xref: /linux/fs/xfs/xfs_aops.c (revision 2e53c4e1c807d91dc7241c2104e69ad9d2c71e48)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * Copyright (c) 2016-2018 Christoph Hellwig.
5  * All Rights Reserved.
6  */
7 #include "xfs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_iomap.h"
16 #include "xfs_trace.h"
17 #include "xfs_bmap.h"
18 #include "xfs_bmap_util.h"
19 #include "xfs_reflink.h"
20 
21 struct xfs_writepage_ctx {
22 	struct iomap_writepage_ctx ctx;
23 	unsigned int		data_seq;
24 	unsigned int		cow_seq;
25 };
26 
27 static inline struct xfs_writepage_ctx *
28 XFS_WPC(struct iomap_writepage_ctx *ctx)
29 {
30 	return container_of(ctx, struct xfs_writepage_ctx, ctx);
31 }
32 
33 struct block_device *
34 xfs_find_bdev_for_inode(
35 	struct inode		*inode)
36 {
37 	struct xfs_inode	*ip = XFS_I(inode);
38 	struct xfs_mount	*mp = ip->i_mount;
39 
40 	if (XFS_IS_REALTIME_INODE(ip))
41 		return mp->m_rtdev_targp->bt_bdev;
42 	else
43 		return mp->m_ddev_targp->bt_bdev;
44 }
45 
46 struct dax_device *
47 xfs_find_daxdev_for_inode(
48 	struct inode		*inode)
49 {
50 	struct xfs_inode	*ip = XFS_I(inode);
51 	struct xfs_mount	*mp = ip->i_mount;
52 
53 	if (XFS_IS_REALTIME_INODE(ip))
54 		return mp->m_rtdev_targp->bt_daxdev;
55 	else
56 		return mp->m_ddev_targp->bt_daxdev;
57 }
58 
59 /*
60  * Fast and loose check if this write could update the on-disk inode size.
61  */
62 static inline bool xfs_ioend_is_append(struct iomap_ioend *ioend)
63 {
64 	return ioend->io_offset + ioend->io_size >
65 		XFS_I(ioend->io_inode)->i_d.di_size;
66 }
67 
68 STATIC int
69 xfs_setfilesize_trans_alloc(
70 	struct iomap_ioend	*ioend)
71 {
72 	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
73 	struct xfs_trans	*tp;
74 	int			error;
75 
76 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
77 	if (error)
78 		return error;
79 
80 	ioend->io_private = tp;
81 
82 	/*
83 	 * We may pass freeze protection with a transaction.  So tell lockdep
84 	 * we released it.
85 	 */
86 	__sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
87 	/*
88 	 * We hand off the transaction to the completion thread now, so
89 	 * clear the flag here.
90 	 */
91 	current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
92 	return 0;
93 }
94 
95 /*
96  * Update on-disk file size now that data has been written to disk.
97  */
98 STATIC int
99 __xfs_setfilesize(
100 	struct xfs_inode	*ip,
101 	struct xfs_trans	*tp,
102 	xfs_off_t		offset,
103 	size_t			size)
104 {
105 	xfs_fsize_t		isize;
106 
107 	xfs_ilock(ip, XFS_ILOCK_EXCL);
108 	isize = xfs_new_eof(ip, offset + size);
109 	if (!isize) {
110 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
111 		xfs_trans_cancel(tp);
112 		return 0;
113 	}
114 
115 	trace_xfs_setfilesize(ip, offset, size);
116 
117 	ip->i_d.di_size = isize;
118 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
119 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
120 
121 	return xfs_trans_commit(tp);
122 }
123 
124 int
125 xfs_setfilesize(
126 	struct xfs_inode	*ip,
127 	xfs_off_t		offset,
128 	size_t			size)
129 {
130 	struct xfs_mount	*mp = ip->i_mount;
131 	struct xfs_trans	*tp;
132 	int			error;
133 
134 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
135 	if (error)
136 		return error;
137 
138 	return __xfs_setfilesize(ip, tp, offset, size);
139 }
140 
141 STATIC int
142 xfs_setfilesize_ioend(
143 	struct iomap_ioend	*ioend,
144 	int			error)
145 {
146 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
147 	struct xfs_trans	*tp = ioend->io_private;
148 
149 	/*
150 	 * The transaction may have been allocated in the I/O submission thread,
151 	 * thus we need to mark ourselves as being in a transaction manually.
152 	 * Similarly for freeze protection.
153 	 */
154 	current_set_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
155 	__sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
156 
157 	/* we abort the update if there was an IO error */
158 	if (error) {
159 		xfs_trans_cancel(tp);
160 		return error;
161 	}
162 
163 	return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
164 }
165 
166 /*
167  * IO write completion.
168  */
169 STATIC void
170 xfs_end_ioend(
171 	struct iomap_ioend	*ioend)
172 {
173 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
174 	xfs_off_t		offset = ioend->io_offset;
175 	size_t			size = ioend->io_size;
176 	unsigned int		nofs_flag;
177 	int			error;
178 
179 	/*
180 	 * We can allocate memory here while doing writeback on behalf of
181 	 * memory reclaim.  To avoid memory allocation deadlocks set the
182 	 * task-wide nofs context for the following operations.
183 	 */
184 	nofs_flag = memalloc_nofs_save();
185 
186 	/*
187 	 * Just clean up the in-memory strutures if the fs has been shut down.
188 	 */
189 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
190 		error = -EIO;
191 		goto done;
192 	}
193 
194 	/*
195 	 * Clean up any COW blocks on an I/O error.
196 	 */
197 	error = blk_status_to_errno(ioend->io_bio->bi_status);
198 	if (unlikely(error)) {
199 		if (ioend->io_flags & IOMAP_F_SHARED)
200 			xfs_reflink_cancel_cow_range(ip, offset, size, true);
201 		goto done;
202 	}
203 
204 	/*
205 	 * Success: commit the COW or unwritten blocks if needed.
206 	 */
207 	if (ioend->io_flags & IOMAP_F_SHARED)
208 		error = xfs_reflink_end_cow(ip, offset, size);
209 	else if (ioend->io_type == IOMAP_UNWRITTEN)
210 		error = xfs_iomap_write_unwritten(ip, offset, size, false);
211 	else
212 		ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_private);
213 
214 done:
215 	if (ioend->io_private)
216 		error = xfs_setfilesize_ioend(ioend, error);
217 	iomap_finish_ioends(ioend, error);
218 	memalloc_nofs_restore(nofs_flag);
219 }
220 
221 /*
222  * If the to be merged ioend has a preallocated transaction for file
223  * size updates we need to ensure the ioend it is merged into also
224  * has one.  If it already has one we can simply cancel the transaction
225  * as it is guaranteed to be clean.
226  */
227 static void
228 xfs_ioend_merge_private(
229 	struct iomap_ioend	*ioend,
230 	struct iomap_ioend	*next)
231 {
232 	if (!ioend->io_private) {
233 		ioend->io_private = next->io_private;
234 		next->io_private = NULL;
235 	} else {
236 		xfs_setfilesize_ioend(next, -ECANCELED);
237 	}
238 }
239 
240 /* Finish all pending io completions. */
241 void
242 xfs_end_io(
243 	struct work_struct	*work)
244 {
245 	struct xfs_inode	*ip =
246 		container_of(work, struct xfs_inode, i_ioend_work);
247 	struct iomap_ioend	*ioend;
248 	struct list_head	tmp;
249 	unsigned long		flags;
250 
251 	spin_lock_irqsave(&ip->i_ioend_lock, flags);
252 	list_replace_init(&ip->i_ioend_list, &tmp);
253 	spin_unlock_irqrestore(&ip->i_ioend_lock, flags);
254 
255 	iomap_sort_ioends(&tmp);
256 	while ((ioend = list_first_entry_or_null(&tmp, struct iomap_ioend,
257 			io_list))) {
258 		list_del_init(&ioend->io_list);
259 		iomap_ioend_try_merge(ioend, &tmp, xfs_ioend_merge_private);
260 		xfs_end_ioend(ioend);
261 	}
262 }
263 
264 static inline bool xfs_ioend_needs_workqueue(struct iomap_ioend *ioend)
265 {
266 	return ioend->io_private ||
267 		ioend->io_type == IOMAP_UNWRITTEN ||
268 		(ioend->io_flags & IOMAP_F_SHARED);
269 }
270 
271 STATIC void
272 xfs_end_bio(
273 	struct bio		*bio)
274 {
275 	struct iomap_ioend	*ioend = bio->bi_private;
276 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
277 	unsigned long		flags;
278 
279 	ASSERT(xfs_ioend_needs_workqueue(ioend));
280 
281 	spin_lock_irqsave(&ip->i_ioend_lock, flags);
282 	if (list_empty(&ip->i_ioend_list))
283 		WARN_ON_ONCE(!queue_work(ip->i_mount->m_unwritten_workqueue,
284 					 &ip->i_ioend_work));
285 	list_add_tail(&ioend->io_list, &ip->i_ioend_list);
286 	spin_unlock_irqrestore(&ip->i_ioend_lock, flags);
287 }
288 
289 /*
290  * Fast revalidation of the cached writeback mapping. Return true if the current
291  * mapping is valid, false otherwise.
292  */
293 static bool
294 xfs_imap_valid(
295 	struct iomap_writepage_ctx	*wpc,
296 	struct xfs_inode		*ip,
297 	loff_t				offset)
298 {
299 	if (offset < wpc->iomap.offset ||
300 	    offset >= wpc->iomap.offset + wpc->iomap.length)
301 		return false;
302 	/*
303 	 * If this is a COW mapping, it is sufficient to check that the mapping
304 	 * covers the offset. Be careful to check this first because the caller
305 	 * can revalidate a COW mapping without updating the data seqno.
306 	 */
307 	if (wpc->iomap.flags & IOMAP_F_SHARED)
308 		return true;
309 
310 	/*
311 	 * This is not a COW mapping. Check the sequence number of the data fork
312 	 * because concurrent changes could have invalidated the extent. Check
313 	 * the COW fork because concurrent changes since the last time we
314 	 * checked (and found nothing at this offset) could have added
315 	 * overlapping blocks.
316 	 */
317 	if (XFS_WPC(wpc)->data_seq != READ_ONCE(ip->i_df.if_seq))
318 		return false;
319 	if (xfs_inode_has_cow_data(ip) &&
320 	    XFS_WPC(wpc)->cow_seq != READ_ONCE(ip->i_cowfp->if_seq))
321 		return false;
322 	return true;
323 }
324 
325 /*
326  * Pass in a dellalloc extent and convert it to real extents, return the real
327  * extent that maps offset_fsb in wpc->iomap.
328  *
329  * The current page is held locked so nothing could have removed the block
330  * backing offset_fsb, although it could have moved from the COW to the data
331  * fork by another thread.
332  */
333 static int
334 xfs_convert_blocks(
335 	struct iomap_writepage_ctx *wpc,
336 	struct xfs_inode	*ip,
337 	int			whichfork,
338 	loff_t			offset)
339 {
340 	int			error;
341 	unsigned		*seq;
342 
343 	if (whichfork == XFS_COW_FORK)
344 		seq = &XFS_WPC(wpc)->cow_seq;
345 	else
346 		seq = &XFS_WPC(wpc)->data_seq;
347 
348 	/*
349 	 * Attempt to allocate whatever delalloc extent currently backs offset
350 	 * and put the result into wpc->iomap.  Allocate in a loop because it
351 	 * may take several attempts to allocate real blocks for a contiguous
352 	 * delalloc extent if free space is sufficiently fragmented.
353 	 */
354 	do {
355 		error = xfs_bmapi_convert_delalloc(ip, whichfork, offset,
356 				&wpc->iomap, seq);
357 		if (error)
358 			return error;
359 	} while (wpc->iomap.offset + wpc->iomap.length <= offset);
360 
361 	return 0;
362 }
363 
364 static int
365 xfs_map_blocks(
366 	struct iomap_writepage_ctx *wpc,
367 	struct inode		*inode,
368 	loff_t			offset)
369 {
370 	struct xfs_inode	*ip = XFS_I(inode);
371 	struct xfs_mount	*mp = ip->i_mount;
372 	ssize_t			count = i_blocksize(inode);
373 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
374 	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + count);
375 	xfs_fileoff_t		cow_fsb = NULLFILEOFF;
376 	int			whichfork = XFS_DATA_FORK;
377 	struct xfs_bmbt_irec	imap;
378 	struct xfs_iext_cursor	icur;
379 	int			retries = 0;
380 	int			error = 0;
381 
382 	if (XFS_FORCED_SHUTDOWN(mp))
383 		return -EIO;
384 
385 	/*
386 	 * COW fork blocks can overlap data fork blocks even if the blocks
387 	 * aren't shared.  COW I/O always takes precedent, so we must always
388 	 * check for overlap on reflink inodes unless the mapping is already a
389 	 * COW one, or the COW fork hasn't changed from the last time we looked
390 	 * at it.
391 	 *
392 	 * It's safe to check the COW fork if_seq here without the ILOCK because
393 	 * we've indirectly protected against concurrent updates: writeback has
394 	 * the page locked, which prevents concurrent invalidations by reflink
395 	 * and directio and prevents concurrent buffered writes to the same
396 	 * page.  Changes to if_seq always happen under i_lock, which protects
397 	 * against concurrent updates and provides a memory barrier on the way
398 	 * out that ensures that we always see the current value.
399 	 */
400 	if (xfs_imap_valid(wpc, ip, offset))
401 		return 0;
402 
403 	/*
404 	 * If we don't have a valid map, now it's time to get a new one for this
405 	 * offset.  This will convert delayed allocations (including COW ones)
406 	 * into real extents.  If we return without a valid map, it means we
407 	 * landed in a hole and we skip the block.
408 	 */
409 retry:
410 	xfs_ilock(ip, XFS_ILOCK_SHARED);
411 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
412 	       (ip->i_df.if_flags & XFS_IFEXTENTS));
413 
414 	/*
415 	 * Check if this is offset is covered by a COW extents, and if yes use
416 	 * it directly instead of looking up anything in the data fork.
417 	 */
418 	if (xfs_inode_has_cow_data(ip) &&
419 	    xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap))
420 		cow_fsb = imap.br_startoff;
421 	if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) {
422 		XFS_WPC(wpc)->cow_seq = READ_ONCE(ip->i_cowfp->if_seq);
423 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
424 
425 		whichfork = XFS_COW_FORK;
426 		goto allocate_blocks;
427 	}
428 
429 	/*
430 	 * No COW extent overlap. Revalidate now that we may have updated
431 	 * ->cow_seq. If the data mapping is still valid, we're done.
432 	 */
433 	if (xfs_imap_valid(wpc, ip, offset)) {
434 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
435 		return 0;
436 	}
437 
438 	/*
439 	 * If we don't have a valid map, now it's time to get a new one for this
440 	 * offset.  This will convert delayed allocations (including COW ones)
441 	 * into real extents.
442 	 */
443 	if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap))
444 		imap.br_startoff = end_fsb;	/* fake a hole past EOF */
445 	XFS_WPC(wpc)->data_seq = READ_ONCE(ip->i_df.if_seq);
446 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
447 
448 	/* landed in a hole or beyond EOF? */
449 	if (imap.br_startoff > offset_fsb) {
450 		imap.br_blockcount = imap.br_startoff - offset_fsb;
451 		imap.br_startoff = offset_fsb;
452 		imap.br_startblock = HOLESTARTBLOCK;
453 		imap.br_state = XFS_EXT_NORM;
454 	}
455 
456 	/*
457 	 * Truncate to the next COW extent if there is one.  This is the only
458 	 * opportunity to do this because we can skip COW fork lookups for the
459 	 * subsequent blocks in the mapping; however, the requirement to treat
460 	 * the COW range separately remains.
461 	 */
462 	if (cow_fsb != NULLFILEOFF &&
463 	    cow_fsb < imap.br_startoff + imap.br_blockcount)
464 		imap.br_blockcount = cow_fsb - imap.br_startoff;
465 
466 	/* got a delalloc extent? */
467 	if (imap.br_startblock != HOLESTARTBLOCK &&
468 	    isnullstartblock(imap.br_startblock))
469 		goto allocate_blocks;
470 
471 	xfs_bmbt_to_iomap(ip, &wpc->iomap, &imap, 0);
472 	trace_xfs_map_blocks_found(ip, offset, count, whichfork, &imap);
473 	return 0;
474 allocate_blocks:
475 	error = xfs_convert_blocks(wpc, ip, whichfork, offset);
476 	if (error) {
477 		/*
478 		 * If we failed to find the extent in the COW fork we might have
479 		 * raced with a COW to data fork conversion or truncate.
480 		 * Restart the lookup to catch the extent in the data fork for
481 		 * the former case, but prevent additional retries to avoid
482 		 * looping forever for the latter case.
483 		 */
484 		if (error == -EAGAIN && whichfork == XFS_COW_FORK && !retries++)
485 			goto retry;
486 		ASSERT(error != -EAGAIN);
487 		return error;
488 	}
489 
490 	/*
491 	 * Due to merging the return real extent might be larger than the
492 	 * original delalloc one.  Trim the return extent to the next COW
493 	 * boundary again to force a re-lookup.
494 	 */
495 	if (whichfork != XFS_COW_FORK && cow_fsb != NULLFILEOFF) {
496 		loff_t		cow_offset = XFS_FSB_TO_B(mp, cow_fsb);
497 
498 		if (cow_offset < wpc->iomap.offset + wpc->iomap.length)
499 			wpc->iomap.length = cow_offset - wpc->iomap.offset;
500 	}
501 
502 	ASSERT(wpc->iomap.offset <= offset);
503 	ASSERT(wpc->iomap.offset + wpc->iomap.length > offset);
504 	trace_xfs_map_blocks_alloc(ip, offset, count, whichfork, &imap);
505 	return 0;
506 }
507 
508 static int
509 xfs_prepare_ioend(
510 	struct iomap_ioend	*ioend,
511 	int			status)
512 {
513 	unsigned int		nofs_flag;
514 
515 	/*
516 	 * We can allocate memory here while doing writeback on behalf of
517 	 * memory reclaim.  To avoid memory allocation deadlocks set the
518 	 * task-wide nofs context for the following operations.
519 	 */
520 	nofs_flag = memalloc_nofs_save();
521 
522 	/* Convert CoW extents to regular */
523 	if (!status && (ioend->io_flags & IOMAP_F_SHARED)) {
524 		status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
525 				ioend->io_offset, ioend->io_size);
526 	}
527 
528 	/* Reserve log space if we might write beyond the on-disk inode size. */
529 	if (!status &&
530 	    ((ioend->io_flags & IOMAP_F_SHARED) ||
531 	     ioend->io_type != IOMAP_UNWRITTEN) &&
532 	    xfs_ioend_is_append(ioend) &&
533 	    !ioend->io_private)
534 		status = xfs_setfilesize_trans_alloc(ioend);
535 
536 	memalloc_nofs_restore(nofs_flag);
537 
538 	if (xfs_ioend_needs_workqueue(ioend))
539 		ioend->io_bio->bi_end_io = xfs_end_bio;
540 	return status;
541 }
542 
543 /*
544  * If the page has delalloc blocks on it, we need to punch them out before we
545  * invalidate the page.  If we don't, we leave a stale delalloc mapping on the
546  * inode that can trip up a later direct I/O read operation on the same region.
547  *
548  * We prevent this by truncating away the delalloc regions on the page.  Because
549  * they are delalloc, we can do this without needing a transaction. Indeed - if
550  * we get ENOSPC errors, we have to be able to do this truncation without a
551  * transaction as there is no space left for block reservation (typically why we
552  * see a ENOSPC in writeback).
553  */
554 static void
555 xfs_discard_page(
556 	struct page		*page)
557 {
558 	struct inode		*inode = page->mapping->host;
559 	struct xfs_inode	*ip = XFS_I(inode);
560 	struct xfs_mount	*mp = ip->i_mount;
561 	loff_t			offset = page_offset(page);
562 	xfs_fileoff_t		start_fsb = XFS_B_TO_FSBT(mp, offset);
563 	int			error;
564 
565 	if (XFS_FORCED_SHUTDOWN(mp))
566 		goto out_invalidate;
567 
568 	xfs_alert(mp,
569 		"page discard on page "PTR_FMT", inode 0x%llx, offset %llu.",
570 			page, ip->i_ino, offset);
571 
572 	error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
573 			PAGE_SIZE / i_blocksize(inode));
574 	if (error && !XFS_FORCED_SHUTDOWN(mp))
575 		xfs_alert(mp, "page discard unable to remove delalloc mapping.");
576 out_invalidate:
577 	iomap_invalidatepage(page, 0, PAGE_SIZE);
578 }
579 
580 static const struct iomap_writeback_ops xfs_writeback_ops = {
581 	.map_blocks		= xfs_map_blocks,
582 	.prepare_ioend		= xfs_prepare_ioend,
583 	.discard_page		= xfs_discard_page,
584 };
585 
586 STATIC int
587 xfs_vm_writepage(
588 	struct page		*page,
589 	struct writeback_control *wbc)
590 {
591 	struct xfs_writepage_ctx wpc = { };
592 
593 	return iomap_writepage(page, wbc, &wpc.ctx, &xfs_writeback_ops);
594 }
595 
596 STATIC int
597 xfs_vm_writepages(
598 	struct address_space	*mapping,
599 	struct writeback_control *wbc)
600 {
601 	struct xfs_writepage_ctx wpc = { };
602 
603 	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
604 	return iomap_writepages(mapping, wbc, &wpc.ctx, &xfs_writeback_ops);
605 }
606 
607 STATIC int
608 xfs_dax_writepages(
609 	struct address_space	*mapping,
610 	struct writeback_control *wbc)
611 {
612 	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
613 	return dax_writeback_mapping_range(mapping,
614 			xfs_find_bdev_for_inode(mapping->host), wbc);
615 }
616 
617 STATIC sector_t
618 xfs_vm_bmap(
619 	struct address_space	*mapping,
620 	sector_t		block)
621 {
622 	struct xfs_inode	*ip = XFS_I(mapping->host);
623 
624 	trace_xfs_vm_bmap(ip);
625 
626 	/*
627 	 * The swap code (ab-)uses ->bmap to get a block mapping and then
628 	 * bypasses the file system for actual I/O.  We really can't allow
629 	 * that on reflinks inodes, so we have to skip out here.  And yes,
630 	 * 0 is the magic code for a bmap error.
631 	 *
632 	 * Since we don't pass back blockdev info, we can't return bmap
633 	 * information for rt files either.
634 	 */
635 	if (xfs_is_cow_inode(ip) || XFS_IS_REALTIME_INODE(ip))
636 		return 0;
637 	return iomap_bmap(mapping, block, &xfs_iomap_ops);
638 }
639 
640 STATIC int
641 xfs_vm_readpage(
642 	struct file		*unused,
643 	struct page		*page)
644 {
645 	return iomap_readpage(page, &xfs_iomap_ops);
646 }
647 
648 STATIC int
649 xfs_vm_readpages(
650 	struct file		*unused,
651 	struct address_space	*mapping,
652 	struct list_head	*pages,
653 	unsigned		nr_pages)
654 {
655 	return iomap_readpages(mapping, pages, nr_pages, &xfs_iomap_ops);
656 }
657 
658 static int
659 xfs_iomap_swapfile_activate(
660 	struct swap_info_struct		*sis,
661 	struct file			*swap_file,
662 	sector_t			*span)
663 {
664 	sis->bdev = xfs_find_bdev_for_inode(file_inode(swap_file));
665 	return iomap_swapfile_activate(sis, swap_file, span, &xfs_iomap_ops);
666 }
667 
668 const struct address_space_operations xfs_address_space_operations = {
669 	.readpage		= xfs_vm_readpage,
670 	.readpages		= xfs_vm_readpages,
671 	.writepage		= xfs_vm_writepage,
672 	.writepages		= xfs_vm_writepages,
673 	.set_page_dirty		= iomap_set_page_dirty,
674 	.releasepage		= iomap_releasepage,
675 	.invalidatepage		= iomap_invalidatepage,
676 	.bmap			= xfs_vm_bmap,
677 	.direct_IO		= noop_direct_IO,
678 	.migratepage		= iomap_migrate_page,
679 	.is_partially_uptodate  = iomap_is_partially_uptodate,
680 	.error_remove_page	= generic_error_remove_page,
681 	.swap_activate		= xfs_iomap_swapfile_activate,
682 };
683 
684 const struct address_space_operations xfs_dax_aops = {
685 	.writepages		= xfs_dax_writepages,
686 	.direct_IO		= noop_direct_IO,
687 	.set_page_dirty		= noop_set_page_dirty,
688 	.invalidatepage		= noop_invalidatepage,
689 	.swap_activate		= xfs_iomap_swapfile_activate,
690 };
691