1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_log.h" 20 #include "xfs_sb.h" 21 #include "xfs_ag.h" 22 #include "xfs_trans.h" 23 #include "xfs_mount.h" 24 #include "xfs_bmap_btree.h" 25 #include "xfs_dinode.h" 26 #include "xfs_inode.h" 27 #include "xfs_inode_item.h" 28 #include "xfs_alloc.h" 29 #include "xfs_error.h" 30 #include "xfs_iomap.h" 31 #include "xfs_vnodeops.h" 32 #include "xfs_trace.h" 33 #include "xfs_bmap.h" 34 #include <linux/gfp.h> 35 #include <linux/mpage.h> 36 #include <linux/pagevec.h> 37 #include <linux/writeback.h> 38 39 void 40 xfs_count_page_state( 41 struct page *page, 42 int *delalloc, 43 int *unwritten) 44 { 45 struct buffer_head *bh, *head; 46 47 *delalloc = *unwritten = 0; 48 49 bh = head = page_buffers(page); 50 do { 51 if (buffer_unwritten(bh)) 52 (*unwritten) = 1; 53 else if (buffer_delay(bh)) 54 (*delalloc) = 1; 55 } while ((bh = bh->b_this_page) != head); 56 } 57 58 STATIC struct block_device * 59 xfs_find_bdev_for_inode( 60 struct inode *inode) 61 { 62 struct xfs_inode *ip = XFS_I(inode); 63 struct xfs_mount *mp = ip->i_mount; 64 65 if (XFS_IS_REALTIME_INODE(ip)) 66 return mp->m_rtdev_targp->bt_bdev; 67 else 68 return mp->m_ddev_targp->bt_bdev; 69 } 70 71 /* 72 * We're now finished for good with this ioend structure. 73 * Update the page state via the associated buffer_heads, 74 * release holds on the inode and bio, and finally free 75 * up memory. Do not use the ioend after this. 76 */ 77 STATIC void 78 xfs_destroy_ioend( 79 xfs_ioend_t *ioend) 80 { 81 struct buffer_head *bh, *next; 82 83 for (bh = ioend->io_buffer_head; bh; bh = next) { 84 next = bh->b_private; 85 bh->b_end_io(bh, !ioend->io_error); 86 } 87 88 if (ioend->io_iocb) { 89 if (ioend->io_isasync) { 90 aio_complete(ioend->io_iocb, ioend->io_error ? 91 ioend->io_error : ioend->io_result, 0); 92 } 93 inode_dio_done(ioend->io_inode); 94 } 95 96 mempool_free(ioend, xfs_ioend_pool); 97 } 98 99 /* 100 * Fast and loose check if this write could update the on-disk inode size. 101 */ 102 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend) 103 { 104 return ioend->io_offset + ioend->io_size > 105 XFS_I(ioend->io_inode)->i_d.di_size; 106 } 107 108 STATIC int 109 xfs_setfilesize_trans_alloc( 110 struct xfs_ioend *ioend) 111 { 112 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount; 113 struct xfs_trans *tp; 114 int error; 115 116 tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS); 117 118 error = xfs_trans_reserve(tp, 0, XFS_FSYNC_TS_LOG_RES(mp), 0, 0, 0); 119 if (error) { 120 xfs_trans_cancel(tp, 0); 121 return error; 122 } 123 124 ioend->io_append_trans = tp; 125 126 /* 127 * We hand off the transaction to the completion thread now, so 128 * clear the flag here. 129 */ 130 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS); 131 return 0; 132 } 133 134 /* 135 * Update on-disk file size now that data has been written to disk. 136 */ 137 STATIC int 138 xfs_setfilesize( 139 struct xfs_ioend *ioend) 140 { 141 struct xfs_inode *ip = XFS_I(ioend->io_inode); 142 struct xfs_trans *tp = ioend->io_append_trans; 143 xfs_fsize_t isize; 144 145 /* 146 * The transaction was allocated in the I/O submission thread, 147 * thus we need to mark ourselves as beeing in a transaction 148 * manually. 149 */ 150 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS); 151 152 xfs_ilock(ip, XFS_ILOCK_EXCL); 153 isize = xfs_new_eof(ip, ioend->io_offset + ioend->io_size); 154 if (!isize) { 155 xfs_iunlock(ip, XFS_ILOCK_EXCL); 156 xfs_trans_cancel(tp, 0); 157 return 0; 158 } 159 160 trace_xfs_setfilesize(ip, ioend->io_offset, ioend->io_size); 161 162 ip->i_d.di_size = isize; 163 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 164 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 165 166 return xfs_trans_commit(tp, 0); 167 } 168 169 /* 170 * Schedule IO completion handling on the final put of an ioend. 171 * 172 * If there is no work to do we might as well call it a day and free the 173 * ioend right now. 174 */ 175 STATIC void 176 xfs_finish_ioend( 177 struct xfs_ioend *ioend) 178 { 179 if (atomic_dec_and_test(&ioend->io_remaining)) { 180 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount; 181 182 if (ioend->io_type == IO_UNWRITTEN) 183 queue_work(mp->m_unwritten_workqueue, &ioend->io_work); 184 else if (ioend->io_append_trans) 185 queue_work(mp->m_data_workqueue, &ioend->io_work); 186 else 187 xfs_destroy_ioend(ioend); 188 } 189 } 190 191 /* 192 * IO write completion. 193 */ 194 STATIC void 195 xfs_end_io( 196 struct work_struct *work) 197 { 198 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work); 199 struct xfs_inode *ip = XFS_I(ioend->io_inode); 200 int error = 0; 201 202 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { 203 ioend->io_error = -EIO; 204 goto done; 205 } 206 if (ioend->io_error) 207 goto done; 208 209 /* 210 * For unwritten extents we need to issue transactions to convert a 211 * range to normal written extens after the data I/O has finished. 212 */ 213 if (ioend->io_type == IO_UNWRITTEN) { 214 /* 215 * For buffered I/O we never preallocate a transaction when 216 * doing the unwritten extent conversion, but for direct I/O 217 * we do not know if we are converting an unwritten extent 218 * or not at the point where we preallocate the transaction. 219 */ 220 if (ioend->io_append_trans) { 221 ASSERT(ioend->io_isdirect); 222 223 current_set_flags_nested( 224 &ioend->io_append_trans->t_pflags, PF_FSTRANS); 225 xfs_trans_cancel(ioend->io_append_trans, 0); 226 } 227 228 error = xfs_iomap_write_unwritten(ip, ioend->io_offset, 229 ioend->io_size); 230 if (error) { 231 ioend->io_error = -error; 232 goto done; 233 } 234 } else if (ioend->io_append_trans) { 235 error = xfs_setfilesize(ioend); 236 if (error) 237 ioend->io_error = -error; 238 } else { 239 ASSERT(!xfs_ioend_is_append(ioend)); 240 } 241 242 done: 243 xfs_destroy_ioend(ioend); 244 } 245 246 /* 247 * Call IO completion handling in caller context on the final put of an ioend. 248 */ 249 STATIC void 250 xfs_finish_ioend_sync( 251 struct xfs_ioend *ioend) 252 { 253 if (atomic_dec_and_test(&ioend->io_remaining)) 254 xfs_end_io(&ioend->io_work); 255 } 256 257 /* 258 * Allocate and initialise an IO completion structure. 259 * We need to track unwritten extent write completion here initially. 260 * We'll need to extend this for updating the ondisk inode size later 261 * (vs. incore size). 262 */ 263 STATIC xfs_ioend_t * 264 xfs_alloc_ioend( 265 struct inode *inode, 266 unsigned int type) 267 { 268 xfs_ioend_t *ioend; 269 270 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS); 271 272 /* 273 * Set the count to 1 initially, which will prevent an I/O 274 * completion callback from happening before we have started 275 * all the I/O from calling the completion routine too early. 276 */ 277 atomic_set(&ioend->io_remaining, 1); 278 ioend->io_isasync = 0; 279 ioend->io_isdirect = 0; 280 ioend->io_error = 0; 281 ioend->io_list = NULL; 282 ioend->io_type = type; 283 ioend->io_inode = inode; 284 ioend->io_buffer_head = NULL; 285 ioend->io_buffer_tail = NULL; 286 ioend->io_offset = 0; 287 ioend->io_size = 0; 288 ioend->io_iocb = NULL; 289 ioend->io_result = 0; 290 ioend->io_append_trans = NULL; 291 292 INIT_WORK(&ioend->io_work, xfs_end_io); 293 return ioend; 294 } 295 296 STATIC int 297 xfs_map_blocks( 298 struct inode *inode, 299 loff_t offset, 300 struct xfs_bmbt_irec *imap, 301 int type, 302 int nonblocking) 303 { 304 struct xfs_inode *ip = XFS_I(inode); 305 struct xfs_mount *mp = ip->i_mount; 306 ssize_t count = 1 << inode->i_blkbits; 307 xfs_fileoff_t offset_fsb, end_fsb; 308 int error = 0; 309 int bmapi_flags = XFS_BMAPI_ENTIRE; 310 int nimaps = 1; 311 312 if (XFS_FORCED_SHUTDOWN(mp)) 313 return -XFS_ERROR(EIO); 314 315 if (type == IO_UNWRITTEN) 316 bmapi_flags |= XFS_BMAPI_IGSTATE; 317 318 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) { 319 if (nonblocking) 320 return -XFS_ERROR(EAGAIN); 321 xfs_ilock(ip, XFS_ILOCK_SHARED); 322 } 323 324 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 325 (ip->i_df.if_flags & XFS_IFEXTENTS)); 326 ASSERT(offset <= mp->m_maxioffset); 327 328 if (offset + count > mp->m_maxioffset) 329 count = mp->m_maxioffset - offset; 330 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count); 331 offset_fsb = XFS_B_TO_FSBT(mp, offset); 332 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, 333 imap, &nimaps, bmapi_flags); 334 xfs_iunlock(ip, XFS_ILOCK_SHARED); 335 336 if (error) 337 return -XFS_ERROR(error); 338 339 if (type == IO_DELALLOC && 340 (!nimaps || isnullstartblock(imap->br_startblock))) { 341 error = xfs_iomap_write_allocate(ip, offset, count, imap); 342 if (!error) 343 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap); 344 return -XFS_ERROR(error); 345 } 346 347 #ifdef DEBUG 348 if (type == IO_UNWRITTEN) { 349 ASSERT(nimaps); 350 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 351 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 352 } 353 #endif 354 if (nimaps) 355 trace_xfs_map_blocks_found(ip, offset, count, type, imap); 356 return 0; 357 } 358 359 STATIC int 360 xfs_imap_valid( 361 struct inode *inode, 362 struct xfs_bmbt_irec *imap, 363 xfs_off_t offset) 364 { 365 offset >>= inode->i_blkbits; 366 367 return offset >= imap->br_startoff && 368 offset < imap->br_startoff + imap->br_blockcount; 369 } 370 371 /* 372 * BIO completion handler for buffered IO. 373 */ 374 STATIC void 375 xfs_end_bio( 376 struct bio *bio, 377 int error) 378 { 379 xfs_ioend_t *ioend = bio->bi_private; 380 381 ASSERT(atomic_read(&bio->bi_cnt) >= 1); 382 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error; 383 384 /* Toss bio and pass work off to an xfsdatad thread */ 385 bio->bi_private = NULL; 386 bio->bi_end_io = NULL; 387 bio_put(bio); 388 389 xfs_finish_ioend(ioend); 390 } 391 392 STATIC void 393 xfs_submit_ioend_bio( 394 struct writeback_control *wbc, 395 xfs_ioend_t *ioend, 396 struct bio *bio) 397 { 398 atomic_inc(&ioend->io_remaining); 399 bio->bi_private = ioend; 400 bio->bi_end_io = xfs_end_bio; 401 submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio); 402 } 403 404 STATIC struct bio * 405 xfs_alloc_ioend_bio( 406 struct buffer_head *bh) 407 { 408 int nvecs = bio_get_nr_vecs(bh->b_bdev); 409 struct bio *bio = bio_alloc(GFP_NOIO, nvecs); 410 411 ASSERT(bio->bi_private == NULL); 412 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9); 413 bio->bi_bdev = bh->b_bdev; 414 return bio; 415 } 416 417 STATIC void 418 xfs_start_buffer_writeback( 419 struct buffer_head *bh) 420 { 421 ASSERT(buffer_mapped(bh)); 422 ASSERT(buffer_locked(bh)); 423 ASSERT(!buffer_delay(bh)); 424 ASSERT(!buffer_unwritten(bh)); 425 426 mark_buffer_async_write(bh); 427 set_buffer_uptodate(bh); 428 clear_buffer_dirty(bh); 429 } 430 431 STATIC void 432 xfs_start_page_writeback( 433 struct page *page, 434 int clear_dirty, 435 int buffers) 436 { 437 ASSERT(PageLocked(page)); 438 ASSERT(!PageWriteback(page)); 439 if (clear_dirty) 440 clear_page_dirty_for_io(page); 441 set_page_writeback(page); 442 unlock_page(page); 443 /* If no buffers on the page are to be written, finish it here */ 444 if (!buffers) 445 end_page_writeback(page); 446 } 447 448 static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh) 449 { 450 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); 451 } 452 453 /* 454 * Submit all of the bios for all of the ioends we have saved up, covering the 455 * initial writepage page and also any probed pages. 456 * 457 * Because we may have multiple ioends spanning a page, we need to start 458 * writeback on all the buffers before we submit them for I/O. If we mark the 459 * buffers as we got, then we can end up with a page that only has buffers 460 * marked async write and I/O complete on can occur before we mark the other 461 * buffers async write. 462 * 463 * The end result of this is that we trip a bug in end_page_writeback() because 464 * we call it twice for the one page as the code in end_buffer_async_write() 465 * assumes that all buffers on the page are started at the same time. 466 * 467 * The fix is two passes across the ioend list - one to start writeback on the 468 * buffer_heads, and then submit them for I/O on the second pass. 469 */ 470 STATIC void 471 xfs_submit_ioend( 472 struct writeback_control *wbc, 473 xfs_ioend_t *ioend) 474 { 475 xfs_ioend_t *head = ioend; 476 xfs_ioend_t *next; 477 struct buffer_head *bh; 478 struct bio *bio; 479 sector_t lastblock = 0; 480 481 /* Pass 1 - start writeback */ 482 do { 483 next = ioend->io_list; 484 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) 485 xfs_start_buffer_writeback(bh); 486 } while ((ioend = next) != NULL); 487 488 /* Pass 2 - submit I/O */ 489 ioend = head; 490 do { 491 next = ioend->io_list; 492 bio = NULL; 493 494 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) { 495 496 if (!bio) { 497 retry: 498 bio = xfs_alloc_ioend_bio(bh); 499 } else if (bh->b_blocknr != lastblock + 1) { 500 xfs_submit_ioend_bio(wbc, ioend, bio); 501 goto retry; 502 } 503 504 if (bio_add_buffer(bio, bh) != bh->b_size) { 505 xfs_submit_ioend_bio(wbc, ioend, bio); 506 goto retry; 507 } 508 509 lastblock = bh->b_blocknr; 510 } 511 if (bio) 512 xfs_submit_ioend_bio(wbc, ioend, bio); 513 xfs_finish_ioend(ioend); 514 } while ((ioend = next) != NULL); 515 } 516 517 /* 518 * Cancel submission of all buffer_heads so far in this endio. 519 * Toss the endio too. Only ever called for the initial page 520 * in a writepage request, so only ever one page. 521 */ 522 STATIC void 523 xfs_cancel_ioend( 524 xfs_ioend_t *ioend) 525 { 526 xfs_ioend_t *next; 527 struct buffer_head *bh, *next_bh; 528 529 do { 530 next = ioend->io_list; 531 bh = ioend->io_buffer_head; 532 do { 533 next_bh = bh->b_private; 534 clear_buffer_async_write(bh); 535 unlock_buffer(bh); 536 } while ((bh = next_bh) != NULL); 537 538 mempool_free(ioend, xfs_ioend_pool); 539 } while ((ioend = next) != NULL); 540 } 541 542 /* 543 * Test to see if we've been building up a completion structure for 544 * earlier buffers -- if so, we try to append to this ioend if we 545 * can, otherwise we finish off any current ioend and start another. 546 * Return true if we've finished the given ioend. 547 */ 548 STATIC void 549 xfs_add_to_ioend( 550 struct inode *inode, 551 struct buffer_head *bh, 552 xfs_off_t offset, 553 unsigned int type, 554 xfs_ioend_t **result, 555 int need_ioend) 556 { 557 xfs_ioend_t *ioend = *result; 558 559 if (!ioend || need_ioend || type != ioend->io_type) { 560 xfs_ioend_t *previous = *result; 561 562 ioend = xfs_alloc_ioend(inode, type); 563 ioend->io_offset = offset; 564 ioend->io_buffer_head = bh; 565 ioend->io_buffer_tail = bh; 566 if (previous) 567 previous->io_list = ioend; 568 *result = ioend; 569 } else { 570 ioend->io_buffer_tail->b_private = bh; 571 ioend->io_buffer_tail = bh; 572 } 573 574 bh->b_private = NULL; 575 ioend->io_size += bh->b_size; 576 } 577 578 STATIC void 579 xfs_map_buffer( 580 struct inode *inode, 581 struct buffer_head *bh, 582 struct xfs_bmbt_irec *imap, 583 xfs_off_t offset) 584 { 585 sector_t bn; 586 struct xfs_mount *m = XFS_I(inode)->i_mount; 587 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff); 588 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock); 589 590 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 591 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 592 593 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) + 594 ((offset - iomap_offset) >> inode->i_blkbits); 595 596 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode))); 597 598 bh->b_blocknr = bn; 599 set_buffer_mapped(bh); 600 } 601 602 STATIC void 603 xfs_map_at_offset( 604 struct inode *inode, 605 struct buffer_head *bh, 606 struct xfs_bmbt_irec *imap, 607 xfs_off_t offset) 608 { 609 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 610 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 611 612 xfs_map_buffer(inode, bh, imap, offset); 613 set_buffer_mapped(bh); 614 clear_buffer_delay(bh); 615 clear_buffer_unwritten(bh); 616 } 617 618 /* 619 * Test if a given page is suitable for writing as part of an unwritten 620 * or delayed allocate extent. 621 */ 622 STATIC int 623 xfs_check_page_type( 624 struct page *page, 625 unsigned int type) 626 { 627 if (PageWriteback(page)) 628 return 0; 629 630 if (page->mapping && page_has_buffers(page)) { 631 struct buffer_head *bh, *head; 632 int acceptable = 0; 633 634 bh = head = page_buffers(page); 635 do { 636 if (buffer_unwritten(bh)) 637 acceptable += (type == IO_UNWRITTEN); 638 else if (buffer_delay(bh)) 639 acceptable += (type == IO_DELALLOC); 640 else if (buffer_dirty(bh) && buffer_mapped(bh)) 641 acceptable += (type == IO_OVERWRITE); 642 else 643 break; 644 } while ((bh = bh->b_this_page) != head); 645 646 if (acceptable) 647 return 1; 648 } 649 650 return 0; 651 } 652 653 /* 654 * Allocate & map buffers for page given the extent map. Write it out. 655 * except for the original page of a writepage, this is called on 656 * delalloc/unwritten pages only, for the original page it is possible 657 * that the page has no mapping at all. 658 */ 659 STATIC int 660 xfs_convert_page( 661 struct inode *inode, 662 struct page *page, 663 loff_t tindex, 664 struct xfs_bmbt_irec *imap, 665 xfs_ioend_t **ioendp, 666 struct writeback_control *wbc) 667 { 668 struct buffer_head *bh, *head; 669 xfs_off_t end_offset; 670 unsigned long p_offset; 671 unsigned int type; 672 int len, page_dirty; 673 int count = 0, done = 0, uptodate = 1; 674 xfs_off_t offset = page_offset(page); 675 676 if (page->index != tindex) 677 goto fail; 678 if (!trylock_page(page)) 679 goto fail; 680 if (PageWriteback(page)) 681 goto fail_unlock_page; 682 if (page->mapping != inode->i_mapping) 683 goto fail_unlock_page; 684 if (!xfs_check_page_type(page, (*ioendp)->io_type)) 685 goto fail_unlock_page; 686 687 /* 688 * page_dirty is initially a count of buffers on the page before 689 * EOF and is decremented as we move each into a cleanable state. 690 * 691 * Derivation: 692 * 693 * End offset is the highest offset that this page should represent. 694 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1)) 695 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and 696 * hence give us the correct page_dirty count. On any other page, 697 * it will be zero and in that case we need page_dirty to be the 698 * count of buffers on the page. 699 */ 700 end_offset = min_t(unsigned long long, 701 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, 702 i_size_read(inode)); 703 704 len = 1 << inode->i_blkbits; 705 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1), 706 PAGE_CACHE_SIZE); 707 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE; 708 page_dirty = p_offset / len; 709 710 bh = head = page_buffers(page); 711 do { 712 if (offset >= end_offset) 713 break; 714 if (!buffer_uptodate(bh)) 715 uptodate = 0; 716 if (!(PageUptodate(page) || buffer_uptodate(bh))) { 717 done = 1; 718 continue; 719 } 720 721 if (buffer_unwritten(bh) || buffer_delay(bh) || 722 buffer_mapped(bh)) { 723 if (buffer_unwritten(bh)) 724 type = IO_UNWRITTEN; 725 else if (buffer_delay(bh)) 726 type = IO_DELALLOC; 727 else 728 type = IO_OVERWRITE; 729 730 if (!xfs_imap_valid(inode, imap, offset)) { 731 done = 1; 732 continue; 733 } 734 735 lock_buffer(bh); 736 if (type != IO_OVERWRITE) 737 xfs_map_at_offset(inode, bh, imap, offset); 738 xfs_add_to_ioend(inode, bh, offset, type, 739 ioendp, done); 740 741 page_dirty--; 742 count++; 743 } else { 744 done = 1; 745 } 746 } while (offset += len, (bh = bh->b_this_page) != head); 747 748 if (uptodate && bh == head) 749 SetPageUptodate(page); 750 751 if (count) { 752 if (--wbc->nr_to_write <= 0 && 753 wbc->sync_mode == WB_SYNC_NONE) 754 done = 1; 755 } 756 xfs_start_page_writeback(page, !page_dirty, count); 757 758 return done; 759 fail_unlock_page: 760 unlock_page(page); 761 fail: 762 return 1; 763 } 764 765 /* 766 * Convert & write out a cluster of pages in the same extent as defined 767 * by mp and following the start page. 768 */ 769 STATIC void 770 xfs_cluster_write( 771 struct inode *inode, 772 pgoff_t tindex, 773 struct xfs_bmbt_irec *imap, 774 xfs_ioend_t **ioendp, 775 struct writeback_control *wbc, 776 pgoff_t tlast) 777 { 778 struct pagevec pvec; 779 int done = 0, i; 780 781 pagevec_init(&pvec, 0); 782 while (!done && tindex <= tlast) { 783 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1); 784 785 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len)) 786 break; 787 788 for (i = 0; i < pagevec_count(&pvec); i++) { 789 done = xfs_convert_page(inode, pvec.pages[i], tindex++, 790 imap, ioendp, wbc); 791 if (done) 792 break; 793 } 794 795 pagevec_release(&pvec); 796 cond_resched(); 797 } 798 } 799 800 STATIC void 801 xfs_vm_invalidatepage( 802 struct page *page, 803 unsigned long offset) 804 { 805 trace_xfs_invalidatepage(page->mapping->host, page, offset); 806 block_invalidatepage(page, offset); 807 } 808 809 /* 810 * If the page has delalloc buffers on it, we need to punch them out before we 811 * invalidate the page. If we don't, we leave a stale delalloc mapping on the 812 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read 813 * is done on that same region - the delalloc extent is returned when none is 814 * supposed to be there. 815 * 816 * We prevent this by truncating away the delalloc regions on the page before 817 * invalidating it. Because they are delalloc, we can do this without needing a 818 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this 819 * truncation without a transaction as there is no space left for block 820 * reservation (typically why we see a ENOSPC in writeback). 821 * 822 * This is not a performance critical path, so for now just do the punching a 823 * buffer head at a time. 824 */ 825 STATIC void 826 xfs_aops_discard_page( 827 struct page *page) 828 { 829 struct inode *inode = page->mapping->host; 830 struct xfs_inode *ip = XFS_I(inode); 831 struct buffer_head *bh, *head; 832 loff_t offset = page_offset(page); 833 834 if (!xfs_check_page_type(page, IO_DELALLOC)) 835 goto out_invalidate; 836 837 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 838 goto out_invalidate; 839 840 xfs_alert(ip->i_mount, 841 "page discard on page %p, inode 0x%llx, offset %llu.", 842 page, ip->i_ino, offset); 843 844 xfs_ilock(ip, XFS_ILOCK_EXCL); 845 bh = head = page_buffers(page); 846 do { 847 int error; 848 xfs_fileoff_t start_fsb; 849 850 if (!buffer_delay(bh)) 851 goto next_buffer; 852 853 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset); 854 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1); 855 if (error) { 856 /* something screwed, just bail */ 857 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { 858 xfs_alert(ip->i_mount, 859 "page discard unable to remove delalloc mapping."); 860 } 861 break; 862 } 863 next_buffer: 864 offset += 1 << inode->i_blkbits; 865 866 } while ((bh = bh->b_this_page) != head); 867 868 xfs_iunlock(ip, XFS_ILOCK_EXCL); 869 out_invalidate: 870 xfs_vm_invalidatepage(page, 0); 871 return; 872 } 873 874 /* 875 * Write out a dirty page. 876 * 877 * For delalloc space on the page we need to allocate space and flush it. 878 * For unwritten space on the page we need to start the conversion to 879 * regular allocated space. 880 * For any other dirty buffer heads on the page we should flush them. 881 */ 882 STATIC int 883 xfs_vm_writepage( 884 struct page *page, 885 struct writeback_control *wbc) 886 { 887 struct inode *inode = page->mapping->host; 888 struct buffer_head *bh, *head; 889 struct xfs_bmbt_irec imap; 890 xfs_ioend_t *ioend = NULL, *iohead = NULL; 891 loff_t offset; 892 unsigned int type; 893 __uint64_t end_offset; 894 pgoff_t end_index, last_index; 895 ssize_t len; 896 int err, imap_valid = 0, uptodate = 1; 897 int count = 0; 898 int nonblocking = 0; 899 900 trace_xfs_writepage(inode, page, 0); 901 902 ASSERT(page_has_buffers(page)); 903 904 /* 905 * Refuse to write the page out if we are called from reclaim context. 906 * 907 * This avoids stack overflows when called from deeply used stacks in 908 * random callers for direct reclaim or memcg reclaim. We explicitly 909 * allow reclaim from kswapd as the stack usage there is relatively low. 910 * 911 * This should never happen except in the case of a VM regression so 912 * warn about it. 913 */ 914 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == 915 PF_MEMALLOC)) 916 goto redirty; 917 918 /* 919 * Given that we do not allow direct reclaim to call us, we should 920 * never be called while in a filesystem transaction. 921 */ 922 if (WARN_ON(current->flags & PF_FSTRANS)) 923 goto redirty; 924 925 /* Is this page beyond the end of the file? */ 926 offset = i_size_read(inode); 927 end_index = offset >> PAGE_CACHE_SHIFT; 928 last_index = (offset - 1) >> PAGE_CACHE_SHIFT; 929 if (page->index >= end_index) { 930 if ((page->index >= end_index + 1) || 931 !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) { 932 unlock_page(page); 933 return 0; 934 } 935 } 936 937 end_offset = min_t(unsigned long long, 938 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, 939 offset); 940 len = 1 << inode->i_blkbits; 941 942 bh = head = page_buffers(page); 943 offset = page_offset(page); 944 type = IO_OVERWRITE; 945 946 if (wbc->sync_mode == WB_SYNC_NONE) 947 nonblocking = 1; 948 949 do { 950 int new_ioend = 0; 951 952 if (offset >= end_offset) 953 break; 954 if (!buffer_uptodate(bh)) 955 uptodate = 0; 956 957 /* 958 * set_page_dirty dirties all buffers in a page, independent 959 * of their state. The dirty state however is entirely 960 * meaningless for holes (!mapped && uptodate), so skip 961 * buffers covering holes here. 962 */ 963 if (!buffer_mapped(bh) && buffer_uptodate(bh)) { 964 imap_valid = 0; 965 continue; 966 } 967 968 if (buffer_unwritten(bh)) { 969 if (type != IO_UNWRITTEN) { 970 type = IO_UNWRITTEN; 971 imap_valid = 0; 972 } 973 } else if (buffer_delay(bh)) { 974 if (type != IO_DELALLOC) { 975 type = IO_DELALLOC; 976 imap_valid = 0; 977 } 978 } else if (buffer_uptodate(bh)) { 979 if (type != IO_OVERWRITE) { 980 type = IO_OVERWRITE; 981 imap_valid = 0; 982 } 983 } else { 984 if (PageUptodate(page)) 985 ASSERT(buffer_mapped(bh)); 986 /* 987 * This buffer is not uptodate and will not be 988 * written to disk. Ensure that we will put any 989 * subsequent writeable buffers into a new 990 * ioend. 991 */ 992 imap_valid = 0; 993 continue; 994 } 995 996 if (imap_valid) 997 imap_valid = xfs_imap_valid(inode, &imap, offset); 998 if (!imap_valid) { 999 /* 1000 * If we didn't have a valid mapping then we need to 1001 * put the new mapping into a separate ioend structure. 1002 * This ensures non-contiguous extents always have 1003 * separate ioends, which is particularly important 1004 * for unwritten extent conversion at I/O completion 1005 * time. 1006 */ 1007 new_ioend = 1; 1008 err = xfs_map_blocks(inode, offset, &imap, type, 1009 nonblocking); 1010 if (err) 1011 goto error; 1012 imap_valid = xfs_imap_valid(inode, &imap, offset); 1013 } 1014 if (imap_valid) { 1015 lock_buffer(bh); 1016 if (type != IO_OVERWRITE) 1017 xfs_map_at_offset(inode, bh, &imap, offset); 1018 xfs_add_to_ioend(inode, bh, offset, type, &ioend, 1019 new_ioend); 1020 count++; 1021 } 1022 1023 if (!iohead) 1024 iohead = ioend; 1025 1026 } while (offset += len, ((bh = bh->b_this_page) != head)); 1027 1028 if (uptodate && bh == head) 1029 SetPageUptodate(page); 1030 1031 xfs_start_page_writeback(page, 1, count); 1032 1033 if (ioend && imap_valid) { 1034 xfs_off_t end_index; 1035 1036 end_index = imap.br_startoff + imap.br_blockcount; 1037 1038 /* to bytes */ 1039 end_index <<= inode->i_blkbits; 1040 1041 /* to pages */ 1042 end_index = (end_index - 1) >> PAGE_CACHE_SHIFT; 1043 1044 /* check against file size */ 1045 if (end_index > last_index) 1046 end_index = last_index; 1047 1048 xfs_cluster_write(inode, page->index + 1, &imap, &ioend, 1049 wbc, end_index); 1050 } 1051 1052 if (iohead) { 1053 /* 1054 * Reserve log space if we might write beyond the on-disk 1055 * inode size. 1056 */ 1057 if (ioend->io_type != IO_UNWRITTEN && 1058 xfs_ioend_is_append(ioend)) { 1059 err = xfs_setfilesize_trans_alloc(ioend); 1060 if (err) 1061 goto error; 1062 } 1063 1064 xfs_submit_ioend(wbc, iohead); 1065 } 1066 1067 return 0; 1068 1069 error: 1070 if (iohead) 1071 xfs_cancel_ioend(iohead); 1072 1073 if (err == -EAGAIN) 1074 goto redirty; 1075 1076 xfs_aops_discard_page(page); 1077 ClearPageUptodate(page); 1078 unlock_page(page); 1079 return err; 1080 1081 redirty: 1082 redirty_page_for_writepage(wbc, page); 1083 unlock_page(page); 1084 return 0; 1085 } 1086 1087 STATIC int 1088 xfs_vm_writepages( 1089 struct address_space *mapping, 1090 struct writeback_control *wbc) 1091 { 1092 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED); 1093 return generic_writepages(mapping, wbc); 1094 } 1095 1096 /* 1097 * Called to move a page into cleanable state - and from there 1098 * to be released. The page should already be clean. We always 1099 * have buffer heads in this call. 1100 * 1101 * Returns 1 if the page is ok to release, 0 otherwise. 1102 */ 1103 STATIC int 1104 xfs_vm_releasepage( 1105 struct page *page, 1106 gfp_t gfp_mask) 1107 { 1108 int delalloc, unwritten; 1109 1110 trace_xfs_releasepage(page->mapping->host, page, 0); 1111 1112 xfs_count_page_state(page, &delalloc, &unwritten); 1113 1114 if (WARN_ON(delalloc)) 1115 return 0; 1116 if (WARN_ON(unwritten)) 1117 return 0; 1118 1119 return try_to_free_buffers(page); 1120 } 1121 1122 STATIC int 1123 __xfs_get_blocks( 1124 struct inode *inode, 1125 sector_t iblock, 1126 struct buffer_head *bh_result, 1127 int create, 1128 int direct) 1129 { 1130 struct xfs_inode *ip = XFS_I(inode); 1131 struct xfs_mount *mp = ip->i_mount; 1132 xfs_fileoff_t offset_fsb, end_fsb; 1133 int error = 0; 1134 int lockmode = 0; 1135 struct xfs_bmbt_irec imap; 1136 int nimaps = 1; 1137 xfs_off_t offset; 1138 ssize_t size; 1139 int new = 0; 1140 1141 if (XFS_FORCED_SHUTDOWN(mp)) 1142 return -XFS_ERROR(EIO); 1143 1144 offset = (xfs_off_t)iblock << inode->i_blkbits; 1145 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits)); 1146 size = bh_result->b_size; 1147 1148 if (!create && direct && offset >= i_size_read(inode)) 1149 return 0; 1150 1151 /* 1152 * Direct I/O is usually done on preallocated files, so try getting 1153 * a block mapping without an exclusive lock first. For buffered 1154 * writes we already have the exclusive iolock anyway, so avoiding 1155 * a lock roundtrip here by taking the ilock exclusive from the 1156 * beginning is a useful micro optimization. 1157 */ 1158 if (create && !direct) { 1159 lockmode = XFS_ILOCK_EXCL; 1160 xfs_ilock(ip, lockmode); 1161 } else { 1162 lockmode = xfs_ilock_map_shared(ip); 1163 } 1164 1165 ASSERT(offset <= mp->m_maxioffset); 1166 if (offset + size > mp->m_maxioffset) 1167 size = mp->m_maxioffset - offset; 1168 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size); 1169 offset_fsb = XFS_B_TO_FSBT(mp, offset); 1170 1171 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, 1172 &imap, &nimaps, XFS_BMAPI_ENTIRE); 1173 if (error) 1174 goto out_unlock; 1175 1176 if (create && 1177 (!nimaps || 1178 (imap.br_startblock == HOLESTARTBLOCK || 1179 imap.br_startblock == DELAYSTARTBLOCK))) { 1180 if (direct || xfs_get_extsz_hint(ip)) { 1181 /* 1182 * Drop the ilock in preparation for starting the block 1183 * allocation transaction. It will be retaken 1184 * exclusively inside xfs_iomap_write_direct for the 1185 * actual allocation. 1186 */ 1187 xfs_iunlock(ip, lockmode); 1188 error = xfs_iomap_write_direct(ip, offset, size, 1189 &imap, nimaps); 1190 if (error) 1191 return -error; 1192 new = 1; 1193 } else { 1194 /* 1195 * Delalloc reservations do not require a transaction, 1196 * we can go on without dropping the lock here. If we 1197 * are allocating a new delalloc block, make sure that 1198 * we set the new flag so that we mark the buffer new so 1199 * that we know that it is newly allocated if the write 1200 * fails. 1201 */ 1202 if (nimaps && imap.br_startblock == HOLESTARTBLOCK) 1203 new = 1; 1204 error = xfs_iomap_write_delay(ip, offset, size, &imap); 1205 if (error) 1206 goto out_unlock; 1207 1208 xfs_iunlock(ip, lockmode); 1209 } 1210 1211 trace_xfs_get_blocks_alloc(ip, offset, size, 0, &imap); 1212 } else if (nimaps) { 1213 trace_xfs_get_blocks_found(ip, offset, size, 0, &imap); 1214 xfs_iunlock(ip, lockmode); 1215 } else { 1216 trace_xfs_get_blocks_notfound(ip, offset, size); 1217 goto out_unlock; 1218 } 1219 1220 if (imap.br_startblock != HOLESTARTBLOCK && 1221 imap.br_startblock != DELAYSTARTBLOCK) { 1222 /* 1223 * For unwritten extents do not report a disk address on 1224 * the read case (treat as if we're reading into a hole). 1225 */ 1226 if (create || !ISUNWRITTEN(&imap)) 1227 xfs_map_buffer(inode, bh_result, &imap, offset); 1228 if (create && ISUNWRITTEN(&imap)) { 1229 if (direct) 1230 bh_result->b_private = inode; 1231 set_buffer_unwritten(bh_result); 1232 } 1233 } 1234 1235 /* 1236 * If this is a realtime file, data may be on a different device. 1237 * to that pointed to from the buffer_head b_bdev currently. 1238 */ 1239 bh_result->b_bdev = xfs_find_bdev_for_inode(inode); 1240 1241 /* 1242 * If we previously allocated a block out beyond eof and we are now 1243 * coming back to use it then we will need to flag it as new even if it 1244 * has a disk address. 1245 * 1246 * With sub-block writes into unwritten extents we also need to mark 1247 * the buffer as new so that the unwritten parts of the buffer gets 1248 * correctly zeroed. 1249 */ 1250 if (create && 1251 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) || 1252 (offset >= i_size_read(inode)) || 1253 (new || ISUNWRITTEN(&imap)))) 1254 set_buffer_new(bh_result); 1255 1256 if (imap.br_startblock == DELAYSTARTBLOCK) { 1257 BUG_ON(direct); 1258 if (create) { 1259 set_buffer_uptodate(bh_result); 1260 set_buffer_mapped(bh_result); 1261 set_buffer_delay(bh_result); 1262 } 1263 } 1264 1265 /* 1266 * If this is O_DIRECT or the mpage code calling tell them how large 1267 * the mapping is, so that we can avoid repeated get_blocks calls. 1268 */ 1269 if (direct || size > (1 << inode->i_blkbits)) { 1270 xfs_off_t mapping_size; 1271 1272 mapping_size = imap.br_startoff + imap.br_blockcount - iblock; 1273 mapping_size <<= inode->i_blkbits; 1274 1275 ASSERT(mapping_size > 0); 1276 if (mapping_size > size) 1277 mapping_size = size; 1278 if (mapping_size > LONG_MAX) 1279 mapping_size = LONG_MAX; 1280 1281 bh_result->b_size = mapping_size; 1282 } 1283 1284 return 0; 1285 1286 out_unlock: 1287 xfs_iunlock(ip, lockmode); 1288 return -error; 1289 } 1290 1291 int 1292 xfs_get_blocks( 1293 struct inode *inode, 1294 sector_t iblock, 1295 struct buffer_head *bh_result, 1296 int create) 1297 { 1298 return __xfs_get_blocks(inode, iblock, bh_result, create, 0); 1299 } 1300 1301 STATIC int 1302 xfs_get_blocks_direct( 1303 struct inode *inode, 1304 sector_t iblock, 1305 struct buffer_head *bh_result, 1306 int create) 1307 { 1308 return __xfs_get_blocks(inode, iblock, bh_result, create, 1); 1309 } 1310 1311 /* 1312 * Complete a direct I/O write request. 1313 * 1314 * If the private argument is non-NULL __xfs_get_blocks signals us that we 1315 * need to issue a transaction to convert the range from unwritten to written 1316 * extents. In case this is regular synchronous I/O we just call xfs_end_io 1317 * to do this and we are done. But in case this was a successful AIO 1318 * request this handler is called from interrupt context, from which we 1319 * can't start transactions. In that case offload the I/O completion to 1320 * the workqueues we also use for buffered I/O completion. 1321 */ 1322 STATIC void 1323 xfs_end_io_direct_write( 1324 struct kiocb *iocb, 1325 loff_t offset, 1326 ssize_t size, 1327 void *private, 1328 int ret, 1329 bool is_async) 1330 { 1331 struct xfs_ioend *ioend = iocb->private; 1332 1333 /* 1334 * While the generic direct I/O code updates the inode size, it does 1335 * so only after the end_io handler is called, which means our 1336 * end_io handler thinks the on-disk size is outside the in-core 1337 * size. To prevent this just update it a little bit earlier here. 1338 */ 1339 if (offset + size > i_size_read(ioend->io_inode)) 1340 i_size_write(ioend->io_inode, offset + size); 1341 1342 /* 1343 * blockdev_direct_IO can return an error even after the I/O 1344 * completion handler was called. Thus we need to protect 1345 * against double-freeing. 1346 */ 1347 iocb->private = NULL; 1348 1349 ioend->io_offset = offset; 1350 ioend->io_size = size; 1351 ioend->io_iocb = iocb; 1352 ioend->io_result = ret; 1353 if (private && size > 0) 1354 ioend->io_type = IO_UNWRITTEN; 1355 1356 if (is_async) { 1357 ioend->io_isasync = 1; 1358 xfs_finish_ioend(ioend); 1359 } else { 1360 xfs_finish_ioend_sync(ioend); 1361 } 1362 } 1363 1364 STATIC ssize_t 1365 xfs_vm_direct_IO( 1366 int rw, 1367 struct kiocb *iocb, 1368 const struct iovec *iov, 1369 loff_t offset, 1370 unsigned long nr_segs) 1371 { 1372 struct inode *inode = iocb->ki_filp->f_mapping->host; 1373 struct block_device *bdev = xfs_find_bdev_for_inode(inode); 1374 struct xfs_ioend *ioend = NULL; 1375 ssize_t ret; 1376 1377 if (rw & WRITE) { 1378 size_t size = iov_length(iov, nr_segs); 1379 1380 /* 1381 * We need to preallocate a transaction for a size update 1382 * here. In the case that this write both updates the size 1383 * and converts at least on unwritten extent we will cancel 1384 * the still clean transaction after the I/O has finished. 1385 */ 1386 iocb->private = ioend = xfs_alloc_ioend(inode, IO_DIRECT); 1387 if (offset + size > XFS_I(inode)->i_d.di_size) { 1388 ret = xfs_setfilesize_trans_alloc(ioend); 1389 if (ret) 1390 goto out_destroy_ioend; 1391 ioend->io_isdirect = 1; 1392 } 1393 1394 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov, 1395 offset, nr_segs, 1396 xfs_get_blocks_direct, 1397 xfs_end_io_direct_write, NULL, 0); 1398 if (ret != -EIOCBQUEUED && iocb->private) 1399 goto out_trans_cancel; 1400 } else { 1401 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov, 1402 offset, nr_segs, 1403 xfs_get_blocks_direct, 1404 NULL, NULL, 0); 1405 } 1406 1407 return ret; 1408 1409 out_trans_cancel: 1410 if (ioend->io_append_trans) { 1411 current_set_flags_nested(&ioend->io_append_trans->t_pflags, 1412 PF_FSTRANS); 1413 xfs_trans_cancel(ioend->io_append_trans, 0); 1414 } 1415 out_destroy_ioend: 1416 xfs_destroy_ioend(ioend); 1417 return ret; 1418 } 1419 1420 /* 1421 * Punch out the delalloc blocks we have already allocated. 1422 * 1423 * Don't bother with xfs_setattr given that nothing can have made it to disk yet 1424 * as the page is still locked at this point. 1425 */ 1426 STATIC void 1427 xfs_vm_kill_delalloc_range( 1428 struct inode *inode, 1429 loff_t start, 1430 loff_t end) 1431 { 1432 struct xfs_inode *ip = XFS_I(inode); 1433 xfs_fileoff_t start_fsb; 1434 xfs_fileoff_t end_fsb; 1435 int error; 1436 1437 start_fsb = XFS_B_TO_FSB(ip->i_mount, start); 1438 end_fsb = XFS_B_TO_FSB(ip->i_mount, end); 1439 if (end_fsb <= start_fsb) 1440 return; 1441 1442 xfs_ilock(ip, XFS_ILOCK_EXCL); 1443 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1444 end_fsb - start_fsb); 1445 if (error) { 1446 /* something screwed, just bail */ 1447 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { 1448 xfs_alert(ip->i_mount, 1449 "xfs_vm_write_failed: unable to clean up ino %lld", 1450 ip->i_ino); 1451 } 1452 } 1453 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1454 } 1455 1456 STATIC void 1457 xfs_vm_write_failed( 1458 struct inode *inode, 1459 struct page *page, 1460 loff_t pos, 1461 unsigned len) 1462 { 1463 loff_t block_offset = pos & PAGE_MASK; 1464 loff_t block_start; 1465 loff_t block_end; 1466 loff_t from = pos & (PAGE_CACHE_SIZE - 1); 1467 loff_t to = from + len; 1468 struct buffer_head *bh, *head; 1469 1470 ASSERT(block_offset + from == pos); 1471 1472 head = page_buffers(page); 1473 block_start = 0; 1474 for (bh = head; bh != head || !block_start; 1475 bh = bh->b_this_page, block_start = block_end, 1476 block_offset += bh->b_size) { 1477 block_end = block_start + bh->b_size; 1478 1479 /* skip buffers before the write */ 1480 if (block_end <= from) 1481 continue; 1482 1483 /* if the buffer is after the write, we're done */ 1484 if (block_start >= to) 1485 break; 1486 1487 if (!buffer_delay(bh)) 1488 continue; 1489 1490 if (!buffer_new(bh) && block_offset < i_size_read(inode)) 1491 continue; 1492 1493 xfs_vm_kill_delalloc_range(inode, block_offset, 1494 block_offset + bh->b_size); 1495 } 1496 1497 } 1498 1499 /* 1500 * This used to call block_write_begin(), but it unlocks and releases the page 1501 * on error, and we need that page to be able to punch stale delalloc blocks out 1502 * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at 1503 * the appropriate point. 1504 */ 1505 STATIC int 1506 xfs_vm_write_begin( 1507 struct file *file, 1508 struct address_space *mapping, 1509 loff_t pos, 1510 unsigned len, 1511 unsigned flags, 1512 struct page **pagep, 1513 void **fsdata) 1514 { 1515 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 1516 struct page *page; 1517 int status; 1518 1519 ASSERT(len <= PAGE_CACHE_SIZE); 1520 1521 page = grab_cache_page_write_begin(mapping, index, 1522 flags | AOP_FLAG_NOFS); 1523 if (!page) 1524 return -ENOMEM; 1525 1526 status = __block_write_begin(page, pos, len, xfs_get_blocks); 1527 if (unlikely(status)) { 1528 struct inode *inode = mapping->host; 1529 1530 xfs_vm_write_failed(inode, page, pos, len); 1531 unlock_page(page); 1532 1533 if (pos + len > i_size_read(inode)) 1534 truncate_pagecache(inode, pos + len, i_size_read(inode)); 1535 1536 page_cache_release(page); 1537 page = NULL; 1538 } 1539 1540 *pagep = page; 1541 return status; 1542 } 1543 1544 /* 1545 * On failure, we only need to kill delalloc blocks beyond EOF because they 1546 * will never be written. For blocks within EOF, generic_write_end() zeros them 1547 * so they are safe to leave alone and be written with all the other valid data. 1548 */ 1549 STATIC int 1550 xfs_vm_write_end( 1551 struct file *file, 1552 struct address_space *mapping, 1553 loff_t pos, 1554 unsigned len, 1555 unsigned copied, 1556 struct page *page, 1557 void *fsdata) 1558 { 1559 int ret; 1560 1561 ASSERT(len <= PAGE_CACHE_SIZE); 1562 1563 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata); 1564 if (unlikely(ret < len)) { 1565 struct inode *inode = mapping->host; 1566 size_t isize = i_size_read(inode); 1567 loff_t to = pos + len; 1568 1569 if (to > isize) { 1570 truncate_pagecache(inode, to, isize); 1571 xfs_vm_kill_delalloc_range(inode, isize, to); 1572 } 1573 } 1574 return ret; 1575 } 1576 1577 STATIC sector_t 1578 xfs_vm_bmap( 1579 struct address_space *mapping, 1580 sector_t block) 1581 { 1582 struct inode *inode = (struct inode *)mapping->host; 1583 struct xfs_inode *ip = XFS_I(inode); 1584 1585 trace_xfs_vm_bmap(XFS_I(inode)); 1586 xfs_ilock(ip, XFS_IOLOCK_SHARED); 1587 xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF); 1588 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 1589 return generic_block_bmap(mapping, block, xfs_get_blocks); 1590 } 1591 1592 STATIC int 1593 xfs_vm_readpage( 1594 struct file *unused, 1595 struct page *page) 1596 { 1597 return mpage_readpage(page, xfs_get_blocks); 1598 } 1599 1600 STATIC int 1601 xfs_vm_readpages( 1602 struct file *unused, 1603 struct address_space *mapping, 1604 struct list_head *pages, 1605 unsigned nr_pages) 1606 { 1607 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks); 1608 } 1609 1610 const struct address_space_operations xfs_address_space_operations = { 1611 .readpage = xfs_vm_readpage, 1612 .readpages = xfs_vm_readpages, 1613 .writepage = xfs_vm_writepage, 1614 .writepages = xfs_vm_writepages, 1615 .releasepage = xfs_vm_releasepage, 1616 .invalidatepage = xfs_vm_invalidatepage, 1617 .write_begin = xfs_vm_write_begin, 1618 .write_end = xfs_vm_write_end, 1619 .bmap = xfs_vm_bmap, 1620 .direct_IO = xfs_vm_direct_IO, 1621 .migratepage = buffer_migrate_page, 1622 .is_partially_uptodate = block_is_partially_uptodate, 1623 .error_remove_page = generic_error_remove_page, 1624 }; 1625