIFT;
1691 
1692 	ASSERT(block_offset + from == pos);
1693 
1694 	head = page_buffers(page);
1695 	block_start = 0;
1696 	for (bh = head; bh != head || !block_start;
1697 	     bh = bh->b_this_page, block_start = block_end,
1698 				   block_offset += bh->b_size) {
1699 		block_end = block_start + bh->b_size;
1700 
1701 		/* skip buffers before the write */
1702 		if (block_end <= from)
1703 			continue;
1704 
1705 		/* if the buffer is after the write, we're done */
1706 		if (block_start >= to)
1707 			break;
1708 
1709 		if (!buffer_delay(bh))
1710 			continue;
1711 
1712 		if (!buffer_new(bh) && block_offset < i_size_read(inode))
1713 			continue;
1714 
1715 		xfs_vm_kill_delalloc_range(inode, block_offset,
1716 					   block_offset + bh->b_size);
1717 
1718 		/*
1719 		 * This buffer does not contain data anymore. make sure anyone
1720 		 * who finds it knows that for certain.
1721 		 */
1722 		clear_buffer_delay(bh);
1723 		clear_buffer_uptodate(bh);
1724 		clear_buffer_mapped(bh);
1725 		clear_buffer_new(bh);
1726 		clear_buffer_dirty(bh);
1727 	}
1728 
1729 }
1730 
1731 /*
1732  * This used to call block_write_begin(), but it unlocks and releases the page
1733  * on error, and we need that page to be able to punch stale delalloc blocks out
1734  * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
1735  * the appropriate point.
1736  */
1737 STATIC int
1738 xfs_vm_write_begin(
1739 	struct file		*file,
1740 	struct address_space	*mapping,
1741 	loff_t			pos,
1742 	unsigned		len,
1743 	unsigned		flags,
1744 	struct page		**pagep,
1745 	void			**fsdata)
1746 {
1747 	pgoff_t			index = pos >> PAGE_CACHE_SHIFT;
1748 	struct page		*page;
1749 	int			status;
1750 
1751 	ASSERT(len <= PAGE_CACHE_SIZE);
1752 
1753 	page = grab_cache_page_write_begin(mapping, index, flags);
1754 	if (!page)
1755 		return -ENOMEM;
1756 
1757 	status = __block_write_begin(page, pos, len, xfs_get_blocks);
1758 	if (unlikely(status)) {
1759 		struct inode	*inode = mapping->host;
1760 		size_t		isize = i_size_read(inode);
1761 
1762 		xfs_vm_write_failed(inode, page, pos, len);
1763 		unlock_page(page);
1764 
1765 		/*
1766 		 * If the write is beyond EOF, we only want to kill blocks
1767 		 * allocated in this write, not blocks that were previously
1768 		 * written successfully.
1769 		 */
1770 		if (pos + len > isize) {
1771 			ssize_t start = max_t(ssize_t, pos, isize);
1772 
1773 			truncate_pagecache_range(inode, start, pos + len);
1774 		}
1775 
1776 		page_cache_release(page);
1777 		page = NULL;
1778 	}
1779 
1780 	*pagep = page;
1781 	return status;
1782 }
1783 
1784 /*
1785  * On failure, we only need to kill delalloc blocks beyond EOF in the range of
1786  * this specific write because they will never be written. Previous writes
1787  * beyond EOF where block allocation succeeded do not need to be trashed, so
1788  * only new blocks from this write should be trashed. For blocks within
1789  * EOF, generic_write_end() zeros them so they are safe to leave alone and be
1790  * written with all the other valid data.
1791  */
1792 STATIC int
1793 xfs_vm_write_end(
1794 	struct file		*file,
1795 	struct address_space	*mapping,
1796 	loff_t			pos,
1797 	unsigned		len,
1798 	unsigned		copied,
1799 	struct page		*page,
1800 	void			*fsdata)
1801 {
1802 	int			ret;
1803 
1804 	ASSERT(len <= PAGE_CACHE_SIZE);
1805 
1806 	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
1807 	if (unlikely(ret < len)) {
1808 		struct inode	*inode = mapping->host;
1809 		size_t		isize = i_size_read(inode);
1810 		loff_t		to = pos + len;
1811 
1812 		if (to > isize) {
1813 			/* only kill blocks in this write beyond EOF */
1814 			if (pos > isize)
1815 				isize = pos;
1816 			xfs_vm_kill_delalloc_range(inode, isize, to);
1817 			truncate_pagecache_range(inode, isize, to);
1818 		}
1819 	}
1820 	return ret;
1821 }
1822 
1823 STATIC sector_t
1824 xfs_vm_bmap(
1825 	struct address_space	*mapping,
1826 	sector_t		block)
1827 {
1828 	struct inode		*inode = (struct inode *)mapping->host;
1829 	struct xfs_inode	*ip = XFS_I(inode);
1830 
1831 	trace_xfs_vm_bmap(XFS_I(inode));
1832 	xfs_ilock(ip, XFS_IOLOCK_SHARED);
1833 	filemap_write_and_wait(mapping);
1834 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1835 	return generic_block_bmap(mapping, block, xfs_get_blocks);
1836 }
1837 
1838 STATIC int
1839 xfs_vm_readpage(
1840 	struct file		*unused,
1841 	struct page		*page)
1842 {
1843 	return mpage_readpage(page, xfs_get_blocks);
1844 }
1845 
1846 STATIC int
1847 xfs_vm_readpages(
1848 	struct file		*unused,
1849 	struct address_space	*mapping,
1850 	struct list_head	*pages,
1851 	unsigned		nr_pages)
1852 {
1853 	return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1854 }
1855 
1856 /*
1857  * This is basically a copy of __set_page_dirty_buffers() with one
1858  * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1859  * dirty, we'll never be able to clean them because we don't write buffers
1860  * beyond EOF, and that means we can't invalidate pages that span EOF
1861  * that have been marked dirty. Further, the dirty state can leak into
1862  * the file interior if the file is extended, resulting in all sorts of
1863  * bad things happening as the state does not match the underlying data.
1864  *
1865  * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1866  * this only exist because of bufferheads and how the generic code manages them.
1867  */
1868 STATIC int
1869 xfs_vm_set_page_dirty(
1870 	struct page		*page)
1871 {
1872 	struct address_space	*mapping = page->mapping;
1873 	struct inode		*inode = mapping->host;
1874 	loff_t			end_offset;
1875 	loff_t			offset;
1876 	int			newly_dirty;
1877 
1878 	if (unlikely(!mapping))
1879 		return !TestSetPageDirty(page);
1880 
1881 	end_offset = i_size_read(inode);
1882 	offset = page_offset(page);
1883 
1884 	spin_lock(&mapping->private_lock);
1885 	if (page_has_buffers(page)) {
1886 		struct buffer_head *head = page_buffers(page);
1887 		struct buffer_head *bh = head;
1888 
1889 		do {
1890 			if (offset < end_offset)
1891 				set_buffer_dirty(bh);
1892 			bh = bh->b_this_page;
1893 			offset += 1 << inode->i_blkbits;
1894 		} while (bh != head);
1895 	}
1896 	newly_dirty = !TestSetPageDirty(page);
1897 	spin_unlock(&mapping->private_lock);
1898 
1899 	if (newly_dirty) {
1900 		/* sigh - __set_page_dirty() is static, so copy it here, too */
1901 		unsigned long flags;
1902 
1903 		spin_lock_irqsave(&mapping->tree_lock, flags);
1904 		if (page->mapping) {	/* Race with truncate? */
1905 			WARN_ON_ONCE(!PageUptodate(page));
1906 			account_page_dirtied(page, mapping);
1907 			radix_tree_tag_set(&mapping->page_tree,
1908 					page_index(page), PAGECACHE_TAG_DIRTY);
1909 		}
1910 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1911 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1912 	}
1913 	return newly_dirty;
1914 }
1915 
1916 const struct address_space_operations xfs_address_space_operations = {
1917 	.readpage		= xfs_vm_readpage,
1918 	.readpages		= xfs_vm_readpages,
1919 	.writepage		= xfs_vm_writepage,
1920 	.writepages		= xfs_vm_writepages,
1921 	.set_page_dirty		= xfs_vm_set_page_dirty,
1922 	.releasepage		= xfs_vm_releasepage,
1923 	.invalidatepage		= xfs_vm_invalidatepage,
1924 	.write_begin		= xfs_vm_write_begin,
1925 	.write_end		= xfs_vm_write_end,
1926 	.bmap			= xfs_vm_bmap,
1927 	.direct_IO		= xfs_vm_direct_IO,
1928 	.migratepage		= buffer_migrate_page,
1929 	.is_partially_uptodate  = block_is_partially_uptodate,
1930 	.error_remove_page	= generic_error_remove_page,
1931 };
1932