xref: /linux/fs/xfs/xfs_aops.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * Copyright (c) 2016-2018 Christoph Hellwig.
5  * All Rights Reserved.
6  */
7 #include "xfs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_iomap.h"
16 #include "xfs_trace.h"
17 #include "xfs_bmap.h"
18 #include "xfs_bmap_util.h"
19 #include "xfs_reflink.h"
20 
21 struct xfs_writepage_ctx {
22 	struct iomap_writepage_ctx ctx;
23 	unsigned int		data_seq;
24 	unsigned int		cow_seq;
25 };
26 
27 static inline struct xfs_writepage_ctx *
28 XFS_WPC(struct iomap_writepage_ctx *ctx)
29 {
30 	return container_of(ctx, struct xfs_writepage_ctx, ctx);
31 }
32 
33 /*
34  * Fast and loose check if this write could update the on-disk inode size.
35  */
36 static inline bool xfs_ioend_is_append(struct iomap_ioend *ioend)
37 {
38 	return ioend->io_offset + ioend->io_size >
39 		XFS_I(ioend->io_inode)->i_d.di_size;
40 }
41 
42 STATIC int
43 xfs_setfilesize_trans_alloc(
44 	struct iomap_ioend	*ioend)
45 {
46 	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
47 	struct xfs_trans	*tp;
48 	int			error;
49 
50 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
51 	if (error)
52 		return error;
53 
54 	ioend->io_private = tp;
55 
56 	/*
57 	 * We may pass freeze protection with a transaction.  So tell lockdep
58 	 * we released it.
59 	 */
60 	__sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
61 	/*
62 	 * We hand off the transaction to the completion thread now, so
63 	 * clear the flag here.
64 	 */
65 	current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
66 	return 0;
67 }
68 
69 /*
70  * Update on-disk file size now that data has been written to disk.
71  */
72 STATIC int
73 __xfs_setfilesize(
74 	struct xfs_inode	*ip,
75 	struct xfs_trans	*tp,
76 	xfs_off_t		offset,
77 	size_t			size)
78 {
79 	xfs_fsize_t		isize;
80 
81 	xfs_ilock(ip, XFS_ILOCK_EXCL);
82 	isize = xfs_new_eof(ip, offset + size);
83 	if (!isize) {
84 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
85 		xfs_trans_cancel(tp);
86 		return 0;
87 	}
88 
89 	trace_xfs_setfilesize(ip, offset, size);
90 
91 	ip->i_d.di_size = isize;
92 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
93 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
94 
95 	return xfs_trans_commit(tp);
96 }
97 
98 int
99 xfs_setfilesize(
100 	struct xfs_inode	*ip,
101 	xfs_off_t		offset,
102 	size_t			size)
103 {
104 	struct xfs_mount	*mp = ip->i_mount;
105 	struct xfs_trans	*tp;
106 	int			error;
107 
108 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
109 	if (error)
110 		return error;
111 
112 	return __xfs_setfilesize(ip, tp, offset, size);
113 }
114 
115 STATIC int
116 xfs_setfilesize_ioend(
117 	struct iomap_ioend	*ioend,
118 	int			error)
119 {
120 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
121 	struct xfs_trans	*tp = ioend->io_private;
122 
123 	/*
124 	 * The transaction may have been allocated in the I/O submission thread,
125 	 * thus we need to mark ourselves as being in a transaction manually.
126 	 * Similarly for freeze protection.
127 	 */
128 	current_set_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
129 	__sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
130 
131 	/* we abort the update if there was an IO error */
132 	if (error) {
133 		xfs_trans_cancel(tp);
134 		return error;
135 	}
136 
137 	return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
138 }
139 
140 /*
141  * IO write completion.
142  */
143 STATIC void
144 xfs_end_ioend(
145 	struct iomap_ioend	*ioend)
146 {
147 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
148 	xfs_off_t		offset = ioend->io_offset;
149 	size_t			size = ioend->io_size;
150 	unsigned int		nofs_flag;
151 	int			error;
152 
153 	/*
154 	 * We can allocate memory here while doing writeback on behalf of
155 	 * memory reclaim.  To avoid memory allocation deadlocks set the
156 	 * task-wide nofs context for the following operations.
157 	 */
158 	nofs_flag = memalloc_nofs_save();
159 
160 	/*
161 	 * Just clean up the in-memory strutures if the fs has been shut down.
162 	 */
163 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
164 		error = -EIO;
165 		goto done;
166 	}
167 
168 	/*
169 	 * Clean up any COW blocks on an I/O error.
170 	 */
171 	error = blk_status_to_errno(ioend->io_bio->bi_status);
172 	if (unlikely(error)) {
173 		if (ioend->io_flags & IOMAP_F_SHARED)
174 			xfs_reflink_cancel_cow_range(ip, offset, size, true);
175 		goto done;
176 	}
177 
178 	/*
179 	 * Success: commit the COW or unwritten blocks if needed.
180 	 */
181 	if (ioend->io_flags & IOMAP_F_SHARED)
182 		error = xfs_reflink_end_cow(ip, offset, size);
183 	else if (ioend->io_type == IOMAP_UNWRITTEN)
184 		error = xfs_iomap_write_unwritten(ip, offset, size, false);
185 	else
186 		ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_private);
187 
188 done:
189 	if (ioend->io_private)
190 		error = xfs_setfilesize_ioend(ioend, error);
191 	iomap_finish_ioends(ioend, error);
192 	memalloc_nofs_restore(nofs_flag);
193 }
194 
195 /*
196  * If the to be merged ioend has a preallocated transaction for file
197  * size updates we need to ensure the ioend it is merged into also
198  * has one.  If it already has one we can simply cancel the transaction
199  * as it is guaranteed to be clean.
200  */
201 static void
202 xfs_ioend_merge_private(
203 	struct iomap_ioend	*ioend,
204 	struct iomap_ioend	*next)
205 {
206 	if (!ioend->io_private) {
207 		ioend->io_private = next->io_private;
208 		next->io_private = NULL;
209 	} else {
210 		xfs_setfilesize_ioend(next, -ECANCELED);
211 	}
212 }
213 
214 /* Finish all pending io completions. */
215 void
216 xfs_end_io(
217 	struct work_struct	*work)
218 {
219 	struct xfs_inode	*ip =
220 		container_of(work, struct xfs_inode, i_ioend_work);
221 	struct iomap_ioend	*ioend;
222 	struct list_head	tmp;
223 	unsigned long		flags;
224 
225 	spin_lock_irqsave(&ip->i_ioend_lock, flags);
226 	list_replace_init(&ip->i_ioend_list, &tmp);
227 	spin_unlock_irqrestore(&ip->i_ioend_lock, flags);
228 
229 	iomap_sort_ioends(&tmp);
230 	while ((ioend = list_first_entry_or_null(&tmp, struct iomap_ioend,
231 			io_list))) {
232 		list_del_init(&ioend->io_list);
233 		iomap_ioend_try_merge(ioend, &tmp, xfs_ioend_merge_private);
234 		xfs_end_ioend(ioend);
235 	}
236 }
237 
238 static inline bool xfs_ioend_needs_workqueue(struct iomap_ioend *ioend)
239 {
240 	return ioend->io_private ||
241 		ioend->io_type == IOMAP_UNWRITTEN ||
242 		(ioend->io_flags & IOMAP_F_SHARED);
243 }
244 
245 STATIC void
246 xfs_end_bio(
247 	struct bio		*bio)
248 {
249 	struct iomap_ioend	*ioend = bio->bi_private;
250 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
251 	unsigned long		flags;
252 
253 	ASSERT(xfs_ioend_needs_workqueue(ioend));
254 
255 	spin_lock_irqsave(&ip->i_ioend_lock, flags);
256 	if (list_empty(&ip->i_ioend_list))
257 		WARN_ON_ONCE(!queue_work(ip->i_mount->m_unwritten_workqueue,
258 					 &ip->i_ioend_work));
259 	list_add_tail(&ioend->io_list, &ip->i_ioend_list);
260 	spin_unlock_irqrestore(&ip->i_ioend_lock, flags);
261 }
262 
263 /*
264  * Fast revalidation of the cached writeback mapping. Return true if the current
265  * mapping is valid, false otherwise.
266  */
267 static bool
268 xfs_imap_valid(
269 	struct iomap_writepage_ctx	*wpc,
270 	struct xfs_inode		*ip,
271 	loff_t				offset)
272 {
273 	if (offset < wpc->iomap.offset ||
274 	    offset >= wpc->iomap.offset + wpc->iomap.length)
275 		return false;
276 	/*
277 	 * If this is a COW mapping, it is sufficient to check that the mapping
278 	 * covers the offset. Be careful to check this first because the caller
279 	 * can revalidate a COW mapping without updating the data seqno.
280 	 */
281 	if (wpc->iomap.flags & IOMAP_F_SHARED)
282 		return true;
283 
284 	/*
285 	 * This is not a COW mapping. Check the sequence number of the data fork
286 	 * because concurrent changes could have invalidated the extent. Check
287 	 * the COW fork because concurrent changes since the last time we
288 	 * checked (and found nothing at this offset) could have added
289 	 * overlapping blocks.
290 	 */
291 	if (XFS_WPC(wpc)->data_seq != READ_ONCE(ip->i_df.if_seq))
292 		return false;
293 	if (xfs_inode_has_cow_data(ip) &&
294 	    XFS_WPC(wpc)->cow_seq != READ_ONCE(ip->i_cowfp->if_seq))
295 		return false;
296 	return true;
297 }
298 
299 /*
300  * Pass in a dellalloc extent and convert it to real extents, return the real
301  * extent that maps offset_fsb in wpc->iomap.
302  *
303  * The current page is held locked so nothing could have removed the block
304  * backing offset_fsb, although it could have moved from the COW to the data
305  * fork by another thread.
306  */
307 static int
308 xfs_convert_blocks(
309 	struct iomap_writepage_ctx *wpc,
310 	struct xfs_inode	*ip,
311 	int			whichfork,
312 	loff_t			offset)
313 {
314 	int			error;
315 	unsigned		*seq;
316 
317 	if (whichfork == XFS_COW_FORK)
318 		seq = &XFS_WPC(wpc)->cow_seq;
319 	else
320 		seq = &XFS_WPC(wpc)->data_seq;
321 
322 	/*
323 	 * Attempt to allocate whatever delalloc extent currently backs offset
324 	 * and put the result into wpc->iomap.  Allocate in a loop because it
325 	 * may take several attempts to allocate real blocks for a contiguous
326 	 * delalloc extent if free space is sufficiently fragmented.
327 	 */
328 	do {
329 		error = xfs_bmapi_convert_delalloc(ip, whichfork, offset,
330 				&wpc->iomap, seq);
331 		if (error)
332 			return error;
333 	} while (wpc->iomap.offset + wpc->iomap.length <= offset);
334 
335 	return 0;
336 }
337 
338 static int
339 xfs_map_blocks(
340 	struct iomap_writepage_ctx *wpc,
341 	struct inode		*inode,
342 	loff_t			offset)
343 {
344 	struct xfs_inode	*ip = XFS_I(inode);
345 	struct xfs_mount	*mp = ip->i_mount;
346 	ssize_t			count = i_blocksize(inode);
347 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
348 	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + count);
349 	xfs_fileoff_t		cow_fsb = NULLFILEOFF;
350 	int			whichfork = XFS_DATA_FORK;
351 	struct xfs_bmbt_irec	imap;
352 	struct xfs_iext_cursor	icur;
353 	int			retries = 0;
354 	int			error = 0;
355 
356 	if (XFS_FORCED_SHUTDOWN(mp))
357 		return -EIO;
358 
359 	/*
360 	 * COW fork blocks can overlap data fork blocks even if the blocks
361 	 * aren't shared.  COW I/O always takes precedent, so we must always
362 	 * check for overlap on reflink inodes unless the mapping is already a
363 	 * COW one, or the COW fork hasn't changed from the last time we looked
364 	 * at it.
365 	 *
366 	 * It's safe to check the COW fork if_seq here without the ILOCK because
367 	 * we've indirectly protected against concurrent updates: writeback has
368 	 * the page locked, which prevents concurrent invalidations by reflink
369 	 * and directio and prevents concurrent buffered writes to the same
370 	 * page.  Changes to if_seq always happen under i_lock, which protects
371 	 * against concurrent updates and provides a memory barrier on the way
372 	 * out that ensures that we always see the current value.
373 	 */
374 	if (xfs_imap_valid(wpc, ip, offset))
375 		return 0;
376 
377 	/*
378 	 * If we don't have a valid map, now it's time to get a new one for this
379 	 * offset.  This will convert delayed allocations (including COW ones)
380 	 * into real extents.  If we return without a valid map, it means we
381 	 * landed in a hole and we skip the block.
382 	 */
383 retry:
384 	xfs_ilock(ip, XFS_ILOCK_SHARED);
385 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
386 	       (ip->i_df.if_flags & XFS_IFEXTENTS));
387 
388 	/*
389 	 * Check if this is offset is covered by a COW extents, and if yes use
390 	 * it directly instead of looking up anything in the data fork.
391 	 */
392 	if (xfs_inode_has_cow_data(ip) &&
393 	    xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap))
394 		cow_fsb = imap.br_startoff;
395 	if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) {
396 		XFS_WPC(wpc)->cow_seq = READ_ONCE(ip->i_cowfp->if_seq);
397 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
398 
399 		whichfork = XFS_COW_FORK;
400 		goto allocate_blocks;
401 	}
402 
403 	/*
404 	 * No COW extent overlap. Revalidate now that we may have updated
405 	 * ->cow_seq. If the data mapping is still valid, we're done.
406 	 */
407 	if (xfs_imap_valid(wpc, ip, offset)) {
408 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
409 		return 0;
410 	}
411 
412 	/*
413 	 * If we don't have a valid map, now it's time to get a new one for this
414 	 * offset.  This will convert delayed allocations (including COW ones)
415 	 * into real extents.
416 	 */
417 	if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap))
418 		imap.br_startoff = end_fsb;	/* fake a hole past EOF */
419 	XFS_WPC(wpc)->data_seq = READ_ONCE(ip->i_df.if_seq);
420 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
421 
422 	/* landed in a hole or beyond EOF? */
423 	if (imap.br_startoff > offset_fsb) {
424 		imap.br_blockcount = imap.br_startoff - offset_fsb;
425 		imap.br_startoff = offset_fsb;
426 		imap.br_startblock = HOLESTARTBLOCK;
427 		imap.br_state = XFS_EXT_NORM;
428 	}
429 
430 	/*
431 	 * Truncate to the next COW extent if there is one.  This is the only
432 	 * opportunity to do this because we can skip COW fork lookups for the
433 	 * subsequent blocks in the mapping; however, the requirement to treat
434 	 * the COW range separately remains.
435 	 */
436 	if (cow_fsb != NULLFILEOFF &&
437 	    cow_fsb < imap.br_startoff + imap.br_blockcount)
438 		imap.br_blockcount = cow_fsb - imap.br_startoff;
439 
440 	/* got a delalloc extent? */
441 	if (imap.br_startblock != HOLESTARTBLOCK &&
442 	    isnullstartblock(imap.br_startblock))
443 		goto allocate_blocks;
444 
445 	xfs_bmbt_to_iomap(ip, &wpc->iomap, &imap, 0);
446 	trace_xfs_map_blocks_found(ip, offset, count, whichfork, &imap);
447 	return 0;
448 allocate_blocks:
449 	error = xfs_convert_blocks(wpc, ip, whichfork, offset);
450 	if (error) {
451 		/*
452 		 * If we failed to find the extent in the COW fork we might have
453 		 * raced with a COW to data fork conversion or truncate.
454 		 * Restart the lookup to catch the extent in the data fork for
455 		 * the former case, but prevent additional retries to avoid
456 		 * looping forever for the latter case.
457 		 */
458 		if (error == -EAGAIN && whichfork == XFS_COW_FORK && !retries++)
459 			goto retry;
460 		ASSERT(error != -EAGAIN);
461 		return error;
462 	}
463 
464 	/*
465 	 * Due to merging the return real extent might be larger than the
466 	 * original delalloc one.  Trim the return extent to the next COW
467 	 * boundary again to force a re-lookup.
468 	 */
469 	if (whichfork != XFS_COW_FORK && cow_fsb != NULLFILEOFF) {
470 		loff_t		cow_offset = XFS_FSB_TO_B(mp, cow_fsb);
471 
472 		if (cow_offset < wpc->iomap.offset + wpc->iomap.length)
473 			wpc->iomap.length = cow_offset - wpc->iomap.offset;
474 	}
475 
476 	ASSERT(wpc->iomap.offset <= offset);
477 	ASSERT(wpc->iomap.offset + wpc->iomap.length > offset);
478 	trace_xfs_map_blocks_alloc(ip, offset, count, whichfork, &imap);
479 	return 0;
480 }
481 
482 static int
483 xfs_prepare_ioend(
484 	struct iomap_ioend	*ioend,
485 	int			status)
486 {
487 	unsigned int		nofs_flag;
488 
489 	/*
490 	 * We can allocate memory here while doing writeback on behalf of
491 	 * memory reclaim.  To avoid memory allocation deadlocks set the
492 	 * task-wide nofs context for the following operations.
493 	 */
494 	nofs_flag = memalloc_nofs_save();
495 
496 	/* Convert CoW extents to regular */
497 	if (!status && (ioend->io_flags & IOMAP_F_SHARED)) {
498 		status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
499 				ioend->io_offset, ioend->io_size);
500 	}
501 
502 	/* Reserve log space if we might write beyond the on-disk inode size. */
503 	if (!status &&
504 	    ((ioend->io_flags & IOMAP_F_SHARED) ||
505 	     ioend->io_type != IOMAP_UNWRITTEN) &&
506 	    xfs_ioend_is_append(ioend) &&
507 	    !ioend->io_private)
508 		status = xfs_setfilesize_trans_alloc(ioend);
509 
510 	memalloc_nofs_restore(nofs_flag);
511 
512 	if (xfs_ioend_needs_workqueue(ioend))
513 		ioend->io_bio->bi_end_io = xfs_end_bio;
514 	return status;
515 }
516 
517 /*
518  * If the page has delalloc blocks on it, we need to punch them out before we
519  * invalidate the page.  If we don't, we leave a stale delalloc mapping on the
520  * inode that can trip up a later direct I/O read operation on the same region.
521  *
522  * We prevent this by truncating away the delalloc regions on the page.  Because
523  * they are delalloc, we can do this without needing a transaction. Indeed - if
524  * we get ENOSPC errors, we have to be able to do this truncation without a
525  * transaction as there is no space left for block reservation (typically why we
526  * see a ENOSPC in writeback).
527  */
528 static void
529 xfs_discard_page(
530 	struct page		*page)
531 {
532 	struct inode		*inode = page->mapping->host;
533 	struct xfs_inode	*ip = XFS_I(inode);
534 	struct xfs_mount	*mp = ip->i_mount;
535 	loff_t			offset = page_offset(page);
536 	xfs_fileoff_t		start_fsb = XFS_B_TO_FSBT(mp, offset);
537 	int			error;
538 
539 	if (XFS_FORCED_SHUTDOWN(mp))
540 		goto out_invalidate;
541 
542 	xfs_alert(mp,
543 		"page discard on page "PTR_FMT", inode 0x%llx, offset %llu.",
544 			page, ip->i_ino, offset);
545 
546 	error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
547 			PAGE_SIZE / i_blocksize(inode));
548 	if (error && !XFS_FORCED_SHUTDOWN(mp))
549 		xfs_alert(mp, "page discard unable to remove delalloc mapping.");
550 out_invalidate:
551 	iomap_invalidatepage(page, 0, PAGE_SIZE);
552 }
553 
554 static const struct iomap_writeback_ops xfs_writeback_ops = {
555 	.map_blocks		= xfs_map_blocks,
556 	.prepare_ioend		= xfs_prepare_ioend,
557 	.discard_page		= xfs_discard_page,
558 };
559 
560 STATIC int
561 xfs_vm_writepage(
562 	struct page		*page,
563 	struct writeback_control *wbc)
564 {
565 	struct xfs_writepage_ctx wpc = { };
566 
567 	return iomap_writepage(page, wbc, &wpc.ctx, &xfs_writeback_ops);
568 }
569 
570 STATIC int
571 xfs_vm_writepages(
572 	struct address_space	*mapping,
573 	struct writeback_control *wbc)
574 {
575 	struct xfs_writepage_ctx wpc = { };
576 
577 	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
578 	return iomap_writepages(mapping, wbc, &wpc.ctx, &xfs_writeback_ops);
579 }
580 
581 STATIC int
582 xfs_dax_writepages(
583 	struct address_space	*mapping,
584 	struct writeback_control *wbc)
585 {
586 	struct xfs_inode	*ip = XFS_I(mapping->host);
587 
588 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
589 	return dax_writeback_mapping_range(mapping,
590 			xfs_inode_buftarg(ip)->bt_daxdev, wbc);
591 }
592 
593 STATIC sector_t
594 xfs_vm_bmap(
595 	struct address_space	*mapping,
596 	sector_t		block)
597 {
598 	struct xfs_inode	*ip = XFS_I(mapping->host);
599 
600 	trace_xfs_vm_bmap(ip);
601 
602 	/*
603 	 * The swap code (ab-)uses ->bmap to get a block mapping and then
604 	 * bypasses the file system for actual I/O.  We really can't allow
605 	 * that on reflinks inodes, so we have to skip out here.  And yes,
606 	 * 0 is the magic code for a bmap error.
607 	 *
608 	 * Since we don't pass back blockdev info, we can't return bmap
609 	 * information for rt files either.
610 	 */
611 	if (xfs_is_cow_inode(ip) || XFS_IS_REALTIME_INODE(ip))
612 		return 0;
613 	return iomap_bmap(mapping, block, &xfs_read_iomap_ops);
614 }
615 
616 STATIC int
617 xfs_vm_readpage(
618 	struct file		*unused,
619 	struct page		*page)
620 {
621 	return iomap_readpage(page, &xfs_read_iomap_ops);
622 }
623 
624 STATIC int
625 xfs_vm_readpages(
626 	struct file		*unused,
627 	struct address_space	*mapping,
628 	struct list_head	*pages,
629 	unsigned		nr_pages)
630 {
631 	return iomap_readpages(mapping, pages, nr_pages, &xfs_read_iomap_ops);
632 }
633 
634 static int
635 xfs_iomap_swapfile_activate(
636 	struct swap_info_struct		*sis,
637 	struct file			*swap_file,
638 	sector_t			*span)
639 {
640 	sis->bdev = xfs_inode_buftarg(XFS_I(file_inode(swap_file)))->bt_bdev;
641 	return iomap_swapfile_activate(sis, swap_file, span,
642 			&xfs_read_iomap_ops);
643 }
644 
645 const struct address_space_operations xfs_address_space_operations = {
646 	.readpage		= xfs_vm_readpage,
647 	.readpages		= xfs_vm_readpages,
648 	.writepage		= xfs_vm_writepage,
649 	.writepages		= xfs_vm_writepages,
650 	.set_page_dirty		= iomap_set_page_dirty,
651 	.releasepage		= iomap_releasepage,
652 	.invalidatepage		= iomap_invalidatepage,
653 	.bmap			= xfs_vm_bmap,
654 	.direct_IO		= noop_direct_IO,
655 	.migratepage		= iomap_migrate_page,
656 	.is_partially_uptodate  = iomap_is_partially_uptodate,
657 	.error_remove_page	= generic_error_remove_page,
658 	.swap_activate		= xfs_iomap_swapfile_activate,
659 };
660 
661 const struct address_space_operations xfs_dax_aops = {
662 	.writepages		= xfs_dax_writepages,
663 	.direct_IO		= noop_direct_IO,
664 	.set_page_dirty		= noop_set_page_dirty,
665 	.invalidatepage		= noop_invalidatepage,
666 	.swap_activate		= xfs_iomap_swapfile_activate,
667 };
668