xref: /linux/fs/xfs/xfs_aops.c (revision 79790b6818e96c58fe2bffee1b418c16e64e7b80)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * Copyright (c) 2016-2018 Christoph Hellwig.
5  * All Rights Reserved.
6  */
7 #include "xfs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_iomap.h"
16 #include "xfs_trace.h"
17 #include "xfs_bmap.h"
18 #include "xfs_bmap_util.h"
19 #include "xfs_reflink.h"
20 #include "xfs_errortag.h"
21 #include "xfs_error.h"
22 
23 struct xfs_writepage_ctx {
24 	struct iomap_writepage_ctx ctx;
25 	unsigned int		data_seq;
26 	unsigned int		cow_seq;
27 };
28 
29 static inline struct xfs_writepage_ctx *
30 XFS_WPC(struct iomap_writepage_ctx *ctx)
31 {
32 	return container_of(ctx, struct xfs_writepage_ctx, ctx);
33 }
34 
35 /*
36  * Fast and loose check if this write could update the on-disk inode size.
37  */
38 static inline bool xfs_ioend_is_append(struct iomap_ioend *ioend)
39 {
40 	return ioend->io_offset + ioend->io_size >
41 		XFS_I(ioend->io_inode)->i_disk_size;
42 }
43 
44 /*
45  * Update on-disk file size now that data has been written to disk.
46  */
47 int
48 xfs_setfilesize(
49 	struct xfs_inode	*ip,
50 	xfs_off_t		offset,
51 	size_t			size)
52 {
53 	struct xfs_mount	*mp = ip->i_mount;
54 	struct xfs_trans	*tp;
55 	xfs_fsize_t		isize;
56 	int			error;
57 
58 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
59 	if (error)
60 		return error;
61 
62 	xfs_ilock(ip, XFS_ILOCK_EXCL);
63 	isize = xfs_new_eof(ip, offset + size);
64 	if (!isize) {
65 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
66 		xfs_trans_cancel(tp);
67 		return 0;
68 	}
69 
70 	trace_xfs_setfilesize(ip, offset, size);
71 
72 	ip->i_disk_size = isize;
73 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
74 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
75 
76 	return xfs_trans_commit(tp);
77 }
78 
79 /*
80  * IO write completion.
81  */
82 STATIC void
83 xfs_end_ioend(
84 	struct iomap_ioend	*ioend)
85 {
86 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
87 	struct xfs_mount	*mp = ip->i_mount;
88 	xfs_off_t		offset = ioend->io_offset;
89 	size_t			size = ioend->io_size;
90 	unsigned int		nofs_flag;
91 	int			error;
92 
93 	/*
94 	 * We can allocate memory here while doing writeback on behalf of
95 	 * memory reclaim.  To avoid memory allocation deadlocks set the
96 	 * task-wide nofs context for the following operations.
97 	 */
98 	nofs_flag = memalloc_nofs_save();
99 
100 	/*
101 	 * Just clean up the in-memory structures if the fs has been shut down.
102 	 */
103 	if (xfs_is_shutdown(mp)) {
104 		error = -EIO;
105 		goto done;
106 	}
107 
108 	/*
109 	 * Clean up all COW blocks and underlying data fork delalloc blocks on
110 	 * I/O error. The delalloc punch is required because this ioend was
111 	 * mapped to blocks in the COW fork and the associated pages are no
112 	 * longer dirty. If we don't remove delalloc blocks here, they become
113 	 * stale and can corrupt free space accounting on unmount.
114 	 */
115 	error = blk_status_to_errno(ioend->io_bio.bi_status);
116 	if (unlikely(error)) {
117 		if (ioend->io_flags & IOMAP_F_SHARED) {
118 			xfs_reflink_cancel_cow_range(ip, offset, size, true);
119 			xfs_bmap_punch_delalloc_range(ip, offset,
120 					offset + size);
121 		}
122 		goto done;
123 	}
124 
125 	/*
126 	 * Success: commit the COW or unwritten blocks if needed.
127 	 */
128 	if (ioend->io_flags & IOMAP_F_SHARED)
129 		error = xfs_reflink_end_cow(ip, offset, size);
130 	else if (ioend->io_type == IOMAP_UNWRITTEN)
131 		error = xfs_iomap_write_unwritten(ip, offset, size, false);
132 
133 	if (!error && xfs_ioend_is_append(ioend))
134 		error = xfs_setfilesize(ip, ioend->io_offset, ioend->io_size);
135 done:
136 	iomap_finish_ioends(ioend, error);
137 	memalloc_nofs_restore(nofs_flag);
138 }
139 
140 /*
141  * Finish all pending IO completions that require transactional modifications.
142  *
143  * We try to merge physical and logically contiguous ioends before completion to
144  * minimise the number of transactions we need to perform during IO completion.
145  * Both unwritten extent conversion and COW remapping need to iterate and modify
146  * one physical extent at a time, so we gain nothing by merging physically
147  * discontiguous extents here.
148  *
149  * The ioend chain length that we can be processing here is largely unbound in
150  * length and we may have to perform significant amounts of work on each ioend
151  * to complete it. Hence we have to be careful about holding the CPU for too
152  * long in this loop.
153  */
154 void
155 xfs_end_io(
156 	struct work_struct	*work)
157 {
158 	struct xfs_inode	*ip =
159 		container_of(work, struct xfs_inode, i_ioend_work);
160 	struct iomap_ioend	*ioend;
161 	struct list_head	tmp;
162 	unsigned long		flags;
163 
164 	spin_lock_irqsave(&ip->i_ioend_lock, flags);
165 	list_replace_init(&ip->i_ioend_list, &tmp);
166 	spin_unlock_irqrestore(&ip->i_ioend_lock, flags);
167 
168 	iomap_sort_ioends(&tmp);
169 	while ((ioend = list_first_entry_or_null(&tmp, struct iomap_ioend,
170 			io_list))) {
171 		list_del_init(&ioend->io_list);
172 		iomap_ioend_try_merge(ioend, &tmp);
173 		xfs_end_ioend(ioend);
174 		cond_resched();
175 	}
176 }
177 
178 STATIC void
179 xfs_end_bio(
180 	struct bio		*bio)
181 {
182 	struct iomap_ioend	*ioend = iomap_ioend_from_bio(bio);
183 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
184 	unsigned long		flags;
185 
186 	spin_lock_irqsave(&ip->i_ioend_lock, flags);
187 	if (list_empty(&ip->i_ioend_list))
188 		WARN_ON_ONCE(!queue_work(ip->i_mount->m_unwritten_workqueue,
189 					 &ip->i_ioend_work));
190 	list_add_tail(&ioend->io_list, &ip->i_ioend_list);
191 	spin_unlock_irqrestore(&ip->i_ioend_lock, flags);
192 }
193 
194 /*
195  * Fast revalidation of the cached writeback mapping. Return true if the current
196  * mapping is valid, false otherwise.
197  */
198 static bool
199 xfs_imap_valid(
200 	struct iomap_writepage_ctx	*wpc,
201 	struct xfs_inode		*ip,
202 	loff_t				offset)
203 {
204 	if (offset < wpc->iomap.offset ||
205 	    offset >= wpc->iomap.offset + wpc->iomap.length)
206 		return false;
207 	/*
208 	 * If this is a COW mapping, it is sufficient to check that the mapping
209 	 * covers the offset. Be careful to check this first because the caller
210 	 * can revalidate a COW mapping without updating the data seqno.
211 	 */
212 	if (wpc->iomap.flags & IOMAP_F_SHARED)
213 		return true;
214 
215 	/*
216 	 * This is not a COW mapping. Check the sequence number of the data fork
217 	 * because concurrent changes could have invalidated the extent. Check
218 	 * the COW fork because concurrent changes since the last time we
219 	 * checked (and found nothing at this offset) could have added
220 	 * overlapping blocks.
221 	 */
222 	if (XFS_WPC(wpc)->data_seq != READ_ONCE(ip->i_df.if_seq)) {
223 		trace_xfs_wb_data_iomap_invalid(ip, &wpc->iomap,
224 				XFS_WPC(wpc)->data_seq, XFS_DATA_FORK);
225 		return false;
226 	}
227 	if (xfs_inode_has_cow_data(ip) &&
228 	    XFS_WPC(wpc)->cow_seq != READ_ONCE(ip->i_cowfp->if_seq)) {
229 		trace_xfs_wb_cow_iomap_invalid(ip, &wpc->iomap,
230 				XFS_WPC(wpc)->cow_seq, XFS_COW_FORK);
231 		return false;
232 	}
233 	return true;
234 }
235 
236 /*
237  * Pass in a dellalloc extent and convert it to real extents, return the real
238  * extent that maps offset_fsb in wpc->iomap.
239  *
240  * The current page is held locked so nothing could have removed the block
241  * backing offset_fsb, although it could have moved from the COW to the data
242  * fork by another thread.
243  */
244 static int
245 xfs_convert_blocks(
246 	struct iomap_writepage_ctx *wpc,
247 	struct xfs_inode	*ip,
248 	int			whichfork,
249 	loff_t			offset)
250 {
251 	int			error;
252 	unsigned		*seq;
253 
254 	if (whichfork == XFS_COW_FORK)
255 		seq = &XFS_WPC(wpc)->cow_seq;
256 	else
257 		seq = &XFS_WPC(wpc)->data_seq;
258 
259 	/*
260 	 * Attempt to allocate whatever delalloc extent currently backs offset
261 	 * and put the result into wpc->iomap.  Allocate in a loop because it
262 	 * may take several attempts to allocate real blocks for a contiguous
263 	 * delalloc extent if free space is sufficiently fragmented.
264 	 */
265 	do {
266 		error = xfs_bmapi_convert_delalloc(ip, whichfork, offset,
267 				&wpc->iomap, seq);
268 		if (error)
269 			return error;
270 	} while (wpc->iomap.offset + wpc->iomap.length <= offset);
271 
272 	return 0;
273 }
274 
275 static int
276 xfs_map_blocks(
277 	struct iomap_writepage_ctx *wpc,
278 	struct inode		*inode,
279 	loff_t			offset,
280 	unsigned int		len)
281 {
282 	struct xfs_inode	*ip = XFS_I(inode);
283 	struct xfs_mount	*mp = ip->i_mount;
284 	ssize_t			count = i_blocksize(inode);
285 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
286 	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + count);
287 	xfs_fileoff_t		cow_fsb;
288 	int			whichfork;
289 	struct xfs_bmbt_irec	imap;
290 	struct xfs_iext_cursor	icur;
291 	int			retries = 0;
292 	int			error = 0;
293 
294 	if (xfs_is_shutdown(mp))
295 		return -EIO;
296 
297 	XFS_ERRORTAG_DELAY(mp, XFS_ERRTAG_WB_DELAY_MS);
298 
299 	/*
300 	 * COW fork blocks can overlap data fork blocks even if the blocks
301 	 * aren't shared.  COW I/O always takes precedent, so we must always
302 	 * check for overlap on reflink inodes unless the mapping is already a
303 	 * COW one, or the COW fork hasn't changed from the last time we looked
304 	 * at it.
305 	 *
306 	 * It's safe to check the COW fork if_seq here without the ILOCK because
307 	 * we've indirectly protected against concurrent updates: writeback has
308 	 * the page locked, which prevents concurrent invalidations by reflink
309 	 * and directio and prevents concurrent buffered writes to the same
310 	 * page.  Changes to if_seq always happen under i_lock, which protects
311 	 * against concurrent updates and provides a memory barrier on the way
312 	 * out that ensures that we always see the current value.
313 	 */
314 	if (xfs_imap_valid(wpc, ip, offset))
315 		return 0;
316 
317 	/*
318 	 * If we don't have a valid map, now it's time to get a new one for this
319 	 * offset.  This will convert delayed allocations (including COW ones)
320 	 * into real extents.  If we return without a valid map, it means we
321 	 * landed in a hole and we skip the block.
322 	 */
323 retry:
324 	cow_fsb = NULLFILEOFF;
325 	whichfork = XFS_DATA_FORK;
326 	xfs_ilock(ip, XFS_ILOCK_SHARED);
327 	ASSERT(!xfs_need_iread_extents(&ip->i_df));
328 
329 	/*
330 	 * Check if this is offset is covered by a COW extents, and if yes use
331 	 * it directly instead of looking up anything in the data fork.
332 	 */
333 	if (xfs_inode_has_cow_data(ip) &&
334 	    xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap))
335 		cow_fsb = imap.br_startoff;
336 	if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) {
337 		XFS_WPC(wpc)->cow_seq = READ_ONCE(ip->i_cowfp->if_seq);
338 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
339 
340 		whichfork = XFS_COW_FORK;
341 		goto allocate_blocks;
342 	}
343 
344 	/*
345 	 * No COW extent overlap. Revalidate now that we may have updated
346 	 * ->cow_seq. If the data mapping is still valid, we're done.
347 	 */
348 	if (xfs_imap_valid(wpc, ip, offset)) {
349 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
350 		return 0;
351 	}
352 
353 	/*
354 	 * If we don't have a valid map, now it's time to get a new one for this
355 	 * offset.  This will convert delayed allocations (including COW ones)
356 	 * into real extents.
357 	 */
358 	if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap))
359 		imap.br_startoff = end_fsb;	/* fake a hole past EOF */
360 	XFS_WPC(wpc)->data_seq = READ_ONCE(ip->i_df.if_seq);
361 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
362 
363 	/* landed in a hole or beyond EOF? */
364 	if (imap.br_startoff > offset_fsb) {
365 		imap.br_blockcount = imap.br_startoff - offset_fsb;
366 		imap.br_startoff = offset_fsb;
367 		imap.br_startblock = HOLESTARTBLOCK;
368 		imap.br_state = XFS_EXT_NORM;
369 	}
370 
371 	/*
372 	 * Truncate to the next COW extent if there is one.  This is the only
373 	 * opportunity to do this because we can skip COW fork lookups for the
374 	 * subsequent blocks in the mapping; however, the requirement to treat
375 	 * the COW range separately remains.
376 	 */
377 	if (cow_fsb != NULLFILEOFF &&
378 	    cow_fsb < imap.br_startoff + imap.br_blockcount)
379 		imap.br_blockcount = cow_fsb - imap.br_startoff;
380 
381 	/* got a delalloc extent? */
382 	if (imap.br_startblock != HOLESTARTBLOCK &&
383 	    isnullstartblock(imap.br_startblock))
384 		goto allocate_blocks;
385 
386 	xfs_bmbt_to_iomap(ip, &wpc->iomap, &imap, 0, 0, XFS_WPC(wpc)->data_seq);
387 	trace_xfs_map_blocks_found(ip, offset, count, whichfork, &imap);
388 	return 0;
389 allocate_blocks:
390 	error = xfs_convert_blocks(wpc, ip, whichfork, offset);
391 	if (error) {
392 		/*
393 		 * If we failed to find the extent in the COW fork we might have
394 		 * raced with a COW to data fork conversion or truncate.
395 		 * Restart the lookup to catch the extent in the data fork for
396 		 * the former case, but prevent additional retries to avoid
397 		 * looping forever for the latter case.
398 		 */
399 		if (error == -EAGAIN && whichfork == XFS_COW_FORK && !retries++)
400 			goto retry;
401 		ASSERT(error != -EAGAIN);
402 		return error;
403 	}
404 
405 	/*
406 	 * Due to merging the return real extent might be larger than the
407 	 * original delalloc one.  Trim the return extent to the next COW
408 	 * boundary again to force a re-lookup.
409 	 */
410 	if (whichfork != XFS_COW_FORK && cow_fsb != NULLFILEOFF) {
411 		loff_t		cow_offset = XFS_FSB_TO_B(mp, cow_fsb);
412 
413 		if (cow_offset < wpc->iomap.offset + wpc->iomap.length)
414 			wpc->iomap.length = cow_offset - wpc->iomap.offset;
415 	}
416 
417 	ASSERT(wpc->iomap.offset <= offset);
418 	ASSERT(wpc->iomap.offset + wpc->iomap.length > offset);
419 	trace_xfs_map_blocks_alloc(ip, offset, count, whichfork, &imap);
420 	return 0;
421 }
422 
423 static int
424 xfs_prepare_ioend(
425 	struct iomap_ioend	*ioend,
426 	int			status)
427 {
428 	unsigned int		nofs_flag;
429 
430 	/*
431 	 * We can allocate memory here while doing writeback on behalf of
432 	 * memory reclaim.  To avoid memory allocation deadlocks set the
433 	 * task-wide nofs context for the following operations.
434 	 */
435 	nofs_flag = memalloc_nofs_save();
436 
437 	/* Convert CoW extents to regular */
438 	if (!status && (ioend->io_flags & IOMAP_F_SHARED)) {
439 		status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
440 				ioend->io_offset, ioend->io_size);
441 	}
442 
443 	memalloc_nofs_restore(nofs_flag);
444 
445 	/* send ioends that might require a transaction to the completion wq */
446 	if (xfs_ioend_is_append(ioend) || ioend->io_type == IOMAP_UNWRITTEN ||
447 	    (ioend->io_flags & IOMAP_F_SHARED))
448 		ioend->io_bio.bi_end_io = xfs_end_bio;
449 	return status;
450 }
451 
452 /*
453  * If the folio has delalloc blocks on it, the caller is asking us to punch them
454  * out. If we don't, we can leave a stale delalloc mapping covered by a clean
455  * page that needs to be dirtied again before the delalloc mapping can be
456  * converted. This stale delalloc mapping can trip up a later direct I/O read
457  * operation on the same region.
458  *
459  * We prevent this by truncating away the delalloc regions on the folio. Because
460  * they are delalloc, we can do this without needing a transaction. Indeed - if
461  * we get ENOSPC errors, we have to be able to do this truncation without a
462  * transaction as there is no space left for block reservation (typically why
463  * we see a ENOSPC in writeback).
464  */
465 static void
466 xfs_discard_folio(
467 	struct folio		*folio,
468 	loff_t			pos)
469 {
470 	struct xfs_inode	*ip = XFS_I(folio->mapping->host);
471 	struct xfs_mount	*mp = ip->i_mount;
472 	int			error;
473 
474 	if (xfs_is_shutdown(mp))
475 		return;
476 
477 	xfs_alert_ratelimited(mp,
478 		"page discard on page "PTR_FMT", inode 0x%llx, pos %llu.",
479 			folio, ip->i_ino, pos);
480 
481 	/*
482 	 * The end of the punch range is always the offset of the first
483 	 * byte of the next folio. Hence the end offset is only dependent on the
484 	 * folio itself and not the start offset that is passed in.
485 	 */
486 	error = xfs_bmap_punch_delalloc_range(ip, pos,
487 				folio_pos(folio) + folio_size(folio));
488 
489 	if (error && !xfs_is_shutdown(mp))
490 		xfs_alert(mp, "page discard unable to remove delalloc mapping.");
491 }
492 
493 static const struct iomap_writeback_ops xfs_writeback_ops = {
494 	.map_blocks		= xfs_map_blocks,
495 	.prepare_ioend		= xfs_prepare_ioend,
496 	.discard_folio		= xfs_discard_folio,
497 };
498 
499 STATIC int
500 xfs_vm_writepages(
501 	struct address_space	*mapping,
502 	struct writeback_control *wbc)
503 {
504 	struct xfs_writepage_ctx wpc = { };
505 
506 	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
507 	return iomap_writepages(mapping, wbc, &wpc.ctx, &xfs_writeback_ops);
508 }
509 
510 STATIC int
511 xfs_dax_writepages(
512 	struct address_space	*mapping,
513 	struct writeback_control *wbc)
514 {
515 	struct xfs_inode	*ip = XFS_I(mapping->host);
516 
517 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
518 	return dax_writeback_mapping_range(mapping,
519 			xfs_inode_buftarg(ip)->bt_daxdev, wbc);
520 }
521 
522 STATIC sector_t
523 xfs_vm_bmap(
524 	struct address_space	*mapping,
525 	sector_t		block)
526 {
527 	struct xfs_inode	*ip = XFS_I(mapping->host);
528 
529 	trace_xfs_vm_bmap(ip);
530 
531 	/*
532 	 * The swap code (ab-)uses ->bmap to get a block mapping and then
533 	 * bypasses the file system for actual I/O.  We really can't allow
534 	 * that on reflinks inodes, so we have to skip out here.  And yes,
535 	 * 0 is the magic code for a bmap error.
536 	 *
537 	 * Since we don't pass back blockdev info, we can't return bmap
538 	 * information for rt files either.
539 	 */
540 	if (xfs_is_cow_inode(ip) || XFS_IS_REALTIME_INODE(ip))
541 		return 0;
542 	return iomap_bmap(mapping, block, &xfs_read_iomap_ops);
543 }
544 
545 STATIC int
546 xfs_vm_read_folio(
547 	struct file		*unused,
548 	struct folio		*folio)
549 {
550 	return iomap_read_folio(folio, &xfs_read_iomap_ops);
551 }
552 
553 STATIC void
554 xfs_vm_readahead(
555 	struct readahead_control	*rac)
556 {
557 	iomap_readahead(rac, &xfs_read_iomap_ops);
558 }
559 
560 static int
561 xfs_iomap_swapfile_activate(
562 	struct swap_info_struct		*sis,
563 	struct file			*swap_file,
564 	sector_t			*span)
565 {
566 	sis->bdev = xfs_inode_buftarg(XFS_I(file_inode(swap_file)))->bt_bdev;
567 	return iomap_swapfile_activate(sis, swap_file, span,
568 			&xfs_read_iomap_ops);
569 }
570 
571 const struct address_space_operations xfs_address_space_operations = {
572 	.read_folio		= xfs_vm_read_folio,
573 	.readahead		= xfs_vm_readahead,
574 	.writepages		= xfs_vm_writepages,
575 	.dirty_folio		= iomap_dirty_folio,
576 	.release_folio		= iomap_release_folio,
577 	.invalidate_folio	= iomap_invalidate_folio,
578 	.bmap			= xfs_vm_bmap,
579 	.migrate_folio		= filemap_migrate_folio,
580 	.is_partially_uptodate  = iomap_is_partially_uptodate,
581 	.error_remove_folio	= generic_error_remove_folio,
582 	.swap_activate		= xfs_iomap_swapfile_activate,
583 };
584 
585 const struct address_space_operations xfs_dax_aops = {
586 	.writepages		= xfs_dax_writepages,
587 	.dirty_folio		= noop_dirty_folio,
588 	.swap_activate		= xfs_iomap_swapfile_activate,
589 };
590