1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * Copyright (c) 2016-2018 Christoph Hellwig. 5 * All Rights Reserved. 6 */ 7 #include "xfs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_trans.h" 15 #include "xfs_iomap.h" 16 #include "xfs_trace.h" 17 #include "xfs_bmap.h" 18 #include "xfs_bmap_util.h" 19 #include "xfs_reflink.h" 20 21 /* 22 * structure owned by writepages passed to individual writepage calls 23 */ 24 struct xfs_writepage_ctx { 25 struct xfs_bmbt_irec imap; 26 int fork; 27 unsigned int data_seq; 28 unsigned int cow_seq; 29 struct xfs_ioend *ioend; 30 }; 31 32 struct block_device * 33 xfs_find_bdev_for_inode( 34 struct inode *inode) 35 { 36 struct xfs_inode *ip = XFS_I(inode); 37 struct xfs_mount *mp = ip->i_mount; 38 39 if (XFS_IS_REALTIME_INODE(ip)) 40 return mp->m_rtdev_targp->bt_bdev; 41 else 42 return mp->m_ddev_targp->bt_bdev; 43 } 44 45 struct dax_device * 46 xfs_find_daxdev_for_inode( 47 struct inode *inode) 48 { 49 struct xfs_inode *ip = XFS_I(inode); 50 struct xfs_mount *mp = ip->i_mount; 51 52 if (XFS_IS_REALTIME_INODE(ip)) 53 return mp->m_rtdev_targp->bt_daxdev; 54 else 55 return mp->m_ddev_targp->bt_daxdev; 56 } 57 58 static void 59 xfs_finish_page_writeback( 60 struct inode *inode, 61 struct bio_vec *bvec, 62 int error) 63 { 64 struct iomap_page *iop = to_iomap_page(bvec->bv_page); 65 66 if (error) { 67 SetPageError(bvec->bv_page); 68 mapping_set_error(inode->i_mapping, -EIO); 69 } 70 71 ASSERT(iop || i_blocksize(inode) == PAGE_SIZE); 72 ASSERT(!iop || atomic_read(&iop->write_count) > 0); 73 74 if (!iop || atomic_dec_and_test(&iop->write_count)) 75 end_page_writeback(bvec->bv_page); 76 } 77 78 /* 79 * We're now finished for good with this ioend structure. Update the page 80 * state, release holds on bios, and finally free up memory. Do not use the 81 * ioend after this. 82 */ 83 STATIC void 84 xfs_destroy_ioend( 85 struct xfs_ioend *ioend, 86 int error) 87 { 88 struct inode *inode = ioend->io_inode; 89 struct bio *bio = &ioend->io_inline_bio; 90 struct bio *last = ioend->io_bio, *next; 91 u64 start = bio->bi_iter.bi_sector; 92 bool quiet = bio_flagged(bio, BIO_QUIET); 93 94 for (bio = &ioend->io_inline_bio; bio; bio = next) { 95 struct bio_vec *bvec; 96 struct bvec_iter_all iter_all; 97 98 /* 99 * For the last bio, bi_private points to the ioend, so we 100 * need to explicitly end the iteration here. 101 */ 102 if (bio == last) 103 next = NULL; 104 else 105 next = bio->bi_private; 106 107 /* walk each page on bio, ending page IO on them */ 108 bio_for_each_segment_all(bvec, bio, iter_all) 109 xfs_finish_page_writeback(inode, bvec, error); 110 bio_put(bio); 111 } 112 113 if (unlikely(error && !quiet)) { 114 xfs_err_ratelimited(XFS_I(inode)->i_mount, 115 "writeback error on sector %llu", start); 116 } 117 } 118 119 /* 120 * Fast and loose check if this write could update the on-disk inode size. 121 */ 122 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend) 123 { 124 return ioend->io_offset + ioend->io_size > 125 XFS_I(ioend->io_inode)->i_d.di_size; 126 } 127 128 STATIC int 129 xfs_setfilesize_trans_alloc( 130 struct xfs_ioend *ioend) 131 { 132 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount; 133 struct xfs_trans *tp; 134 int error; 135 136 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp); 137 if (error) 138 return error; 139 140 ioend->io_append_trans = tp; 141 142 /* 143 * We may pass freeze protection with a transaction. So tell lockdep 144 * we released it. 145 */ 146 __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS); 147 /* 148 * We hand off the transaction to the completion thread now, so 149 * clear the flag here. 150 */ 151 current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS); 152 return 0; 153 } 154 155 /* 156 * Update on-disk file size now that data has been written to disk. 157 */ 158 STATIC int 159 __xfs_setfilesize( 160 struct xfs_inode *ip, 161 struct xfs_trans *tp, 162 xfs_off_t offset, 163 size_t size) 164 { 165 xfs_fsize_t isize; 166 167 xfs_ilock(ip, XFS_ILOCK_EXCL); 168 isize = xfs_new_eof(ip, offset + size); 169 if (!isize) { 170 xfs_iunlock(ip, XFS_ILOCK_EXCL); 171 xfs_trans_cancel(tp); 172 return 0; 173 } 174 175 trace_xfs_setfilesize(ip, offset, size); 176 177 ip->i_d.di_size = isize; 178 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 179 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 180 181 return xfs_trans_commit(tp); 182 } 183 184 int 185 xfs_setfilesize( 186 struct xfs_inode *ip, 187 xfs_off_t offset, 188 size_t size) 189 { 190 struct xfs_mount *mp = ip->i_mount; 191 struct xfs_trans *tp; 192 int error; 193 194 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp); 195 if (error) 196 return error; 197 198 return __xfs_setfilesize(ip, tp, offset, size); 199 } 200 201 STATIC int 202 xfs_setfilesize_ioend( 203 struct xfs_ioend *ioend, 204 int error) 205 { 206 struct xfs_inode *ip = XFS_I(ioend->io_inode); 207 struct xfs_trans *tp = ioend->io_append_trans; 208 209 /* 210 * The transaction may have been allocated in the I/O submission thread, 211 * thus we need to mark ourselves as being in a transaction manually. 212 * Similarly for freeze protection. 213 */ 214 current_set_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS); 215 __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS); 216 217 /* we abort the update if there was an IO error */ 218 if (error) { 219 xfs_trans_cancel(tp); 220 return error; 221 } 222 223 return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size); 224 } 225 226 /* 227 * IO write completion. 228 */ 229 STATIC void 230 xfs_end_ioend( 231 struct xfs_ioend *ioend) 232 { 233 struct list_head ioend_list; 234 struct xfs_inode *ip = XFS_I(ioend->io_inode); 235 xfs_off_t offset = ioend->io_offset; 236 size_t size = ioend->io_size; 237 unsigned int nofs_flag; 238 int error; 239 240 /* 241 * We can allocate memory here while doing writeback on behalf of 242 * memory reclaim. To avoid memory allocation deadlocks set the 243 * task-wide nofs context for the following operations. 244 */ 245 nofs_flag = memalloc_nofs_save(); 246 247 /* 248 * Just clean up the in-memory strutures if the fs has been shut down. 249 */ 250 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { 251 error = -EIO; 252 goto done; 253 } 254 255 /* 256 * Clean up any COW blocks on an I/O error. 257 */ 258 error = blk_status_to_errno(ioend->io_bio->bi_status); 259 if (unlikely(error)) { 260 if (ioend->io_fork == XFS_COW_FORK) 261 xfs_reflink_cancel_cow_range(ip, offset, size, true); 262 goto done; 263 } 264 265 /* 266 * Success: commit the COW or unwritten blocks if needed. 267 */ 268 if (ioend->io_fork == XFS_COW_FORK) 269 error = xfs_reflink_end_cow(ip, offset, size); 270 else if (ioend->io_state == XFS_EXT_UNWRITTEN) 271 error = xfs_iomap_write_unwritten(ip, offset, size, false); 272 else 273 ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_append_trans); 274 275 done: 276 if (ioend->io_append_trans) 277 error = xfs_setfilesize_ioend(ioend, error); 278 list_replace_init(&ioend->io_list, &ioend_list); 279 xfs_destroy_ioend(ioend, error); 280 281 while (!list_empty(&ioend_list)) { 282 ioend = list_first_entry(&ioend_list, struct xfs_ioend, 283 io_list); 284 list_del_init(&ioend->io_list); 285 xfs_destroy_ioend(ioend, error); 286 } 287 288 memalloc_nofs_restore(nofs_flag); 289 } 290 291 /* 292 * We can merge two adjacent ioends if they have the same set of work to do. 293 */ 294 static bool 295 xfs_ioend_can_merge( 296 struct xfs_ioend *ioend, 297 struct xfs_ioend *next) 298 { 299 if (ioend->io_bio->bi_status != next->io_bio->bi_status) 300 return false; 301 if ((ioend->io_fork == XFS_COW_FORK) ^ (next->io_fork == XFS_COW_FORK)) 302 return false; 303 if ((ioend->io_state == XFS_EXT_UNWRITTEN) ^ 304 (next->io_state == XFS_EXT_UNWRITTEN)) 305 return false; 306 if (ioend->io_offset + ioend->io_size != next->io_offset) 307 return false; 308 return true; 309 } 310 311 /* 312 * If the to be merged ioend has a preallocated transaction for file 313 * size updates we need to ensure the ioend it is merged into also 314 * has one. If it already has one we can simply cancel the transaction 315 * as it is guaranteed to be clean. 316 */ 317 static void 318 xfs_ioend_merge_append_transactions( 319 struct xfs_ioend *ioend, 320 struct xfs_ioend *next) 321 { 322 if (!ioend->io_append_trans) { 323 ioend->io_append_trans = next->io_append_trans; 324 next->io_append_trans = NULL; 325 } else { 326 xfs_setfilesize_ioend(next, -ECANCELED); 327 } 328 } 329 330 /* Try to merge adjacent completions. */ 331 STATIC void 332 xfs_ioend_try_merge( 333 struct xfs_ioend *ioend, 334 struct list_head *more_ioends) 335 { 336 struct xfs_ioend *next_ioend; 337 338 while (!list_empty(more_ioends)) { 339 next_ioend = list_first_entry(more_ioends, struct xfs_ioend, 340 io_list); 341 if (!xfs_ioend_can_merge(ioend, next_ioend)) 342 break; 343 list_move_tail(&next_ioend->io_list, &ioend->io_list); 344 ioend->io_size += next_ioend->io_size; 345 if (next_ioend->io_append_trans) 346 xfs_ioend_merge_append_transactions(ioend, next_ioend); 347 } 348 } 349 350 /* list_sort compare function for ioends */ 351 static int 352 xfs_ioend_compare( 353 void *priv, 354 struct list_head *a, 355 struct list_head *b) 356 { 357 struct xfs_ioend *ia; 358 struct xfs_ioend *ib; 359 360 ia = container_of(a, struct xfs_ioend, io_list); 361 ib = container_of(b, struct xfs_ioend, io_list); 362 if (ia->io_offset < ib->io_offset) 363 return -1; 364 else if (ia->io_offset > ib->io_offset) 365 return 1; 366 return 0; 367 } 368 369 /* Finish all pending io completions. */ 370 void 371 xfs_end_io( 372 struct work_struct *work) 373 { 374 struct xfs_inode *ip; 375 struct xfs_ioend *ioend; 376 struct list_head completion_list; 377 unsigned long flags; 378 379 ip = container_of(work, struct xfs_inode, i_ioend_work); 380 381 spin_lock_irqsave(&ip->i_ioend_lock, flags); 382 list_replace_init(&ip->i_ioend_list, &completion_list); 383 spin_unlock_irqrestore(&ip->i_ioend_lock, flags); 384 385 list_sort(NULL, &completion_list, xfs_ioend_compare); 386 387 while (!list_empty(&completion_list)) { 388 ioend = list_first_entry(&completion_list, struct xfs_ioend, 389 io_list); 390 list_del_init(&ioend->io_list); 391 xfs_ioend_try_merge(ioend, &completion_list); 392 xfs_end_ioend(ioend); 393 } 394 } 395 396 STATIC void 397 xfs_end_bio( 398 struct bio *bio) 399 { 400 struct xfs_ioend *ioend = bio->bi_private; 401 struct xfs_inode *ip = XFS_I(ioend->io_inode); 402 struct xfs_mount *mp = ip->i_mount; 403 unsigned long flags; 404 405 if (ioend->io_fork == XFS_COW_FORK || 406 ioend->io_state == XFS_EXT_UNWRITTEN || 407 ioend->io_append_trans != NULL) { 408 spin_lock_irqsave(&ip->i_ioend_lock, flags); 409 if (list_empty(&ip->i_ioend_list)) 410 WARN_ON_ONCE(!queue_work(mp->m_unwritten_workqueue, 411 &ip->i_ioend_work)); 412 list_add_tail(&ioend->io_list, &ip->i_ioend_list); 413 spin_unlock_irqrestore(&ip->i_ioend_lock, flags); 414 } else 415 xfs_destroy_ioend(ioend, blk_status_to_errno(bio->bi_status)); 416 } 417 418 /* 419 * Fast revalidation of the cached writeback mapping. Return true if the current 420 * mapping is valid, false otherwise. 421 */ 422 static bool 423 xfs_imap_valid( 424 struct xfs_writepage_ctx *wpc, 425 struct xfs_inode *ip, 426 xfs_fileoff_t offset_fsb) 427 { 428 if (offset_fsb < wpc->imap.br_startoff || 429 offset_fsb >= wpc->imap.br_startoff + wpc->imap.br_blockcount) 430 return false; 431 /* 432 * If this is a COW mapping, it is sufficient to check that the mapping 433 * covers the offset. Be careful to check this first because the caller 434 * can revalidate a COW mapping without updating the data seqno. 435 */ 436 if (wpc->fork == XFS_COW_FORK) 437 return true; 438 439 /* 440 * This is not a COW mapping. Check the sequence number of the data fork 441 * because concurrent changes could have invalidated the extent. Check 442 * the COW fork because concurrent changes since the last time we 443 * checked (and found nothing at this offset) could have added 444 * overlapping blocks. 445 */ 446 if (wpc->data_seq != READ_ONCE(ip->i_df.if_seq)) 447 return false; 448 if (xfs_inode_has_cow_data(ip) && 449 wpc->cow_seq != READ_ONCE(ip->i_cowfp->if_seq)) 450 return false; 451 return true; 452 } 453 454 /* 455 * Pass in a dellalloc extent and convert it to real extents, return the real 456 * extent that maps offset_fsb in wpc->imap. 457 * 458 * The current page is held locked so nothing could have removed the block 459 * backing offset_fsb, although it could have moved from the COW to the data 460 * fork by another thread. 461 */ 462 static int 463 xfs_convert_blocks( 464 struct xfs_writepage_ctx *wpc, 465 struct xfs_inode *ip, 466 xfs_fileoff_t offset_fsb) 467 { 468 int error; 469 470 /* 471 * Attempt to allocate whatever delalloc extent currently backs 472 * offset_fsb and put the result into wpc->imap. Allocate in a loop 473 * because it may take several attempts to allocate real blocks for a 474 * contiguous delalloc extent if free space is sufficiently fragmented. 475 */ 476 do { 477 error = xfs_bmapi_convert_delalloc(ip, wpc->fork, offset_fsb, 478 &wpc->imap, wpc->fork == XFS_COW_FORK ? 479 &wpc->cow_seq : &wpc->data_seq); 480 if (error) 481 return error; 482 } while (wpc->imap.br_startoff + wpc->imap.br_blockcount <= offset_fsb); 483 484 return 0; 485 } 486 487 STATIC int 488 xfs_map_blocks( 489 struct xfs_writepage_ctx *wpc, 490 struct inode *inode, 491 loff_t offset) 492 { 493 struct xfs_inode *ip = XFS_I(inode); 494 struct xfs_mount *mp = ip->i_mount; 495 ssize_t count = i_blocksize(inode); 496 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 497 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count); 498 xfs_fileoff_t cow_fsb = NULLFILEOFF; 499 struct xfs_bmbt_irec imap; 500 struct xfs_iext_cursor icur; 501 int retries = 0; 502 int error = 0; 503 504 if (XFS_FORCED_SHUTDOWN(mp)) 505 return -EIO; 506 507 /* 508 * COW fork blocks can overlap data fork blocks even if the blocks 509 * aren't shared. COW I/O always takes precedent, so we must always 510 * check for overlap on reflink inodes unless the mapping is already a 511 * COW one, or the COW fork hasn't changed from the last time we looked 512 * at it. 513 * 514 * It's safe to check the COW fork if_seq here without the ILOCK because 515 * we've indirectly protected against concurrent updates: writeback has 516 * the page locked, which prevents concurrent invalidations by reflink 517 * and directio and prevents concurrent buffered writes to the same 518 * page. Changes to if_seq always happen under i_lock, which protects 519 * against concurrent updates and provides a memory barrier on the way 520 * out that ensures that we always see the current value. 521 */ 522 if (xfs_imap_valid(wpc, ip, offset_fsb)) 523 return 0; 524 525 /* 526 * If we don't have a valid map, now it's time to get a new one for this 527 * offset. This will convert delayed allocations (including COW ones) 528 * into real extents. If we return without a valid map, it means we 529 * landed in a hole and we skip the block. 530 */ 531 retry: 532 xfs_ilock(ip, XFS_ILOCK_SHARED); 533 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 534 (ip->i_df.if_flags & XFS_IFEXTENTS)); 535 536 /* 537 * Check if this is offset is covered by a COW extents, and if yes use 538 * it directly instead of looking up anything in the data fork. 539 */ 540 if (xfs_inode_has_cow_data(ip) && 541 xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap)) 542 cow_fsb = imap.br_startoff; 543 if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) { 544 wpc->cow_seq = READ_ONCE(ip->i_cowfp->if_seq); 545 xfs_iunlock(ip, XFS_ILOCK_SHARED); 546 547 wpc->fork = XFS_COW_FORK; 548 goto allocate_blocks; 549 } 550 551 /* 552 * No COW extent overlap. Revalidate now that we may have updated 553 * ->cow_seq. If the data mapping is still valid, we're done. 554 */ 555 if (xfs_imap_valid(wpc, ip, offset_fsb)) { 556 xfs_iunlock(ip, XFS_ILOCK_SHARED); 557 return 0; 558 } 559 560 /* 561 * If we don't have a valid map, now it's time to get a new one for this 562 * offset. This will convert delayed allocations (including COW ones) 563 * into real extents. 564 */ 565 if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap)) 566 imap.br_startoff = end_fsb; /* fake a hole past EOF */ 567 wpc->data_seq = READ_ONCE(ip->i_df.if_seq); 568 xfs_iunlock(ip, XFS_ILOCK_SHARED); 569 570 wpc->fork = XFS_DATA_FORK; 571 572 /* landed in a hole or beyond EOF? */ 573 if (imap.br_startoff > offset_fsb) { 574 imap.br_blockcount = imap.br_startoff - offset_fsb; 575 imap.br_startoff = offset_fsb; 576 imap.br_startblock = HOLESTARTBLOCK; 577 imap.br_state = XFS_EXT_NORM; 578 } 579 580 /* 581 * Truncate to the next COW extent if there is one. This is the only 582 * opportunity to do this because we can skip COW fork lookups for the 583 * subsequent blocks in the mapping; however, the requirement to treat 584 * the COW range separately remains. 585 */ 586 if (cow_fsb != NULLFILEOFF && 587 cow_fsb < imap.br_startoff + imap.br_blockcount) 588 imap.br_blockcount = cow_fsb - imap.br_startoff; 589 590 /* got a delalloc extent? */ 591 if (imap.br_startblock != HOLESTARTBLOCK && 592 isnullstartblock(imap.br_startblock)) 593 goto allocate_blocks; 594 595 wpc->imap = imap; 596 trace_xfs_map_blocks_found(ip, offset, count, wpc->fork, &imap); 597 return 0; 598 allocate_blocks: 599 error = xfs_convert_blocks(wpc, ip, offset_fsb); 600 if (error) { 601 /* 602 * If we failed to find the extent in the COW fork we might have 603 * raced with a COW to data fork conversion or truncate. 604 * Restart the lookup to catch the extent in the data fork for 605 * the former case, but prevent additional retries to avoid 606 * looping forever for the latter case. 607 */ 608 if (error == -EAGAIN && wpc->fork == XFS_COW_FORK && !retries++) 609 goto retry; 610 ASSERT(error != -EAGAIN); 611 return error; 612 } 613 614 /* 615 * Due to merging the return real extent might be larger than the 616 * original delalloc one. Trim the return extent to the next COW 617 * boundary again to force a re-lookup. 618 */ 619 if (wpc->fork != XFS_COW_FORK && cow_fsb != NULLFILEOFF && 620 cow_fsb < wpc->imap.br_startoff + wpc->imap.br_blockcount) 621 wpc->imap.br_blockcount = cow_fsb - wpc->imap.br_startoff; 622 623 ASSERT(wpc->imap.br_startoff <= offset_fsb); 624 ASSERT(wpc->imap.br_startoff + wpc->imap.br_blockcount > offset_fsb); 625 trace_xfs_map_blocks_alloc(ip, offset, count, wpc->fork, &imap); 626 return 0; 627 } 628 629 /* 630 * Submit the bio for an ioend. We are passed an ioend with a bio attached to 631 * it, and we submit that bio. The ioend may be used for multiple bio 632 * submissions, so we only want to allocate an append transaction for the ioend 633 * once. In the case of multiple bio submission, each bio will take an IO 634 * reference to the ioend to ensure that the ioend completion is only done once 635 * all bios have been submitted and the ioend is really done. 636 * 637 * If @status is non-zero, it means that we have a situation where some part of 638 * the submission process has failed after we have marked paged for writeback 639 * and unlocked them. In this situation, we need to fail the bio and ioend 640 * rather than submit it to IO. This typically only happens on a filesystem 641 * shutdown. 642 */ 643 STATIC int 644 xfs_submit_ioend( 645 struct writeback_control *wbc, 646 struct xfs_ioend *ioend, 647 int status) 648 { 649 unsigned int nofs_flag; 650 651 /* 652 * We can allocate memory here while doing writeback on behalf of 653 * memory reclaim. To avoid memory allocation deadlocks set the 654 * task-wide nofs context for the following operations. 655 */ 656 nofs_flag = memalloc_nofs_save(); 657 658 /* Convert CoW extents to regular */ 659 if (!status && ioend->io_fork == XFS_COW_FORK) { 660 status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode), 661 ioend->io_offset, ioend->io_size); 662 } 663 664 /* Reserve log space if we might write beyond the on-disk inode size. */ 665 if (!status && 666 (ioend->io_fork == XFS_COW_FORK || 667 ioend->io_state != XFS_EXT_UNWRITTEN) && 668 xfs_ioend_is_append(ioend) && 669 !ioend->io_append_trans) 670 status = xfs_setfilesize_trans_alloc(ioend); 671 672 memalloc_nofs_restore(nofs_flag); 673 674 ioend->io_bio->bi_private = ioend; 675 ioend->io_bio->bi_end_io = xfs_end_bio; 676 677 /* 678 * If we are failing the IO now, just mark the ioend with an 679 * error and finish it. This will run IO completion immediately 680 * as there is only one reference to the ioend at this point in 681 * time. 682 */ 683 if (status) { 684 ioend->io_bio->bi_status = errno_to_blk_status(status); 685 bio_endio(ioend->io_bio); 686 return status; 687 } 688 689 submit_bio(ioend->io_bio); 690 return 0; 691 } 692 693 static struct xfs_ioend * 694 xfs_alloc_ioend( 695 struct inode *inode, 696 int fork, 697 xfs_exntst_t state, 698 xfs_off_t offset, 699 struct block_device *bdev, 700 sector_t sector, 701 struct writeback_control *wbc) 702 { 703 struct xfs_ioend *ioend; 704 struct bio *bio; 705 706 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &xfs_ioend_bioset); 707 bio_set_dev(bio, bdev); 708 bio->bi_iter.bi_sector = sector; 709 bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc); 710 bio->bi_write_hint = inode->i_write_hint; 711 wbc_init_bio(wbc, bio); 712 713 ioend = container_of(bio, struct xfs_ioend, io_inline_bio); 714 INIT_LIST_HEAD(&ioend->io_list); 715 ioend->io_fork = fork; 716 ioend->io_state = state; 717 ioend->io_inode = inode; 718 ioend->io_size = 0; 719 ioend->io_offset = offset; 720 ioend->io_append_trans = NULL; 721 ioend->io_bio = bio; 722 return ioend; 723 } 724 725 /* 726 * Allocate a new bio, and chain the old bio to the new one. 727 * 728 * Note that we have to do perform the chaining in this unintuitive order 729 * so that the bi_private linkage is set up in the right direction for the 730 * traversal in xfs_destroy_ioend(). 731 */ 732 static struct bio * 733 xfs_chain_bio( 734 struct bio *prev) 735 { 736 struct bio *new; 737 738 new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES); 739 bio_copy_dev(new, prev);/* also copies over blkcg information */ 740 new->bi_iter.bi_sector = bio_end_sector(prev); 741 new->bi_opf = prev->bi_opf; 742 new->bi_write_hint = prev->bi_write_hint; 743 744 bio_chain(prev, new); 745 bio_get(prev); /* for xfs_destroy_ioend */ 746 submit_bio(prev); 747 return new; 748 } 749 750 /* 751 * Test to see if we have an existing ioend structure that we could append to 752 * first, otherwise finish off the current ioend and start another. 753 */ 754 STATIC void 755 xfs_add_to_ioend( 756 struct inode *inode, 757 xfs_off_t offset, 758 struct page *page, 759 struct iomap_page *iop, 760 struct xfs_writepage_ctx *wpc, 761 struct writeback_control *wbc, 762 struct list_head *iolist) 763 { 764 struct xfs_inode *ip = XFS_I(inode); 765 struct xfs_mount *mp = ip->i_mount; 766 struct block_device *bdev = xfs_find_bdev_for_inode(inode); 767 unsigned len = i_blocksize(inode); 768 unsigned poff = offset & (PAGE_SIZE - 1); 769 bool merged, same_page = false; 770 sector_t sector; 771 772 sector = xfs_fsb_to_db(ip, wpc->imap.br_startblock) + 773 ((offset - XFS_FSB_TO_B(mp, wpc->imap.br_startoff)) >> 9); 774 775 if (!wpc->ioend || 776 wpc->fork != wpc->ioend->io_fork || 777 wpc->imap.br_state != wpc->ioend->io_state || 778 sector != bio_end_sector(wpc->ioend->io_bio) || 779 offset != wpc->ioend->io_offset + wpc->ioend->io_size) { 780 if (wpc->ioend) 781 list_add(&wpc->ioend->io_list, iolist); 782 wpc->ioend = xfs_alloc_ioend(inode, wpc->fork, 783 wpc->imap.br_state, offset, bdev, sector, wbc); 784 } 785 786 merged = __bio_try_merge_page(wpc->ioend->io_bio, page, len, poff, 787 &same_page); 788 789 if (iop && !same_page) 790 atomic_inc(&iop->write_count); 791 792 if (!merged) { 793 if (bio_full(wpc->ioend->io_bio, len)) 794 wpc->ioend->io_bio = xfs_chain_bio(wpc->ioend->io_bio); 795 bio_add_page(wpc->ioend->io_bio, page, len, poff); 796 } 797 798 wpc->ioend->io_size += len; 799 wbc_account_io(wbc, page, len); 800 } 801 802 STATIC void 803 xfs_vm_invalidatepage( 804 struct page *page, 805 unsigned int offset, 806 unsigned int length) 807 { 808 trace_xfs_invalidatepage(page->mapping->host, page, offset, length); 809 iomap_invalidatepage(page, offset, length); 810 } 811 812 /* 813 * If the page has delalloc blocks on it, we need to punch them out before we 814 * invalidate the page. If we don't, we leave a stale delalloc mapping on the 815 * inode that can trip up a later direct I/O read operation on the same region. 816 * 817 * We prevent this by truncating away the delalloc regions on the page. Because 818 * they are delalloc, we can do this without needing a transaction. Indeed - if 819 * we get ENOSPC errors, we have to be able to do this truncation without a 820 * transaction as there is no space left for block reservation (typically why we 821 * see a ENOSPC in writeback). 822 */ 823 STATIC void 824 xfs_aops_discard_page( 825 struct page *page) 826 { 827 struct inode *inode = page->mapping->host; 828 struct xfs_inode *ip = XFS_I(inode); 829 struct xfs_mount *mp = ip->i_mount; 830 loff_t offset = page_offset(page); 831 xfs_fileoff_t start_fsb = XFS_B_TO_FSBT(mp, offset); 832 int error; 833 834 if (XFS_FORCED_SHUTDOWN(mp)) 835 goto out_invalidate; 836 837 xfs_alert(mp, 838 "page discard on page "PTR_FMT", inode 0x%llx, offset %llu.", 839 page, ip->i_ino, offset); 840 841 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 842 PAGE_SIZE / i_blocksize(inode)); 843 if (error && !XFS_FORCED_SHUTDOWN(mp)) 844 xfs_alert(mp, "page discard unable to remove delalloc mapping."); 845 out_invalidate: 846 xfs_vm_invalidatepage(page, 0, PAGE_SIZE); 847 } 848 849 /* 850 * We implement an immediate ioend submission policy here to avoid needing to 851 * chain multiple ioends and hence nest mempool allocations which can violate 852 * forward progress guarantees we need to provide. The current ioend we are 853 * adding blocks to is cached on the writepage context, and if the new block 854 * does not append to the cached ioend it will create a new ioend and cache that 855 * instead. 856 * 857 * If a new ioend is created and cached, the old ioend is returned and queued 858 * locally for submission once the entire page is processed or an error has been 859 * detected. While ioends are submitted immediately after they are completed, 860 * batching optimisations are provided by higher level block plugging. 861 * 862 * At the end of a writeback pass, there will be a cached ioend remaining on the 863 * writepage context that the caller will need to submit. 864 */ 865 static int 866 xfs_writepage_map( 867 struct xfs_writepage_ctx *wpc, 868 struct writeback_control *wbc, 869 struct inode *inode, 870 struct page *page, 871 uint64_t end_offset) 872 { 873 LIST_HEAD(submit_list); 874 struct iomap_page *iop = to_iomap_page(page); 875 unsigned len = i_blocksize(inode); 876 struct xfs_ioend *ioend, *next; 877 uint64_t file_offset; /* file offset of page */ 878 int error = 0, count = 0, i; 879 880 ASSERT(iop || i_blocksize(inode) == PAGE_SIZE); 881 ASSERT(!iop || atomic_read(&iop->write_count) == 0); 882 883 /* 884 * Walk through the page to find areas to write back. If we run off the 885 * end of the current map or find the current map invalid, grab a new 886 * one. 887 */ 888 for (i = 0, file_offset = page_offset(page); 889 i < (PAGE_SIZE >> inode->i_blkbits) && file_offset < end_offset; 890 i++, file_offset += len) { 891 if (iop && !test_bit(i, iop->uptodate)) 892 continue; 893 894 error = xfs_map_blocks(wpc, inode, file_offset); 895 if (error) 896 break; 897 if (wpc->imap.br_startblock == HOLESTARTBLOCK) 898 continue; 899 xfs_add_to_ioend(inode, file_offset, page, iop, wpc, wbc, 900 &submit_list); 901 count++; 902 } 903 904 ASSERT(wpc->ioend || list_empty(&submit_list)); 905 ASSERT(PageLocked(page)); 906 ASSERT(!PageWriteback(page)); 907 908 /* 909 * On error, we have to fail the ioend here because we may have set 910 * pages under writeback, we have to make sure we run IO completion to 911 * mark the error state of the IO appropriately, so we can't cancel the 912 * ioend directly here. That means we have to mark this page as under 913 * writeback if we included any blocks from it in the ioend chain so 914 * that completion treats it correctly. 915 * 916 * If we didn't include the page in the ioend, the on error we can 917 * simply discard and unlock it as there are no other users of the page 918 * now. The caller will still need to trigger submission of outstanding 919 * ioends on the writepage context so they are treated correctly on 920 * error. 921 */ 922 if (unlikely(error)) { 923 if (!count) { 924 xfs_aops_discard_page(page); 925 ClearPageUptodate(page); 926 unlock_page(page); 927 goto done; 928 } 929 930 /* 931 * If the page was not fully cleaned, we need to ensure that the 932 * higher layers come back to it correctly. That means we need 933 * to keep the page dirty, and for WB_SYNC_ALL writeback we need 934 * to ensure the PAGECACHE_TAG_TOWRITE index mark is not removed 935 * so another attempt to write this page in this writeback sweep 936 * will be made. 937 */ 938 set_page_writeback_keepwrite(page); 939 } else { 940 clear_page_dirty_for_io(page); 941 set_page_writeback(page); 942 } 943 944 unlock_page(page); 945 946 /* 947 * Preserve the original error if there was one, otherwise catch 948 * submission errors here and propagate into subsequent ioend 949 * submissions. 950 */ 951 list_for_each_entry_safe(ioend, next, &submit_list, io_list) { 952 int error2; 953 954 list_del_init(&ioend->io_list); 955 error2 = xfs_submit_ioend(wbc, ioend, error); 956 if (error2 && !error) 957 error = error2; 958 } 959 960 /* 961 * We can end up here with no error and nothing to write only if we race 962 * with a partial page truncate on a sub-page block sized filesystem. 963 */ 964 if (!count) 965 end_page_writeback(page); 966 done: 967 mapping_set_error(page->mapping, error); 968 return error; 969 } 970 971 /* 972 * Write out a dirty page. 973 * 974 * For delalloc space on the page we need to allocate space and flush it. 975 * For unwritten space on the page we need to start the conversion to 976 * regular allocated space. 977 */ 978 STATIC int 979 xfs_do_writepage( 980 struct page *page, 981 struct writeback_control *wbc, 982 void *data) 983 { 984 struct xfs_writepage_ctx *wpc = data; 985 struct inode *inode = page->mapping->host; 986 loff_t offset; 987 uint64_t end_offset; 988 pgoff_t end_index; 989 990 trace_xfs_writepage(inode, page, 0, 0); 991 992 /* 993 * Refuse to write the page out if we are called from reclaim context. 994 * 995 * This avoids stack overflows when called from deeply used stacks in 996 * random callers for direct reclaim or memcg reclaim. We explicitly 997 * allow reclaim from kswapd as the stack usage there is relatively low. 998 * 999 * This should never happen except in the case of a VM regression so 1000 * warn about it. 1001 */ 1002 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == 1003 PF_MEMALLOC)) 1004 goto redirty; 1005 1006 /* 1007 * Given that we do not allow direct reclaim to call us, we should 1008 * never be called while in a filesystem transaction. 1009 */ 1010 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS)) 1011 goto redirty; 1012 1013 /* 1014 * Is this page beyond the end of the file? 1015 * 1016 * The page index is less than the end_index, adjust the end_offset 1017 * to the highest offset that this page should represent. 1018 * ----------------------------------------------------- 1019 * | file mapping | <EOF> | 1020 * ----------------------------------------------------- 1021 * | Page ... | Page N-2 | Page N-1 | Page N | | 1022 * ^--------------------------------^----------|-------- 1023 * | desired writeback range | see else | 1024 * ---------------------------------^------------------| 1025 */ 1026 offset = i_size_read(inode); 1027 end_index = offset >> PAGE_SHIFT; 1028 if (page->index < end_index) 1029 end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT; 1030 else { 1031 /* 1032 * Check whether the page to write out is beyond or straddles 1033 * i_size or not. 1034 * ------------------------------------------------------- 1035 * | file mapping | <EOF> | 1036 * ------------------------------------------------------- 1037 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond | 1038 * ^--------------------------------^-----------|--------- 1039 * | | Straddles | 1040 * ---------------------------------^-----------|--------| 1041 */ 1042 unsigned offset_into_page = offset & (PAGE_SIZE - 1); 1043 1044 /* 1045 * Skip the page if it is fully outside i_size, e.g. due to a 1046 * truncate operation that is in progress. We must redirty the 1047 * page so that reclaim stops reclaiming it. Otherwise 1048 * xfs_vm_releasepage() is called on it and gets confused. 1049 * 1050 * Note that the end_index is unsigned long, it would overflow 1051 * if the given offset is greater than 16TB on 32-bit system 1052 * and if we do check the page is fully outside i_size or not 1053 * via "if (page->index >= end_index + 1)" as "end_index + 1" 1054 * will be evaluated to 0. Hence this page will be redirtied 1055 * and be written out repeatedly which would result in an 1056 * infinite loop, the user program that perform this operation 1057 * will hang. Instead, we can verify this situation by checking 1058 * if the page to write is totally beyond the i_size or if it's 1059 * offset is just equal to the EOF. 1060 */ 1061 if (page->index > end_index || 1062 (page->index == end_index && offset_into_page == 0)) 1063 goto redirty; 1064 1065 /* 1066 * The page straddles i_size. It must be zeroed out on each 1067 * and every writepage invocation because it may be mmapped. 1068 * "A file is mapped in multiples of the page size. For a file 1069 * that is not a multiple of the page size, the remaining 1070 * memory is zeroed when mapped, and writes to that region are 1071 * not written out to the file." 1072 */ 1073 zero_user_segment(page, offset_into_page, PAGE_SIZE); 1074 1075 /* Adjust the end_offset to the end of file */ 1076 end_offset = offset; 1077 } 1078 1079 return xfs_writepage_map(wpc, wbc, inode, page, end_offset); 1080 1081 redirty: 1082 redirty_page_for_writepage(wbc, page); 1083 unlock_page(page); 1084 return 0; 1085 } 1086 1087 STATIC int 1088 xfs_vm_writepage( 1089 struct page *page, 1090 struct writeback_control *wbc) 1091 { 1092 struct xfs_writepage_ctx wpc = { }; 1093 int ret; 1094 1095 ret = xfs_do_writepage(page, wbc, &wpc); 1096 if (wpc.ioend) 1097 ret = xfs_submit_ioend(wbc, wpc.ioend, ret); 1098 return ret; 1099 } 1100 1101 STATIC int 1102 xfs_vm_writepages( 1103 struct address_space *mapping, 1104 struct writeback_control *wbc) 1105 { 1106 struct xfs_writepage_ctx wpc = { }; 1107 int ret; 1108 1109 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED); 1110 ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc); 1111 if (wpc.ioend) 1112 ret = xfs_submit_ioend(wbc, wpc.ioend, ret); 1113 return ret; 1114 } 1115 1116 STATIC int 1117 xfs_dax_writepages( 1118 struct address_space *mapping, 1119 struct writeback_control *wbc) 1120 { 1121 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED); 1122 return dax_writeback_mapping_range(mapping, 1123 xfs_find_bdev_for_inode(mapping->host), wbc); 1124 } 1125 1126 STATIC int 1127 xfs_vm_releasepage( 1128 struct page *page, 1129 gfp_t gfp_mask) 1130 { 1131 trace_xfs_releasepage(page->mapping->host, page, 0, 0); 1132 return iomap_releasepage(page, gfp_mask); 1133 } 1134 1135 STATIC sector_t 1136 xfs_vm_bmap( 1137 struct address_space *mapping, 1138 sector_t block) 1139 { 1140 struct xfs_inode *ip = XFS_I(mapping->host); 1141 1142 trace_xfs_vm_bmap(ip); 1143 1144 /* 1145 * The swap code (ab-)uses ->bmap to get a block mapping and then 1146 * bypasses the file system for actual I/O. We really can't allow 1147 * that on reflinks inodes, so we have to skip out here. And yes, 1148 * 0 is the magic code for a bmap error. 1149 * 1150 * Since we don't pass back blockdev info, we can't return bmap 1151 * information for rt files either. 1152 */ 1153 if (xfs_is_cow_inode(ip) || XFS_IS_REALTIME_INODE(ip)) 1154 return 0; 1155 return iomap_bmap(mapping, block, &xfs_iomap_ops); 1156 } 1157 1158 STATIC int 1159 xfs_vm_readpage( 1160 struct file *unused, 1161 struct page *page) 1162 { 1163 trace_xfs_vm_readpage(page->mapping->host, 1); 1164 return iomap_readpage(page, &xfs_iomap_ops); 1165 } 1166 1167 STATIC int 1168 xfs_vm_readpages( 1169 struct file *unused, 1170 struct address_space *mapping, 1171 struct list_head *pages, 1172 unsigned nr_pages) 1173 { 1174 trace_xfs_vm_readpages(mapping->host, nr_pages); 1175 return iomap_readpages(mapping, pages, nr_pages, &xfs_iomap_ops); 1176 } 1177 1178 static int 1179 xfs_iomap_swapfile_activate( 1180 struct swap_info_struct *sis, 1181 struct file *swap_file, 1182 sector_t *span) 1183 { 1184 sis->bdev = xfs_find_bdev_for_inode(file_inode(swap_file)); 1185 return iomap_swapfile_activate(sis, swap_file, span, &xfs_iomap_ops); 1186 } 1187 1188 const struct address_space_operations xfs_address_space_operations = { 1189 .readpage = xfs_vm_readpage, 1190 .readpages = xfs_vm_readpages, 1191 .writepage = xfs_vm_writepage, 1192 .writepages = xfs_vm_writepages, 1193 .set_page_dirty = iomap_set_page_dirty, 1194 .releasepage = xfs_vm_releasepage, 1195 .invalidatepage = xfs_vm_invalidatepage, 1196 .bmap = xfs_vm_bmap, 1197 .direct_IO = noop_direct_IO, 1198 .migratepage = iomap_migrate_page, 1199 .is_partially_uptodate = iomap_is_partially_uptodate, 1200 .error_remove_page = generic_error_remove_page, 1201 .swap_activate = xfs_iomap_swapfile_activate, 1202 }; 1203 1204 const struct address_space_operations xfs_dax_aops = { 1205 .writepages = xfs_dax_writepages, 1206 .direct_IO = noop_direct_IO, 1207 .set_page_dirty = noop_set_page_dirty, 1208 .invalidatepage = noop_invalidatepage, 1209 .swap_activate = xfs_iomap_swapfile_activate, 1210 }; 1211