xref: /linux/fs/xfs/xfs_aops.c (revision 26b0d14106954ae46d2f4f7eec3481828a210f7d)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_log.h"
20 #include "xfs_sb.h"
21 #include "xfs_ag.h"
22 #include "xfs_trans.h"
23 #include "xfs_mount.h"
24 #include "xfs_bmap_btree.h"
25 #include "xfs_dinode.h"
26 #include "xfs_inode.h"
27 #include "xfs_inode_item.h"
28 #include "xfs_alloc.h"
29 #include "xfs_error.h"
30 #include "xfs_iomap.h"
31 #include "xfs_vnodeops.h"
32 #include "xfs_trace.h"
33 #include "xfs_bmap.h"
34 #include <linux/gfp.h>
35 #include <linux/mpage.h>
36 #include <linux/pagevec.h>
37 #include <linux/writeback.h>
38 
39 void
40 xfs_count_page_state(
41 	struct page		*page,
42 	int			*delalloc,
43 	int			*unwritten)
44 {
45 	struct buffer_head	*bh, *head;
46 
47 	*delalloc = *unwritten = 0;
48 
49 	bh = head = page_buffers(page);
50 	do {
51 		if (buffer_unwritten(bh))
52 			(*unwritten) = 1;
53 		else if (buffer_delay(bh))
54 			(*delalloc) = 1;
55 	} while ((bh = bh->b_this_page) != head);
56 }
57 
58 STATIC struct block_device *
59 xfs_find_bdev_for_inode(
60 	struct inode		*inode)
61 {
62 	struct xfs_inode	*ip = XFS_I(inode);
63 	struct xfs_mount	*mp = ip->i_mount;
64 
65 	if (XFS_IS_REALTIME_INODE(ip))
66 		return mp->m_rtdev_targp->bt_bdev;
67 	else
68 		return mp->m_ddev_targp->bt_bdev;
69 }
70 
71 /*
72  * We're now finished for good with this ioend structure.
73  * Update the page state via the associated buffer_heads,
74  * release holds on the inode and bio, and finally free
75  * up memory.  Do not use the ioend after this.
76  */
77 STATIC void
78 xfs_destroy_ioend(
79 	xfs_ioend_t		*ioend)
80 {
81 	struct buffer_head	*bh, *next;
82 
83 	for (bh = ioend->io_buffer_head; bh; bh = next) {
84 		next = bh->b_private;
85 		bh->b_end_io(bh, !ioend->io_error);
86 	}
87 
88 	if (ioend->io_iocb) {
89 		if (ioend->io_isasync) {
90 			aio_complete(ioend->io_iocb, ioend->io_error ?
91 					ioend->io_error : ioend->io_result, 0);
92 		}
93 		inode_dio_done(ioend->io_inode);
94 	}
95 
96 	mempool_free(ioend, xfs_ioend_pool);
97 }
98 
99 /*
100  * Fast and loose check if this write could update the on-disk inode size.
101  */
102 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
103 {
104 	return ioend->io_offset + ioend->io_size >
105 		XFS_I(ioend->io_inode)->i_d.di_size;
106 }
107 
108 STATIC int
109 xfs_setfilesize_trans_alloc(
110 	struct xfs_ioend	*ioend)
111 {
112 	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
113 	struct xfs_trans	*tp;
114 	int			error;
115 
116 	tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
117 
118 	error = xfs_trans_reserve(tp, 0, XFS_FSYNC_TS_LOG_RES(mp), 0, 0, 0);
119 	if (error) {
120 		xfs_trans_cancel(tp, 0);
121 		return error;
122 	}
123 
124 	ioend->io_append_trans = tp;
125 
126 	/*
127 	 * We hand off the transaction to the completion thread now, so
128 	 * clear the flag here.
129 	 */
130 	current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
131 	return 0;
132 }
133 
134 /*
135  * Update on-disk file size now that data has been written to disk.
136  */
137 STATIC int
138 xfs_setfilesize(
139 	struct xfs_ioend	*ioend)
140 {
141 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
142 	struct xfs_trans	*tp = ioend->io_append_trans;
143 	xfs_fsize_t		isize;
144 
145 	/*
146 	 * The transaction was allocated in the I/O submission thread,
147 	 * thus we need to mark ourselves as beeing in a transaction
148 	 * manually.
149 	 */
150 	current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
151 
152 	xfs_ilock(ip, XFS_ILOCK_EXCL);
153 	isize = xfs_new_eof(ip, ioend->io_offset + ioend->io_size);
154 	if (!isize) {
155 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
156 		xfs_trans_cancel(tp, 0);
157 		return 0;
158 	}
159 
160 	trace_xfs_setfilesize(ip, ioend->io_offset, ioend->io_size);
161 
162 	ip->i_d.di_size = isize;
163 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
164 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
165 
166 	return xfs_trans_commit(tp, 0);
167 }
168 
169 /*
170  * Schedule IO completion handling on the final put of an ioend.
171  *
172  * If there is no work to do we might as well call it a day and free the
173  * ioend right now.
174  */
175 STATIC void
176 xfs_finish_ioend(
177 	struct xfs_ioend	*ioend)
178 {
179 	if (atomic_dec_and_test(&ioend->io_remaining)) {
180 		struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
181 
182 		if (ioend->io_type == IO_UNWRITTEN)
183 			queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
184 		else if (ioend->io_append_trans)
185 			queue_work(mp->m_data_workqueue, &ioend->io_work);
186 		else
187 			xfs_destroy_ioend(ioend);
188 	}
189 }
190 
191 /*
192  * IO write completion.
193  */
194 STATIC void
195 xfs_end_io(
196 	struct work_struct *work)
197 {
198 	xfs_ioend_t	*ioend = container_of(work, xfs_ioend_t, io_work);
199 	struct xfs_inode *ip = XFS_I(ioend->io_inode);
200 	int		error = 0;
201 
202 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
203 		ioend->io_error = -EIO;
204 		goto done;
205 	}
206 	if (ioend->io_error)
207 		goto done;
208 
209 	/*
210 	 * For unwritten extents we need to issue transactions to convert a
211 	 * range to normal written extens after the data I/O has finished.
212 	 */
213 	if (ioend->io_type == IO_UNWRITTEN) {
214 		/*
215 		 * For buffered I/O we never preallocate a transaction when
216 		 * doing the unwritten extent conversion, but for direct I/O
217 		 * we do not know if we are converting an unwritten extent
218 		 * or not at the point where we preallocate the transaction.
219 		 */
220 		if (ioend->io_append_trans) {
221 			ASSERT(ioend->io_isdirect);
222 
223 			current_set_flags_nested(
224 				&ioend->io_append_trans->t_pflags, PF_FSTRANS);
225 			xfs_trans_cancel(ioend->io_append_trans, 0);
226 		}
227 
228 		error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
229 						 ioend->io_size);
230 		if (error) {
231 			ioend->io_error = -error;
232 			goto done;
233 		}
234 	} else if (ioend->io_append_trans) {
235 		error = xfs_setfilesize(ioend);
236 		if (error)
237 			ioend->io_error = -error;
238 	} else {
239 		ASSERT(!xfs_ioend_is_append(ioend));
240 	}
241 
242 done:
243 	xfs_destroy_ioend(ioend);
244 }
245 
246 /*
247  * Call IO completion handling in caller context on the final put of an ioend.
248  */
249 STATIC void
250 xfs_finish_ioend_sync(
251 	struct xfs_ioend	*ioend)
252 {
253 	if (atomic_dec_and_test(&ioend->io_remaining))
254 		xfs_end_io(&ioend->io_work);
255 }
256 
257 /*
258  * Allocate and initialise an IO completion structure.
259  * We need to track unwritten extent write completion here initially.
260  * We'll need to extend this for updating the ondisk inode size later
261  * (vs. incore size).
262  */
263 STATIC xfs_ioend_t *
264 xfs_alloc_ioend(
265 	struct inode		*inode,
266 	unsigned int		type)
267 {
268 	xfs_ioend_t		*ioend;
269 
270 	ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
271 
272 	/*
273 	 * Set the count to 1 initially, which will prevent an I/O
274 	 * completion callback from happening before we have started
275 	 * all the I/O from calling the completion routine too early.
276 	 */
277 	atomic_set(&ioend->io_remaining, 1);
278 	ioend->io_isasync = 0;
279 	ioend->io_isdirect = 0;
280 	ioend->io_error = 0;
281 	ioend->io_list = NULL;
282 	ioend->io_type = type;
283 	ioend->io_inode = inode;
284 	ioend->io_buffer_head = NULL;
285 	ioend->io_buffer_tail = NULL;
286 	ioend->io_offset = 0;
287 	ioend->io_size = 0;
288 	ioend->io_iocb = NULL;
289 	ioend->io_result = 0;
290 	ioend->io_append_trans = NULL;
291 
292 	INIT_WORK(&ioend->io_work, xfs_end_io);
293 	return ioend;
294 }
295 
296 STATIC int
297 xfs_map_blocks(
298 	struct inode		*inode,
299 	loff_t			offset,
300 	struct xfs_bmbt_irec	*imap,
301 	int			type,
302 	int			nonblocking)
303 {
304 	struct xfs_inode	*ip = XFS_I(inode);
305 	struct xfs_mount	*mp = ip->i_mount;
306 	ssize_t			count = 1 << inode->i_blkbits;
307 	xfs_fileoff_t		offset_fsb, end_fsb;
308 	int			error = 0;
309 	int			bmapi_flags = XFS_BMAPI_ENTIRE;
310 	int			nimaps = 1;
311 
312 	if (XFS_FORCED_SHUTDOWN(mp))
313 		return -XFS_ERROR(EIO);
314 
315 	if (type == IO_UNWRITTEN)
316 		bmapi_flags |= XFS_BMAPI_IGSTATE;
317 
318 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
319 		if (nonblocking)
320 			return -XFS_ERROR(EAGAIN);
321 		xfs_ilock(ip, XFS_ILOCK_SHARED);
322 	}
323 
324 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
325 	       (ip->i_df.if_flags & XFS_IFEXTENTS));
326 	ASSERT(offset <= mp->m_maxioffset);
327 
328 	if (offset + count > mp->m_maxioffset)
329 		count = mp->m_maxioffset - offset;
330 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
331 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
332 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
333 				imap, &nimaps, bmapi_flags);
334 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
335 
336 	if (error)
337 		return -XFS_ERROR(error);
338 
339 	if (type == IO_DELALLOC &&
340 	    (!nimaps || isnullstartblock(imap->br_startblock))) {
341 		error = xfs_iomap_write_allocate(ip, offset, count, imap);
342 		if (!error)
343 			trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
344 		return -XFS_ERROR(error);
345 	}
346 
347 #ifdef DEBUG
348 	if (type == IO_UNWRITTEN) {
349 		ASSERT(nimaps);
350 		ASSERT(imap->br_startblock != HOLESTARTBLOCK);
351 		ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
352 	}
353 #endif
354 	if (nimaps)
355 		trace_xfs_map_blocks_found(ip, offset, count, type, imap);
356 	return 0;
357 }
358 
359 STATIC int
360 xfs_imap_valid(
361 	struct inode		*inode,
362 	struct xfs_bmbt_irec	*imap,
363 	xfs_off_t		offset)
364 {
365 	offset >>= inode->i_blkbits;
366 
367 	return offset >= imap->br_startoff &&
368 		offset < imap->br_startoff + imap->br_blockcount;
369 }
370 
371 /*
372  * BIO completion handler for buffered IO.
373  */
374 STATIC void
375 xfs_end_bio(
376 	struct bio		*bio,
377 	int			error)
378 {
379 	xfs_ioend_t		*ioend = bio->bi_private;
380 
381 	ASSERT(atomic_read(&bio->bi_cnt) >= 1);
382 	ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
383 
384 	/* Toss bio and pass work off to an xfsdatad thread */
385 	bio->bi_private = NULL;
386 	bio->bi_end_io = NULL;
387 	bio_put(bio);
388 
389 	xfs_finish_ioend(ioend);
390 }
391 
392 STATIC void
393 xfs_submit_ioend_bio(
394 	struct writeback_control *wbc,
395 	xfs_ioend_t		*ioend,
396 	struct bio		*bio)
397 {
398 	atomic_inc(&ioend->io_remaining);
399 	bio->bi_private = ioend;
400 	bio->bi_end_io = xfs_end_bio;
401 	submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
402 }
403 
404 STATIC struct bio *
405 xfs_alloc_ioend_bio(
406 	struct buffer_head	*bh)
407 {
408 	int			nvecs = bio_get_nr_vecs(bh->b_bdev);
409 	struct bio		*bio = bio_alloc(GFP_NOIO, nvecs);
410 
411 	ASSERT(bio->bi_private == NULL);
412 	bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
413 	bio->bi_bdev = bh->b_bdev;
414 	return bio;
415 }
416 
417 STATIC void
418 xfs_start_buffer_writeback(
419 	struct buffer_head	*bh)
420 {
421 	ASSERT(buffer_mapped(bh));
422 	ASSERT(buffer_locked(bh));
423 	ASSERT(!buffer_delay(bh));
424 	ASSERT(!buffer_unwritten(bh));
425 
426 	mark_buffer_async_write(bh);
427 	set_buffer_uptodate(bh);
428 	clear_buffer_dirty(bh);
429 }
430 
431 STATIC void
432 xfs_start_page_writeback(
433 	struct page		*page,
434 	int			clear_dirty,
435 	int			buffers)
436 {
437 	ASSERT(PageLocked(page));
438 	ASSERT(!PageWriteback(page));
439 	if (clear_dirty)
440 		clear_page_dirty_for_io(page);
441 	set_page_writeback(page);
442 	unlock_page(page);
443 	/* If no buffers on the page are to be written, finish it here */
444 	if (!buffers)
445 		end_page_writeback(page);
446 }
447 
448 static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
449 {
450 	return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
451 }
452 
453 /*
454  * Submit all of the bios for all of the ioends we have saved up, covering the
455  * initial writepage page and also any probed pages.
456  *
457  * Because we may have multiple ioends spanning a page, we need to start
458  * writeback on all the buffers before we submit them for I/O. If we mark the
459  * buffers as we got, then we can end up with a page that only has buffers
460  * marked async write and I/O complete on can occur before we mark the other
461  * buffers async write.
462  *
463  * The end result of this is that we trip a bug in end_page_writeback() because
464  * we call it twice for the one page as the code in end_buffer_async_write()
465  * assumes that all buffers on the page are started at the same time.
466  *
467  * The fix is two passes across the ioend list - one to start writeback on the
468  * buffer_heads, and then submit them for I/O on the second pass.
469  */
470 STATIC void
471 xfs_submit_ioend(
472 	struct writeback_control *wbc,
473 	xfs_ioend_t		*ioend)
474 {
475 	xfs_ioend_t		*head = ioend;
476 	xfs_ioend_t		*next;
477 	struct buffer_head	*bh;
478 	struct bio		*bio;
479 	sector_t		lastblock = 0;
480 
481 	/* Pass 1 - start writeback */
482 	do {
483 		next = ioend->io_list;
484 		for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
485 			xfs_start_buffer_writeback(bh);
486 	} while ((ioend = next) != NULL);
487 
488 	/* Pass 2 - submit I/O */
489 	ioend = head;
490 	do {
491 		next = ioend->io_list;
492 		bio = NULL;
493 
494 		for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
495 
496 			if (!bio) {
497  retry:
498 				bio = xfs_alloc_ioend_bio(bh);
499 			} else if (bh->b_blocknr != lastblock + 1) {
500 				xfs_submit_ioend_bio(wbc, ioend, bio);
501 				goto retry;
502 			}
503 
504 			if (bio_add_buffer(bio, bh) != bh->b_size) {
505 				xfs_submit_ioend_bio(wbc, ioend, bio);
506 				goto retry;
507 			}
508 
509 			lastblock = bh->b_blocknr;
510 		}
511 		if (bio)
512 			xfs_submit_ioend_bio(wbc, ioend, bio);
513 		xfs_finish_ioend(ioend);
514 	} while ((ioend = next) != NULL);
515 }
516 
517 /*
518  * Cancel submission of all buffer_heads so far in this endio.
519  * Toss the endio too.  Only ever called for the initial page
520  * in a writepage request, so only ever one page.
521  */
522 STATIC void
523 xfs_cancel_ioend(
524 	xfs_ioend_t		*ioend)
525 {
526 	xfs_ioend_t		*next;
527 	struct buffer_head	*bh, *next_bh;
528 
529 	do {
530 		next = ioend->io_list;
531 		bh = ioend->io_buffer_head;
532 		do {
533 			next_bh = bh->b_private;
534 			clear_buffer_async_write(bh);
535 			unlock_buffer(bh);
536 		} while ((bh = next_bh) != NULL);
537 
538 		mempool_free(ioend, xfs_ioend_pool);
539 	} while ((ioend = next) != NULL);
540 }
541 
542 /*
543  * Test to see if we've been building up a completion structure for
544  * earlier buffers -- if so, we try to append to this ioend if we
545  * can, otherwise we finish off any current ioend and start another.
546  * Return true if we've finished the given ioend.
547  */
548 STATIC void
549 xfs_add_to_ioend(
550 	struct inode		*inode,
551 	struct buffer_head	*bh,
552 	xfs_off_t		offset,
553 	unsigned int		type,
554 	xfs_ioend_t		**result,
555 	int			need_ioend)
556 {
557 	xfs_ioend_t		*ioend = *result;
558 
559 	if (!ioend || need_ioend || type != ioend->io_type) {
560 		xfs_ioend_t	*previous = *result;
561 
562 		ioend = xfs_alloc_ioend(inode, type);
563 		ioend->io_offset = offset;
564 		ioend->io_buffer_head = bh;
565 		ioend->io_buffer_tail = bh;
566 		if (previous)
567 			previous->io_list = ioend;
568 		*result = ioend;
569 	} else {
570 		ioend->io_buffer_tail->b_private = bh;
571 		ioend->io_buffer_tail = bh;
572 	}
573 
574 	bh->b_private = NULL;
575 	ioend->io_size += bh->b_size;
576 }
577 
578 STATIC void
579 xfs_map_buffer(
580 	struct inode		*inode,
581 	struct buffer_head	*bh,
582 	struct xfs_bmbt_irec	*imap,
583 	xfs_off_t		offset)
584 {
585 	sector_t		bn;
586 	struct xfs_mount	*m = XFS_I(inode)->i_mount;
587 	xfs_off_t		iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
588 	xfs_daddr_t		iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
589 
590 	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
591 	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
592 
593 	bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
594 	      ((offset - iomap_offset) >> inode->i_blkbits);
595 
596 	ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
597 
598 	bh->b_blocknr = bn;
599 	set_buffer_mapped(bh);
600 }
601 
602 STATIC void
603 xfs_map_at_offset(
604 	struct inode		*inode,
605 	struct buffer_head	*bh,
606 	struct xfs_bmbt_irec	*imap,
607 	xfs_off_t		offset)
608 {
609 	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
610 	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
611 
612 	xfs_map_buffer(inode, bh, imap, offset);
613 	set_buffer_mapped(bh);
614 	clear_buffer_delay(bh);
615 	clear_buffer_unwritten(bh);
616 }
617 
618 /*
619  * Test if a given page is suitable for writing as part of an unwritten
620  * or delayed allocate extent.
621  */
622 STATIC int
623 xfs_check_page_type(
624 	struct page		*page,
625 	unsigned int		type)
626 {
627 	if (PageWriteback(page))
628 		return 0;
629 
630 	if (page->mapping && page_has_buffers(page)) {
631 		struct buffer_head	*bh, *head;
632 		int			acceptable = 0;
633 
634 		bh = head = page_buffers(page);
635 		do {
636 			if (buffer_unwritten(bh))
637 				acceptable += (type == IO_UNWRITTEN);
638 			else if (buffer_delay(bh))
639 				acceptable += (type == IO_DELALLOC);
640 			else if (buffer_dirty(bh) && buffer_mapped(bh))
641 				acceptable += (type == IO_OVERWRITE);
642 			else
643 				break;
644 		} while ((bh = bh->b_this_page) != head);
645 
646 		if (acceptable)
647 			return 1;
648 	}
649 
650 	return 0;
651 }
652 
653 /*
654  * Allocate & map buffers for page given the extent map. Write it out.
655  * except for the original page of a writepage, this is called on
656  * delalloc/unwritten pages only, for the original page it is possible
657  * that the page has no mapping at all.
658  */
659 STATIC int
660 xfs_convert_page(
661 	struct inode		*inode,
662 	struct page		*page,
663 	loff_t			tindex,
664 	struct xfs_bmbt_irec	*imap,
665 	xfs_ioend_t		**ioendp,
666 	struct writeback_control *wbc)
667 {
668 	struct buffer_head	*bh, *head;
669 	xfs_off_t		end_offset;
670 	unsigned long		p_offset;
671 	unsigned int		type;
672 	int			len, page_dirty;
673 	int			count = 0, done = 0, uptodate = 1;
674  	xfs_off_t		offset = page_offset(page);
675 
676 	if (page->index != tindex)
677 		goto fail;
678 	if (!trylock_page(page))
679 		goto fail;
680 	if (PageWriteback(page))
681 		goto fail_unlock_page;
682 	if (page->mapping != inode->i_mapping)
683 		goto fail_unlock_page;
684 	if (!xfs_check_page_type(page, (*ioendp)->io_type))
685 		goto fail_unlock_page;
686 
687 	/*
688 	 * page_dirty is initially a count of buffers on the page before
689 	 * EOF and is decremented as we move each into a cleanable state.
690 	 *
691 	 * Derivation:
692 	 *
693 	 * End offset is the highest offset that this page should represent.
694 	 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
695 	 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
696 	 * hence give us the correct page_dirty count. On any other page,
697 	 * it will be zero and in that case we need page_dirty to be the
698 	 * count of buffers on the page.
699 	 */
700 	end_offset = min_t(unsigned long long,
701 			(xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
702 			i_size_read(inode));
703 
704 	len = 1 << inode->i_blkbits;
705 	p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
706 					PAGE_CACHE_SIZE);
707 	p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
708 	page_dirty = p_offset / len;
709 
710 	bh = head = page_buffers(page);
711 	do {
712 		if (offset >= end_offset)
713 			break;
714 		if (!buffer_uptodate(bh))
715 			uptodate = 0;
716 		if (!(PageUptodate(page) || buffer_uptodate(bh))) {
717 			done = 1;
718 			continue;
719 		}
720 
721 		if (buffer_unwritten(bh) || buffer_delay(bh) ||
722 		    buffer_mapped(bh)) {
723 			if (buffer_unwritten(bh))
724 				type = IO_UNWRITTEN;
725 			else if (buffer_delay(bh))
726 				type = IO_DELALLOC;
727 			else
728 				type = IO_OVERWRITE;
729 
730 			if (!xfs_imap_valid(inode, imap, offset)) {
731 				done = 1;
732 				continue;
733 			}
734 
735 			lock_buffer(bh);
736 			if (type != IO_OVERWRITE)
737 				xfs_map_at_offset(inode, bh, imap, offset);
738 			xfs_add_to_ioend(inode, bh, offset, type,
739 					 ioendp, done);
740 
741 			page_dirty--;
742 			count++;
743 		} else {
744 			done = 1;
745 		}
746 	} while (offset += len, (bh = bh->b_this_page) != head);
747 
748 	if (uptodate && bh == head)
749 		SetPageUptodate(page);
750 
751 	if (count) {
752 		if (--wbc->nr_to_write <= 0 &&
753 		    wbc->sync_mode == WB_SYNC_NONE)
754 			done = 1;
755 	}
756 	xfs_start_page_writeback(page, !page_dirty, count);
757 
758 	return done;
759  fail_unlock_page:
760 	unlock_page(page);
761  fail:
762 	return 1;
763 }
764 
765 /*
766  * Convert & write out a cluster of pages in the same extent as defined
767  * by mp and following the start page.
768  */
769 STATIC void
770 xfs_cluster_write(
771 	struct inode		*inode,
772 	pgoff_t			tindex,
773 	struct xfs_bmbt_irec	*imap,
774 	xfs_ioend_t		**ioendp,
775 	struct writeback_control *wbc,
776 	pgoff_t			tlast)
777 {
778 	struct pagevec		pvec;
779 	int			done = 0, i;
780 
781 	pagevec_init(&pvec, 0);
782 	while (!done && tindex <= tlast) {
783 		unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
784 
785 		if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
786 			break;
787 
788 		for (i = 0; i < pagevec_count(&pvec); i++) {
789 			done = xfs_convert_page(inode, pvec.pages[i], tindex++,
790 					imap, ioendp, wbc);
791 			if (done)
792 				break;
793 		}
794 
795 		pagevec_release(&pvec);
796 		cond_resched();
797 	}
798 }
799 
800 STATIC void
801 xfs_vm_invalidatepage(
802 	struct page		*page,
803 	unsigned long		offset)
804 {
805 	trace_xfs_invalidatepage(page->mapping->host, page, offset);
806 	block_invalidatepage(page, offset);
807 }
808 
809 /*
810  * If the page has delalloc buffers on it, we need to punch them out before we
811  * invalidate the page. If we don't, we leave a stale delalloc mapping on the
812  * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
813  * is done on that same region - the delalloc extent is returned when none is
814  * supposed to be there.
815  *
816  * We prevent this by truncating away the delalloc regions on the page before
817  * invalidating it. Because they are delalloc, we can do this without needing a
818  * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
819  * truncation without a transaction as there is no space left for block
820  * reservation (typically why we see a ENOSPC in writeback).
821  *
822  * This is not a performance critical path, so for now just do the punching a
823  * buffer head at a time.
824  */
825 STATIC void
826 xfs_aops_discard_page(
827 	struct page		*page)
828 {
829 	struct inode		*inode = page->mapping->host;
830 	struct xfs_inode	*ip = XFS_I(inode);
831 	struct buffer_head	*bh, *head;
832 	loff_t			offset = page_offset(page);
833 
834 	if (!xfs_check_page_type(page, IO_DELALLOC))
835 		goto out_invalidate;
836 
837 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
838 		goto out_invalidate;
839 
840 	xfs_alert(ip->i_mount,
841 		"page discard on page %p, inode 0x%llx, offset %llu.",
842 			page, ip->i_ino, offset);
843 
844 	xfs_ilock(ip, XFS_ILOCK_EXCL);
845 	bh = head = page_buffers(page);
846 	do {
847 		int		error;
848 		xfs_fileoff_t	start_fsb;
849 
850 		if (!buffer_delay(bh))
851 			goto next_buffer;
852 
853 		start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
854 		error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
855 		if (error) {
856 			/* something screwed, just bail */
857 			if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
858 				xfs_alert(ip->i_mount,
859 			"page discard unable to remove delalloc mapping.");
860 			}
861 			break;
862 		}
863 next_buffer:
864 		offset += 1 << inode->i_blkbits;
865 
866 	} while ((bh = bh->b_this_page) != head);
867 
868 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
869 out_invalidate:
870 	xfs_vm_invalidatepage(page, 0);
871 	return;
872 }
873 
874 /*
875  * Write out a dirty page.
876  *
877  * For delalloc space on the page we need to allocate space and flush it.
878  * For unwritten space on the page we need to start the conversion to
879  * regular allocated space.
880  * For any other dirty buffer heads on the page we should flush them.
881  */
882 STATIC int
883 xfs_vm_writepage(
884 	struct page		*page,
885 	struct writeback_control *wbc)
886 {
887 	struct inode		*inode = page->mapping->host;
888 	struct buffer_head	*bh, *head;
889 	struct xfs_bmbt_irec	imap;
890 	xfs_ioend_t		*ioend = NULL, *iohead = NULL;
891 	loff_t			offset;
892 	unsigned int		type;
893 	__uint64_t              end_offset;
894 	pgoff_t                 end_index, last_index;
895 	ssize_t			len;
896 	int			err, imap_valid = 0, uptodate = 1;
897 	int			count = 0;
898 	int			nonblocking = 0;
899 
900 	trace_xfs_writepage(inode, page, 0);
901 
902 	ASSERT(page_has_buffers(page));
903 
904 	/*
905 	 * Refuse to write the page out if we are called from reclaim context.
906 	 *
907 	 * This avoids stack overflows when called from deeply used stacks in
908 	 * random callers for direct reclaim or memcg reclaim.  We explicitly
909 	 * allow reclaim from kswapd as the stack usage there is relatively low.
910 	 *
911 	 * This should never happen except in the case of a VM regression so
912 	 * warn about it.
913 	 */
914 	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
915 			PF_MEMALLOC))
916 		goto redirty;
917 
918 	/*
919 	 * Given that we do not allow direct reclaim to call us, we should
920 	 * never be called while in a filesystem transaction.
921 	 */
922 	if (WARN_ON(current->flags & PF_FSTRANS))
923 		goto redirty;
924 
925 	/* Is this page beyond the end of the file? */
926 	offset = i_size_read(inode);
927 	end_index = offset >> PAGE_CACHE_SHIFT;
928 	last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
929 	if (page->index >= end_index) {
930 		if ((page->index >= end_index + 1) ||
931 		    !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
932 			unlock_page(page);
933 			return 0;
934 		}
935 	}
936 
937 	end_offset = min_t(unsigned long long,
938 			(xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
939 			offset);
940 	len = 1 << inode->i_blkbits;
941 
942 	bh = head = page_buffers(page);
943 	offset = page_offset(page);
944 	type = IO_OVERWRITE;
945 
946 	if (wbc->sync_mode == WB_SYNC_NONE)
947 		nonblocking = 1;
948 
949 	do {
950 		int new_ioend = 0;
951 
952 		if (offset >= end_offset)
953 			break;
954 		if (!buffer_uptodate(bh))
955 			uptodate = 0;
956 
957 		/*
958 		 * set_page_dirty dirties all buffers in a page, independent
959 		 * of their state.  The dirty state however is entirely
960 		 * meaningless for holes (!mapped && uptodate), so skip
961 		 * buffers covering holes here.
962 		 */
963 		if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
964 			imap_valid = 0;
965 			continue;
966 		}
967 
968 		if (buffer_unwritten(bh)) {
969 			if (type != IO_UNWRITTEN) {
970 				type = IO_UNWRITTEN;
971 				imap_valid = 0;
972 			}
973 		} else if (buffer_delay(bh)) {
974 			if (type != IO_DELALLOC) {
975 				type = IO_DELALLOC;
976 				imap_valid = 0;
977 			}
978 		} else if (buffer_uptodate(bh)) {
979 			if (type != IO_OVERWRITE) {
980 				type = IO_OVERWRITE;
981 				imap_valid = 0;
982 			}
983 		} else {
984 			if (PageUptodate(page))
985 				ASSERT(buffer_mapped(bh));
986 			/*
987 			 * This buffer is not uptodate and will not be
988 			 * written to disk.  Ensure that we will put any
989 			 * subsequent writeable buffers into a new
990 			 * ioend.
991 			 */
992 			imap_valid = 0;
993 			continue;
994 		}
995 
996 		if (imap_valid)
997 			imap_valid = xfs_imap_valid(inode, &imap, offset);
998 		if (!imap_valid) {
999 			/*
1000 			 * If we didn't have a valid mapping then we need to
1001 			 * put the new mapping into a separate ioend structure.
1002 			 * This ensures non-contiguous extents always have
1003 			 * separate ioends, which is particularly important
1004 			 * for unwritten extent conversion at I/O completion
1005 			 * time.
1006 			 */
1007 			new_ioend = 1;
1008 			err = xfs_map_blocks(inode, offset, &imap, type,
1009 					     nonblocking);
1010 			if (err)
1011 				goto error;
1012 			imap_valid = xfs_imap_valid(inode, &imap, offset);
1013 		}
1014 		if (imap_valid) {
1015 			lock_buffer(bh);
1016 			if (type != IO_OVERWRITE)
1017 				xfs_map_at_offset(inode, bh, &imap, offset);
1018 			xfs_add_to_ioend(inode, bh, offset, type, &ioend,
1019 					 new_ioend);
1020 			count++;
1021 		}
1022 
1023 		if (!iohead)
1024 			iohead = ioend;
1025 
1026 	} while (offset += len, ((bh = bh->b_this_page) != head));
1027 
1028 	if (uptodate && bh == head)
1029 		SetPageUptodate(page);
1030 
1031 	xfs_start_page_writeback(page, 1, count);
1032 
1033 	if (ioend && imap_valid) {
1034 		xfs_off_t		end_index;
1035 
1036 		end_index = imap.br_startoff + imap.br_blockcount;
1037 
1038 		/* to bytes */
1039 		end_index <<= inode->i_blkbits;
1040 
1041 		/* to pages */
1042 		end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1043 
1044 		/* check against file size */
1045 		if (end_index > last_index)
1046 			end_index = last_index;
1047 
1048 		xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
1049 				  wbc, end_index);
1050 	}
1051 
1052 	if (iohead) {
1053 		/*
1054 		 * Reserve log space if we might write beyond the on-disk
1055 		 * inode size.
1056 		 */
1057 		if (ioend->io_type != IO_UNWRITTEN &&
1058 		    xfs_ioend_is_append(ioend)) {
1059 			err = xfs_setfilesize_trans_alloc(ioend);
1060 			if (err)
1061 				goto error;
1062 		}
1063 
1064 		xfs_submit_ioend(wbc, iohead);
1065 	}
1066 
1067 	return 0;
1068 
1069 error:
1070 	if (iohead)
1071 		xfs_cancel_ioend(iohead);
1072 
1073 	if (err == -EAGAIN)
1074 		goto redirty;
1075 
1076 	xfs_aops_discard_page(page);
1077 	ClearPageUptodate(page);
1078 	unlock_page(page);
1079 	return err;
1080 
1081 redirty:
1082 	redirty_page_for_writepage(wbc, page);
1083 	unlock_page(page);
1084 	return 0;
1085 }
1086 
1087 STATIC int
1088 xfs_vm_writepages(
1089 	struct address_space	*mapping,
1090 	struct writeback_control *wbc)
1091 {
1092 	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1093 	return generic_writepages(mapping, wbc);
1094 }
1095 
1096 /*
1097  * Called to move a page into cleanable state - and from there
1098  * to be released. The page should already be clean. We always
1099  * have buffer heads in this call.
1100  *
1101  * Returns 1 if the page is ok to release, 0 otherwise.
1102  */
1103 STATIC int
1104 xfs_vm_releasepage(
1105 	struct page		*page,
1106 	gfp_t			gfp_mask)
1107 {
1108 	int			delalloc, unwritten;
1109 
1110 	trace_xfs_releasepage(page->mapping->host, page, 0);
1111 
1112 	xfs_count_page_state(page, &delalloc, &unwritten);
1113 
1114 	if (WARN_ON(delalloc))
1115 		return 0;
1116 	if (WARN_ON(unwritten))
1117 		return 0;
1118 
1119 	return try_to_free_buffers(page);
1120 }
1121 
1122 STATIC int
1123 __xfs_get_blocks(
1124 	struct inode		*inode,
1125 	sector_t		iblock,
1126 	struct buffer_head	*bh_result,
1127 	int			create,
1128 	int			direct)
1129 {
1130 	struct xfs_inode	*ip = XFS_I(inode);
1131 	struct xfs_mount	*mp = ip->i_mount;
1132 	xfs_fileoff_t		offset_fsb, end_fsb;
1133 	int			error = 0;
1134 	int			lockmode = 0;
1135 	struct xfs_bmbt_irec	imap;
1136 	int			nimaps = 1;
1137 	xfs_off_t		offset;
1138 	ssize_t			size;
1139 	int			new = 0;
1140 
1141 	if (XFS_FORCED_SHUTDOWN(mp))
1142 		return -XFS_ERROR(EIO);
1143 
1144 	offset = (xfs_off_t)iblock << inode->i_blkbits;
1145 	ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1146 	size = bh_result->b_size;
1147 
1148 	if (!create && direct && offset >= i_size_read(inode))
1149 		return 0;
1150 
1151 	/*
1152 	 * Direct I/O is usually done on preallocated files, so try getting
1153 	 * a block mapping without an exclusive lock first.  For buffered
1154 	 * writes we already have the exclusive iolock anyway, so avoiding
1155 	 * a lock roundtrip here by taking the ilock exclusive from the
1156 	 * beginning is a useful micro optimization.
1157 	 */
1158 	if (create && !direct) {
1159 		lockmode = XFS_ILOCK_EXCL;
1160 		xfs_ilock(ip, lockmode);
1161 	} else {
1162 		lockmode = xfs_ilock_map_shared(ip);
1163 	}
1164 
1165 	ASSERT(offset <= mp->m_maxioffset);
1166 	if (offset + size > mp->m_maxioffset)
1167 		size = mp->m_maxioffset - offset;
1168 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1169 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
1170 
1171 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1172 				&imap, &nimaps, XFS_BMAPI_ENTIRE);
1173 	if (error)
1174 		goto out_unlock;
1175 
1176 	if (create &&
1177 	    (!nimaps ||
1178 	     (imap.br_startblock == HOLESTARTBLOCK ||
1179 	      imap.br_startblock == DELAYSTARTBLOCK))) {
1180 		if (direct || xfs_get_extsz_hint(ip)) {
1181 			/*
1182 			 * Drop the ilock in preparation for starting the block
1183 			 * allocation transaction.  It will be retaken
1184 			 * exclusively inside xfs_iomap_write_direct for the
1185 			 * actual allocation.
1186 			 */
1187 			xfs_iunlock(ip, lockmode);
1188 			error = xfs_iomap_write_direct(ip, offset, size,
1189 						       &imap, nimaps);
1190 			if (error)
1191 				return -error;
1192 			new = 1;
1193 		} else {
1194 			/*
1195 			 * Delalloc reservations do not require a transaction,
1196 			 * we can go on without dropping the lock here. If we
1197 			 * are allocating a new delalloc block, make sure that
1198 			 * we set the new flag so that we mark the buffer new so
1199 			 * that we know that it is newly allocated if the write
1200 			 * fails.
1201 			 */
1202 			if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
1203 				new = 1;
1204 			error = xfs_iomap_write_delay(ip, offset, size, &imap);
1205 			if (error)
1206 				goto out_unlock;
1207 
1208 			xfs_iunlock(ip, lockmode);
1209 		}
1210 
1211 		trace_xfs_get_blocks_alloc(ip, offset, size, 0, &imap);
1212 	} else if (nimaps) {
1213 		trace_xfs_get_blocks_found(ip, offset, size, 0, &imap);
1214 		xfs_iunlock(ip, lockmode);
1215 	} else {
1216 		trace_xfs_get_blocks_notfound(ip, offset, size);
1217 		goto out_unlock;
1218 	}
1219 
1220 	if (imap.br_startblock != HOLESTARTBLOCK &&
1221 	    imap.br_startblock != DELAYSTARTBLOCK) {
1222 		/*
1223 		 * For unwritten extents do not report a disk address on
1224 		 * the read case (treat as if we're reading into a hole).
1225 		 */
1226 		if (create || !ISUNWRITTEN(&imap))
1227 			xfs_map_buffer(inode, bh_result, &imap, offset);
1228 		if (create && ISUNWRITTEN(&imap)) {
1229 			if (direct)
1230 				bh_result->b_private = inode;
1231 			set_buffer_unwritten(bh_result);
1232 		}
1233 	}
1234 
1235 	/*
1236 	 * If this is a realtime file, data may be on a different device.
1237 	 * to that pointed to from the buffer_head b_bdev currently.
1238 	 */
1239 	bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1240 
1241 	/*
1242 	 * If we previously allocated a block out beyond eof and we are now
1243 	 * coming back to use it then we will need to flag it as new even if it
1244 	 * has a disk address.
1245 	 *
1246 	 * With sub-block writes into unwritten extents we also need to mark
1247 	 * the buffer as new so that the unwritten parts of the buffer gets
1248 	 * correctly zeroed.
1249 	 */
1250 	if (create &&
1251 	    ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1252 	     (offset >= i_size_read(inode)) ||
1253 	     (new || ISUNWRITTEN(&imap))))
1254 		set_buffer_new(bh_result);
1255 
1256 	if (imap.br_startblock == DELAYSTARTBLOCK) {
1257 		BUG_ON(direct);
1258 		if (create) {
1259 			set_buffer_uptodate(bh_result);
1260 			set_buffer_mapped(bh_result);
1261 			set_buffer_delay(bh_result);
1262 		}
1263 	}
1264 
1265 	/*
1266 	 * If this is O_DIRECT or the mpage code calling tell them how large
1267 	 * the mapping is, so that we can avoid repeated get_blocks calls.
1268 	 */
1269 	if (direct || size > (1 << inode->i_blkbits)) {
1270 		xfs_off_t		mapping_size;
1271 
1272 		mapping_size = imap.br_startoff + imap.br_blockcount - iblock;
1273 		mapping_size <<= inode->i_blkbits;
1274 
1275 		ASSERT(mapping_size > 0);
1276 		if (mapping_size > size)
1277 			mapping_size = size;
1278 		if (mapping_size > LONG_MAX)
1279 			mapping_size = LONG_MAX;
1280 
1281 		bh_result->b_size = mapping_size;
1282 	}
1283 
1284 	return 0;
1285 
1286 out_unlock:
1287 	xfs_iunlock(ip, lockmode);
1288 	return -error;
1289 }
1290 
1291 int
1292 xfs_get_blocks(
1293 	struct inode		*inode,
1294 	sector_t		iblock,
1295 	struct buffer_head	*bh_result,
1296 	int			create)
1297 {
1298 	return __xfs_get_blocks(inode, iblock, bh_result, create, 0);
1299 }
1300 
1301 STATIC int
1302 xfs_get_blocks_direct(
1303 	struct inode		*inode,
1304 	sector_t		iblock,
1305 	struct buffer_head	*bh_result,
1306 	int			create)
1307 {
1308 	return __xfs_get_blocks(inode, iblock, bh_result, create, 1);
1309 }
1310 
1311 /*
1312  * Complete a direct I/O write request.
1313  *
1314  * If the private argument is non-NULL __xfs_get_blocks signals us that we
1315  * need to issue a transaction to convert the range from unwritten to written
1316  * extents.  In case this is regular synchronous I/O we just call xfs_end_io
1317  * to do this and we are done.  But in case this was a successful AIO
1318  * request this handler is called from interrupt context, from which we
1319  * can't start transactions.  In that case offload the I/O completion to
1320  * the workqueues we also use for buffered I/O completion.
1321  */
1322 STATIC void
1323 xfs_end_io_direct_write(
1324 	struct kiocb		*iocb,
1325 	loff_t			offset,
1326 	ssize_t			size,
1327 	void			*private,
1328 	int			ret,
1329 	bool			is_async)
1330 {
1331 	struct xfs_ioend	*ioend = iocb->private;
1332 
1333 	/*
1334 	 * While the generic direct I/O code updates the inode size, it does
1335 	 * so only after the end_io handler is called, which means our
1336 	 * end_io handler thinks the on-disk size is outside the in-core
1337 	 * size.  To prevent this just update it a little bit earlier here.
1338 	 */
1339 	if (offset + size > i_size_read(ioend->io_inode))
1340 		i_size_write(ioend->io_inode, offset + size);
1341 
1342 	/*
1343 	 * blockdev_direct_IO can return an error even after the I/O
1344 	 * completion handler was called.  Thus we need to protect
1345 	 * against double-freeing.
1346 	 */
1347 	iocb->private = NULL;
1348 
1349 	ioend->io_offset = offset;
1350 	ioend->io_size = size;
1351 	ioend->io_iocb = iocb;
1352 	ioend->io_result = ret;
1353 	if (private && size > 0)
1354 		ioend->io_type = IO_UNWRITTEN;
1355 
1356 	if (is_async) {
1357 		ioend->io_isasync = 1;
1358 		xfs_finish_ioend(ioend);
1359 	} else {
1360 		xfs_finish_ioend_sync(ioend);
1361 	}
1362 }
1363 
1364 STATIC ssize_t
1365 xfs_vm_direct_IO(
1366 	int			rw,
1367 	struct kiocb		*iocb,
1368 	const struct iovec	*iov,
1369 	loff_t			offset,
1370 	unsigned long		nr_segs)
1371 {
1372 	struct inode		*inode = iocb->ki_filp->f_mapping->host;
1373 	struct block_device	*bdev = xfs_find_bdev_for_inode(inode);
1374 	struct xfs_ioend	*ioend = NULL;
1375 	ssize_t			ret;
1376 
1377 	if (rw & WRITE) {
1378 		size_t size = iov_length(iov, nr_segs);
1379 
1380 		/*
1381 		 * We need to preallocate a transaction for a size update
1382 		 * here.  In the case that this write both updates the size
1383 		 * and converts at least on unwritten extent we will cancel
1384 		 * the still clean transaction after the I/O has finished.
1385 		 */
1386 		iocb->private = ioend = xfs_alloc_ioend(inode, IO_DIRECT);
1387 		if (offset + size > XFS_I(inode)->i_d.di_size) {
1388 			ret = xfs_setfilesize_trans_alloc(ioend);
1389 			if (ret)
1390 				goto out_destroy_ioend;
1391 			ioend->io_isdirect = 1;
1392 		}
1393 
1394 		ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1395 					    offset, nr_segs,
1396 					    xfs_get_blocks_direct,
1397 					    xfs_end_io_direct_write, NULL, 0);
1398 		if (ret != -EIOCBQUEUED && iocb->private)
1399 			goto out_trans_cancel;
1400 	} else {
1401 		ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1402 					    offset, nr_segs,
1403 					    xfs_get_blocks_direct,
1404 					    NULL, NULL, 0);
1405 	}
1406 
1407 	return ret;
1408 
1409 out_trans_cancel:
1410 	if (ioend->io_append_trans) {
1411 		current_set_flags_nested(&ioend->io_append_trans->t_pflags,
1412 					 PF_FSTRANS);
1413 		xfs_trans_cancel(ioend->io_append_trans, 0);
1414 	}
1415 out_destroy_ioend:
1416 	xfs_destroy_ioend(ioend);
1417 	return ret;
1418 }
1419 
1420 /*
1421  * Punch out the delalloc blocks we have already allocated.
1422  *
1423  * Don't bother with xfs_setattr given that nothing can have made it to disk yet
1424  * as the page is still locked at this point.
1425  */
1426 STATIC void
1427 xfs_vm_kill_delalloc_range(
1428 	struct inode		*inode,
1429 	loff_t			start,
1430 	loff_t			end)
1431 {
1432 	struct xfs_inode	*ip = XFS_I(inode);
1433 	xfs_fileoff_t		start_fsb;
1434 	xfs_fileoff_t		end_fsb;
1435 	int			error;
1436 
1437 	start_fsb = XFS_B_TO_FSB(ip->i_mount, start);
1438 	end_fsb = XFS_B_TO_FSB(ip->i_mount, end);
1439 	if (end_fsb <= start_fsb)
1440 		return;
1441 
1442 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1443 	error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1444 						end_fsb - start_fsb);
1445 	if (error) {
1446 		/* something screwed, just bail */
1447 		if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1448 			xfs_alert(ip->i_mount,
1449 		"xfs_vm_write_failed: unable to clean up ino %lld",
1450 					ip->i_ino);
1451 		}
1452 	}
1453 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1454 }
1455 
1456 STATIC void
1457 xfs_vm_write_failed(
1458 	struct inode		*inode,
1459 	struct page		*page,
1460 	loff_t			pos,
1461 	unsigned		len)
1462 {
1463 	loff_t			block_offset = pos & PAGE_MASK;
1464 	loff_t			block_start;
1465 	loff_t			block_end;
1466 	loff_t			from = pos & (PAGE_CACHE_SIZE - 1);
1467 	loff_t			to = from + len;
1468 	struct buffer_head	*bh, *head;
1469 
1470 	ASSERT(block_offset + from == pos);
1471 
1472 	head = page_buffers(page);
1473 	block_start = 0;
1474 	for (bh = head; bh != head || !block_start;
1475 	     bh = bh->b_this_page, block_start = block_end,
1476 				   block_offset += bh->b_size) {
1477 		block_end = block_start + bh->b_size;
1478 
1479 		/* skip buffers before the write */
1480 		if (block_end <= from)
1481 			continue;
1482 
1483 		/* if the buffer is after the write, we're done */
1484 		if (block_start >= to)
1485 			break;
1486 
1487 		if (!buffer_delay(bh))
1488 			continue;
1489 
1490 		if (!buffer_new(bh) && block_offset < i_size_read(inode))
1491 			continue;
1492 
1493 		xfs_vm_kill_delalloc_range(inode, block_offset,
1494 					   block_offset + bh->b_size);
1495 	}
1496 
1497 }
1498 
1499 /*
1500  * This used to call block_write_begin(), but it unlocks and releases the page
1501  * on error, and we need that page to be able to punch stale delalloc blocks out
1502  * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
1503  * the appropriate point.
1504  */
1505 STATIC int
1506 xfs_vm_write_begin(
1507 	struct file		*file,
1508 	struct address_space	*mapping,
1509 	loff_t			pos,
1510 	unsigned		len,
1511 	unsigned		flags,
1512 	struct page		**pagep,
1513 	void			**fsdata)
1514 {
1515 	pgoff_t			index = pos >> PAGE_CACHE_SHIFT;
1516 	struct page		*page;
1517 	int			status;
1518 
1519 	ASSERT(len <= PAGE_CACHE_SIZE);
1520 
1521 	page = grab_cache_page_write_begin(mapping, index,
1522 					   flags | AOP_FLAG_NOFS);
1523 	if (!page)
1524 		return -ENOMEM;
1525 
1526 	status = __block_write_begin(page, pos, len, xfs_get_blocks);
1527 	if (unlikely(status)) {
1528 		struct inode	*inode = mapping->host;
1529 
1530 		xfs_vm_write_failed(inode, page, pos, len);
1531 		unlock_page(page);
1532 
1533 		if (pos + len > i_size_read(inode))
1534 			truncate_pagecache(inode, pos + len, i_size_read(inode));
1535 
1536 		page_cache_release(page);
1537 		page = NULL;
1538 	}
1539 
1540 	*pagep = page;
1541 	return status;
1542 }
1543 
1544 /*
1545  * On failure, we only need to kill delalloc blocks beyond EOF because they
1546  * will never be written. For blocks within EOF, generic_write_end() zeros them
1547  * so they are safe to leave alone and be written with all the other valid data.
1548  */
1549 STATIC int
1550 xfs_vm_write_end(
1551 	struct file		*file,
1552 	struct address_space	*mapping,
1553 	loff_t			pos,
1554 	unsigned		len,
1555 	unsigned		copied,
1556 	struct page		*page,
1557 	void			*fsdata)
1558 {
1559 	int			ret;
1560 
1561 	ASSERT(len <= PAGE_CACHE_SIZE);
1562 
1563 	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
1564 	if (unlikely(ret < len)) {
1565 		struct inode	*inode = mapping->host;
1566 		size_t		isize = i_size_read(inode);
1567 		loff_t		to = pos + len;
1568 
1569 		if (to > isize) {
1570 			truncate_pagecache(inode, to, isize);
1571 			xfs_vm_kill_delalloc_range(inode, isize, to);
1572 		}
1573 	}
1574 	return ret;
1575 }
1576 
1577 STATIC sector_t
1578 xfs_vm_bmap(
1579 	struct address_space	*mapping,
1580 	sector_t		block)
1581 {
1582 	struct inode		*inode = (struct inode *)mapping->host;
1583 	struct xfs_inode	*ip = XFS_I(inode);
1584 
1585 	trace_xfs_vm_bmap(XFS_I(inode));
1586 	xfs_ilock(ip, XFS_IOLOCK_SHARED);
1587 	xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF);
1588 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1589 	return generic_block_bmap(mapping, block, xfs_get_blocks);
1590 }
1591 
1592 STATIC int
1593 xfs_vm_readpage(
1594 	struct file		*unused,
1595 	struct page		*page)
1596 {
1597 	return mpage_readpage(page, xfs_get_blocks);
1598 }
1599 
1600 STATIC int
1601 xfs_vm_readpages(
1602 	struct file		*unused,
1603 	struct address_space	*mapping,
1604 	struct list_head	*pages,
1605 	unsigned		nr_pages)
1606 {
1607 	return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1608 }
1609 
1610 const struct address_space_operations xfs_address_space_operations = {
1611 	.readpage		= xfs_vm_readpage,
1612 	.readpages		= xfs_vm_readpages,
1613 	.writepage		= xfs_vm_writepage,
1614 	.writepages		= xfs_vm_writepages,
1615 	.releasepage		= xfs_vm_releasepage,
1616 	.invalidatepage		= xfs_vm_invalidatepage,
1617 	.write_begin		= xfs_vm_write_begin,
1618 	.write_end		= xfs_vm_write_end,
1619 	.bmap			= xfs_vm_bmap,
1620 	.direct_IO		= xfs_vm_direct_IO,
1621 	.migratepage		= buffer_migrate_page,
1622 	.is_partially_uptodate  = block_is_partially_uptodate,
1623 	.error_remove_page	= generic_error_remove_page,
1624 };
1625