1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_bit.h" 20 #include "xfs_log.h" 21 #include "xfs_inum.h" 22 #include "xfs_sb.h" 23 #include "xfs_ag.h" 24 #include "xfs_trans.h" 25 #include "xfs_mount.h" 26 #include "xfs_bmap_btree.h" 27 #include "xfs_dinode.h" 28 #include "xfs_inode.h" 29 #include "xfs_alloc.h" 30 #include "xfs_error.h" 31 #include "xfs_rw.h" 32 #include "xfs_iomap.h" 33 #include "xfs_vnodeops.h" 34 #include "xfs_trace.h" 35 #include "xfs_bmap.h" 36 #include <linux/gfp.h> 37 #include <linux/mpage.h> 38 #include <linux/pagevec.h> 39 #include <linux/writeback.h> 40 41 void 42 xfs_count_page_state( 43 struct page *page, 44 int *delalloc, 45 int *unwritten) 46 { 47 struct buffer_head *bh, *head; 48 49 *delalloc = *unwritten = 0; 50 51 bh = head = page_buffers(page); 52 do { 53 if (buffer_unwritten(bh)) 54 (*unwritten) = 1; 55 else if (buffer_delay(bh)) 56 (*delalloc) = 1; 57 } while ((bh = bh->b_this_page) != head); 58 } 59 60 STATIC struct block_device * 61 xfs_find_bdev_for_inode( 62 struct inode *inode) 63 { 64 struct xfs_inode *ip = XFS_I(inode); 65 struct xfs_mount *mp = ip->i_mount; 66 67 if (XFS_IS_REALTIME_INODE(ip)) 68 return mp->m_rtdev_targp->bt_bdev; 69 else 70 return mp->m_ddev_targp->bt_bdev; 71 } 72 73 /* 74 * We're now finished for good with this ioend structure. 75 * Update the page state via the associated buffer_heads, 76 * release holds on the inode and bio, and finally free 77 * up memory. Do not use the ioend after this. 78 */ 79 STATIC void 80 xfs_destroy_ioend( 81 xfs_ioend_t *ioend) 82 { 83 struct buffer_head *bh, *next; 84 85 for (bh = ioend->io_buffer_head; bh; bh = next) { 86 next = bh->b_private; 87 bh->b_end_io(bh, !ioend->io_error); 88 } 89 90 if (ioend->io_iocb) { 91 if (ioend->io_isasync) { 92 aio_complete(ioend->io_iocb, ioend->io_error ? 93 ioend->io_error : ioend->io_result, 0); 94 } 95 inode_dio_done(ioend->io_inode); 96 } 97 98 mempool_free(ioend, xfs_ioend_pool); 99 } 100 101 /* 102 * If the end of the current ioend is beyond the current EOF, 103 * return the new EOF value, otherwise zero. 104 */ 105 STATIC xfs_fsize_t 106 xfs_ioend_new_eof( 107 xfs_ioend_t *ioend) 108 { 109 xfs_inode_t *ip = XFS_I(ioend->io_inode); 110 xfs_fsize_t isize; 111 xfs_fsize_t bsize; 112 113 bsize = ioend->io_offset + ioend->io_size; 114 isize = MAX(ip->i_size, ip->i_new_size); 115 isize = MIN(isize, bsize); 116 return isize > ip->i_d.di_size ? isize : 0; 117 } 118 119 /* 120 * Fast and loose check if this write could update the on-disk inode size. 121 */ 122 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend) 123 { 124 return ioend->io_offset + ioend->io_size > 125 XFS_I(ioend->io_inode)->i_d.di_size; 126 } 127 128 /* 129 * Update on-disk file size now that data has been written to disk. The 130 * current in-memory file size is i_size. If a write is beyond eof i_new_size 131 * will be the intended file size until i_size is updated. If this write does 132 * not extend all the way to the valid file size then restrict this update to 133 * the end of the write. 134 * 135 * This function does not block as blocking on the inode lock in IO completion 136 * can lead to IO completion order dependency deadlocks.. If it can't get the 137 * inode ilock it will return EAGAIN. Callers must handle this. 138 */ 139 STATIC int 140 xfs_setfilesize( 141 xfs_ioend_t *ioend) 142 { 143 xfs_inode_t *ip = XFS_I(ioend->io_inode); 144 xfs_fsize_t isize; 145 146 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) 147 return EAGAIN; 148 149 isize = xfs_ioend_new_eof(ioend); 150 if (isize) { 151 trace_xfs_setfilesize(ip, ioend->io_offset, ioend->io_size); 152 ip->i_d.di_size = isize; 153 xfs_mark_inode_dirty(ip); 154 } 155 156 xfs_iunlock(ip, XFS_ILOCK_EXCL); 157 return 0; 158 } 159 160 /* 161 * Schedule IO completion handling on the final put of an ioend. 162 * 163 * If there is no work to do we might as well call it a day and free the 164 * ioend right now. 165 */ 166 STATIC void 167 xfs_finish_ioend( 168 struct xfs_ioend *ioend) 169 { 170 if (atomic_dec_and_test(&ioend->io_remaining)) { 171 if (ioend->io_type == IO_UNWRITTEN) 172 queue_work(xfsconvertd_workqueue, &ioend->io_work); 173 else if (xfs_ioend_is_append(ioend)) 174 queue_work(xfsdatad_workqueue, &ioend->io_work); 175 else 176 xfs_destroy_ioend(ioend); 177 } 178 } 179 180 /* 181 * IO write completion. 182 */ 183 STATIC void 184 xfs_end_io( 185 struct work_struct *work) 186 { 187 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work); 188 struct xfs_inode *ip = XFS_I(ioend->io_inode); 189 int error = 0; 190 191 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { 192 ioend->io_error = -EIO; 193 goto done; 194 } 195 if (ioend->io_error) 196 goto done; 197 198 /* 199 * For unwritten extents we need to issue transactions to convert a 200 * range to normal written extens after the data I/O has finished. 201 */ 202 if (ioend->io_type == IO_UNWRITTEN) { 203 error = xfs_iomap_write_unwritten(ip, ioend->io_offset, 204 ioend->io_size); 205 if (error) { 206 ioend->io_error = -error; 207 goto done; 208 } 209 } 210 211 /* 212 * We might have to update the on-disk file size after extending 213 * writes. 214 */ 215 error = xfs_setfilesize(ioend); 216 ASSERT(!error || error == EAGAIN); 217 218 done: 219 /* 220 * If we didn't complete processing of the ioend, requeue it to the 221 * tail of the workqueue for another attempt later. Otherwise destroy 222 * it. 223 */ 224 if (error == EAGAIN) { 225 atomic_inc(&ioend->io_remaining); 226 xfs_finish_ioend(ioend); 227 /* ensure we don't spin on blocked ioends */ 228 delay(1); 229 } else { 230 xfs_destroy_ioend(ioend); 231 } 232 } 233 234 /* 235 * Call IO completion handling in caller context on the final put of an ioend. 236 */ 237 STATIC void 238 xfs_finish_ioend_sync( 239 struct xfs_ioend *ioend) 240 { 241 if (atomic_dec_and_test(&ioend->io_remaining)) 242 xfs_end_io(&ioend->io_work); 243 } 244 245 /* 246 * Allocate and initialise an IO completion structure. 247 * We need to track unwritten extent write completion here initially. 248 * We'll need to extend this for updating the ondisk inode size later 249 * (vs. incore size). 250 */ 251 STATIC xfs_ioend_t * 252 xfs_alloc_ioend( 253 struct inode *inode, 254 unsigned int type) 255 { 256 xfs_ioend_t *ioend; 257 258 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS); 259 260 /* 261 * Set the count to 1 initially, which will prevent an I/O 262 * completion callback from happening before we have started 263 * all the I/O from calling the completion routine too early. 264 */ 265 atomic_set(&ioend->io_remaining, 1); 266 ioend->io_isasync = 0; 267 ioend->io_error = 0; 268 ioend->io_list = NULL; 269 ioend->io_type = type; 270 ioend->io_inode = inode; 271 ioend->io_buffer_head = NULL; 272 ioend->io_buffer_tail = NULL; 273 ioend->io_offset = 0; 274 ioend->io_size = 0; 275 ioend->io_iocb = NULL; 276 ioend->io_result = 0; 277 278 INIT_WORK(&ioend->io_work, xfs_end_io); 279 return ioend; 280 } 281 282 STATIC int 283 xfs_map_blocks( 284 struct inode *inode, 285 loff_t offset, 286 struct xfs_bmbt_irec *imap, 287 int type, 288 int nonblocking) 289 { 290 struct xfs_inode *ip = XFS_I(inode); 291 struct xfs_mount *mp = ip->i_mount; 292 ssize_t count = 1 << inode->i_blkbits; 293 xfs_fileoff_t offset_fsb, end_fsb; 294 int error = 0; 295 int bmapi_flags = XFS_BMAPI_ENTIRE; 296 int nimaps = 1; 297 298 if (XFS_FORCED_SHUTDOWN(mp)) 299 return -XFS_ERROR(EIO); 300 301 if (type == IO_UNWRITTEN) 302 bmapi_flags |= XFS_BMAPI_IGSTATE; 303 304 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) { 305 if (nonblocking) 306 return -XFS_ERROR(EAGAIN); 307 xfs_ilock(ip, XFS_ILOCK_SHARED); 308 } 309 310 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 311 (ip->i_df.if_flags & XFS_IFEXTENTS)); 312 ASSERT(offset <= mp->m_maxioffset); 313 314 if (offset + count > mp->m_maxioffset) 315 count = mp->m_maxioffset - offset; 316 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count); 317 offset_fsb = XFS_B_TO_FSBT(mp, offset); 318 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, 319 imap, &nimaps, bmapi_flags); 320 xfs_iunlock(ip, XFS_ILOCK_SHARED); 321 322 if (error) 323 return -XFS_ERROR(error); 324 325 if (type == IO_DELALLOC && 326 (!nimaps || isnullstartblock(imap->br_startblock))) { 327 error = xfs_iomap_write_allocate(ip, offset, count, imap); 328 if (!error) 329 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap); 330 return -XFS_ERROR(error); 331 } 332 333 #ifdef DEBUG 334 if (type == IO_UNWRITTEN) { 335 ASSERT(nimaps); 336 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 337 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 338 } 339 #endif 340 if (nimaps) 341 trace_xfs_map_blocks_found(ip, offset, count, type, imap); 342 return 0; 343 } 344 345 STATIC int 346 xfs_imap_valid( 347 struct inode *inode, 348 struct xfs_bmbt_irec *imap, 349 xfs_off_t offset) 350 { 351 offset >>= inode->i_blkbits; 352 353 return offset >= imap->br_startoff && 354 offset < imap->br_startoff + imap->br_blockcount; 355 } 356 357 /* 358 * BIO completion handler for buffered IO. 359 */ 360 STATIC void 361 xfs_end_bio( 362 struct bio *bio, 363 int error) 364 { 365 xfs_ioend_t *ioend = bio->bi_private; 366 367 ASSERT(atomic_read(&bio->bi_cnt) >= 1); 368 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error; 369 370 /* Toss bio and pass work off to an xfsdatad thread */ 371 bio->bi_private = NULL; 372 bio->bi_end_io = NULL; 373 bio_put(bio); 374 375 xfs_finish_ioend(ioend); 376 } 377 378 STATIC void 379 xfs_submit_ioend_bio( 380 struct writeback_control *wbc, 381 xfs_ioend_t *ioend, 382 struct bio *bio) 383 { 384 atomic_inc(&ioend->io_remaining); 385 bio->bi_private = ioend; 386 bio->bi_end_io = xfs_end_bio; 387 388 /* 389 * If the I/O is beyond EOF we mark the inode dirty immediately 390 * but don't update the inode size until I/O completion. 391 */ 392 if (xfs_ioend_new_eof(ioend)) 393 xfs_mark_inode_dirty(XFS_I(ioend->io_inode)); 394 395 submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio); 396 } 397 398 STATIC struct bio * 399 xfs_alloc_ioend_bio( 400 struct buffer_head *bh) 401 { 402 int nvecs = bio_get_nr_vecs(bh->b_bdev); 403 struct bio *bio = bio_alloc(GFP_NOIO, nvecs); 404 405 ASSERT(bio->bi_private == NULL); 406 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9); 407 bio->bi_bdev = bh->b_bdev; 408 return bio; 409 } 410 411 STATIC void 412 xfs_start_buffer_writeback( 413 struct buffer_head *bh) 414 { 415 ASSERT(buffer_mapped(bh)); 416 ASSERT(buffer_locked(bh)); 417 ASSERT(!buffer_delay(bh)); 418 ASSERT(!buffer_unwritten(bh)); 419 420 mark_buffer_async_write(bh); 421 set_buffer_uptodate(bh); 422 clear_buffer_dirty(bh); 423 } 424 425 STATIC void 426 xfs_start_page_writeback( 427 struct page *page, 428 int clear_dirty, 429 int buffers) 430 { 431 ASSERT(PageLocked(page)); 432 ASSERT(!PageWriteback(page)); 433 if (clear_dirty) 434 clear_page_dirty_for_io(page); 435 set_page_writeback(page); 436 unlock_page(page); 437 /* If no buffers on the page are to be written, finish it here */ 438 if (!buffers) 439 end_page_writeback(page); 440 } 441 442 static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh) 443 { 444 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); 445 } 446 447 /* 448 * Submit all of the bios for all of the ioends we have saved up, covering the 449 * initial writepage page and also any probed pages. 450 * 451 * Because we may have multiple ioends spanning a page, we need to start 452 * writeback on all the buffers before we submit them for I/O. If we mark the 453 * buffers as we got, then we can end up with a page that only has buffers 454 * marked async write and I/O complete on can occur before we mark the other 455 * buffers async write. 456 * 457 * The end result of this is that we trip a bug in end_page_writeback() because 458 * we call it twice for the one page as the code in end_buffer_async_write() 459 * assumes that all buffers on the page are started at the same time. 460 * 461 * The fix is two passes across the ioend list - one to start writeback on the 462 * buffer_heads, and then submit them for I/O on the second pass. 463 */ 464 STATIC void 465 xfs_submit_ioend( 466 struct writeback_control *wbc, 467 xfs_ioend_t *ioend) 468 { 469 xfs_ioend_t *head = ioend; 470 xfs_ioend_t *next; 471 struct buffer_head *bh; 472 struct bio *bio; 473 sector_t lastblock = 0; 474 475 /* Pass 1 - start writeback */ 476 do { 477 next = ioend->io_list; 478 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) 479 xfs_start_buffer_writeback(bh); 480 } while ((ioend = next) != NULL); 481 482 /* Pass 2 - submit I/O */ 483 ioend = head; 484 do { 485 next = ioend->io_list; 486 bio = NULL; 487 488 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) { 489 490 if (!bio) { 491 retry: 492 bio = xfs_alloc_ioend_bio(bh); 493 } else if (bh->b_blocknr != lastblock + 1) { 494 xfs_submit_ioend_bio(wbc, ioend, bio); 495 goto retry; 496 } 497 498 if (bio_add_buffer(bio, bh) != bh->b_size) { 499 xfs_submit_ioend_bio(wbc, ioend, bio); 500 goto retry; 501 } 502 503 lastblock = bh->b_blocknr; 504 } 505 if (bio) 506 xfs_submit_ioend_bio(wbc, ioend, bio); 507 xfs_finish_ioend(ioend); 508 } while ((ioend = next) != NULL); 509 } 510 511 /* 512 * Cancel submission of all buffer_heads so far in this endio. 513 * Toss the endio too. Only ever called for the initial page 514 * in a writepage request, so only ever one page. 515 */ 516 STATIC void 517 xfs_cancel_ioend( 518 xfs_ioend_t *ioend) 519 { 520 xfs_ioend_t *next; 521 struct buffer_head *bh, *next_bh; 522 523 do { 524 next = ioend->io_list; 525 bh = ioend->io_buffer_head; 526 do { 527 next_bh = bh->b_private; 528 clear_buffer_async_write(bh); 529 unlock_buffer(bh); 530 } while ((bh = next_bh) != NULL); 531 532 mempool_free(ioend, xfs_ioend_pool); 533 } while ((ioend = next) != NULL); 534 } 535 536 /* 537 * Test to see if we've been building up a completion structure for 538 * earlier buffers -- if so, we try to append to this ioend if we 539 * can, otherwise we finish off any current ioend and start another. 540 * Return true if we've finished the given ioend. 541 */ 542 STATIC void 543 xfs_add_to_ioend( 544 struct inode *inode, 545 struct buffer_head *bh, 546 xfs_off_t offset, 547 unsigned int type, 548 xfs_ioend_t **result, 549 int need_ioend) 550 { 551 xfs_ioend_t *ioend = *result; 552 553 if (!ioend || need_ioend || type != ioend->io_type) { 554 xfs_ioend_t *previous = *result; 555 556 ioend = xfs_alloc_ioend(inode, type); 557 ioend->io_offset = offset; 558 ioend->io_buffer_head = bh; 559 ioend->io_buffer_tail = bh; 560 if (previous) 561 previous->io_list = ioend; 562 *result = ioend; 563 } else { 564 ioend->io_buffer_tail->b_private = bh; 565 ioend->io_buffer_tail = bh; 566 } 567 568 bh->b_private = NULL; 569 ioend->io_size += bh->b_size; 570 } 571 572 STATIC void 573 xfs_map_buffer( 574 struct inode *inode, 575 struct buffer_head *bh, 576 struct xfs_bmbt_irec *imap, 577 xfs_off_t offset) 578 { 579 sector_t bn; 580 struct xfs_mount *m = XFS_I(inode)->i_mount; 581 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff); 582 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock); 583 584 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 585 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 586 587 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) + 588 ((offset - iomap_offset) >> inode->i_blkbits); 589 590 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode))); 591 592 bh->b_blocknr = bn; 593 set_buffer_mapped(bh); 594 } 595 596 STATIC void 597 xfs_map_at_offset( 598 struct inode *inode, 599 struct buffer_head *bh, 600 struct xfs_bmbt_irec *imap, 601 xfs_off_t offset) 602 { 603 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 604 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 605 606 xfs_map_buffer(inode, bh, imap, offset); 607 set_buffer_mapped(bh); 608 clear_buffer_delay(bh); 609 clear_buffer_unwritten(bh); 610 } 611 612 /* 613 * Test if a given page is suitable for writing as part of an unwritten 614 * or delayed allocate extent. 615 */ 616 STATIC int 617 xfs_is_delayed_page( 618 struct page *page, 619 unsigned int type) 620 { 621 if (PageWriteback(page)) 622 return 0; 623 624 if (page->mapping && page_has_buffers(page)) { 625 struct buffer_head *bh, *head; 626 int acceptable = 0; 627 628 bh = head = page_buffers(page); 629 do { 630 if (buffer_unwritten(bh)) 631 acceptable = (type == IO_UNWRITTEN); 632 else if (buffer_delay(bh)) 633 acceptable = (type == IO_DELALLOC); 634 else if (buffer_dirty(bh) && buffer_mapped(bh)) 635 acceptable = (type == IO_OVERWRITE); 636 else 637 break; 638 } while ((bh = bh->b_this_page) != head); 639 640 if (acceptable) 641 return 1; 642 } 643 644 return 0; 645 } 646 647 /* 648 * Allocate & map buffers for page given the extent map. Write it out. 649 * except for the original page of a writepage, this is called on 650 * delalloc/unwritten pages only, for the original page it is possible 651 * that the page has no mapping at all. 652 */ 653 STATIC int 654 xfs_convert_page( 655 struct inode *inode, 656 struct page *page, 657 loff_t tindex, 658 struct xfs_bmbt_irec *imap, 659 xfs_ioend_t **ioendp, 660 struct writeback_control *wbc) 661 { 662 struct buffer_head *bh, *head; 663 xfs_off_t end_offset; 664 unsigned long p_offset; 665 unsigned int type; 666 int len, page_dirty; 667 int count = 0, done = 0, uptodate = 1; 668 xfs_off_t offset = page_offset(page); 669 670 if (page->index != tindex) 671 goto fail; 672 if (!trylock_page(page)) 673 goto fail; 674 if (PageWriteback(page)) 675 goto fail_unlock_page; 676 if (page->mapping != inode->i_mapping) 677 goto fail_unlock_page; 678 if (!xfs_is_delayed_page(page, (*ioendp)->io_type)) 679 goto fail_unlock_page; 680 681 /* 682 * page_dirty is initially a count of buffers on the page before 683 * EOF and is decremented as we move each into a cleanable state. 684 * 685 * Derivation: 686 * 687 * End offset is the highest offset that this page should represent. 688 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1)) 689 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and 690 * hence give us the correct page_dirty count. On any other page, 691 * it will be zero and in that case we need page_dirty to be the 692 * count of buffers on the page. 693 */ 694 end_offset = min_t(unsigned long long, 695 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, 696 i_size_read(inode)); 697 698 len = 1 << inode->i_blkbits; 699 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1), 700 PAGE_CACHE_SIZE); 701 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE; 702 page_dirty = p_offset / len; 703 704 bh = head = page_buffers(page); 705 do { 706 if (offset >= end_offset) 707 break; 708 if (!buffer_uptodate(bh)) 709 uptodate = 0; 710 if (!(PageUptodate(page) || buffer_uptodate(bh))) { 711 done = 1; 712 continue; 713 } 714 715 if (buffer_unwritten(bh) || buffer_delay(bh) || 716 buffer_mapped(bh)) { 717 if (buffer_unwritten(bh)) 718 type = IO_UNWRITTEN; 719 else if (buffer_delay(bh)) 720 type = IO_DELALLOC; 721 else 722 type = IO_OVERWRITE; 723 724 if (!xfs_imap_valid(inode, imap, offset)) { 725 done = 1; 726 continue; 727 } 728 729 lock_buffer(bh); 730 if (type != IO_OVERWRITE) 731 xfs_map_at_offset(inode, bh, imap, offset); 732 xfs_add_to_ioend(inode, bh, offset, type, 733 ioendp, done); 734 735 page_dirty--; 736 count++; 737 } else { 738 done = 1; 739 } 740 } while (offset += len, (bh = bh->b_this_page) != head); 741 742 if (uptodate && bh == head) 743 SetPageUptodate(page); 744 745 if (count) { 746 if (--wbc->nr_to_write <= 0 && 747 wbc->sync_mode == WB_SYNC_NONE) 748 done = 1; 749 } 750 xfs_start_page_writeback(page, !page_dirty, count); 751 752 return done; 753 fail_unlock_page: 754 unlock_page(page); 755 fail: 756 return 1; 757 } 758 759 /* 760 * Convert & write out a cluster of pages in the same extent as defined 761 * by mp and following the start page. 762 */ 763 STATIC void 764 xfs_cluster_write( 765 struct inode *inode, 766 pgoff_t tindex, 767 struct xfs_bmbt_irec *imap, 768 xfs_ioend_t **ioendp, 769 struct writeback_control *wbc, 770 pgoff_t tlast) 771 { 772 struct pagevec pvec; 773 int done = 0, i; 774 775 pagevec_init(&pvec, 0); 776 while (!done && tindex <= tlast) { 777 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1); 778 779 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len)) 780 break; 781 782 for (i = 0; i < pagevec_count(&pvec); i++) { 783 done = xfs_convert_page(inode, pvec.pages[i], tindex++, 784 imap, ioendp, wbc); 785 if (done) 786 break; 787 } 788 789 pagevec_release(&pvec); 790 cond_resched(); 791 } 792 } 793 794 STATIC void 795 xfs_vm_invalidatepage( 796 struct page *page, 797 unsigned long offset) 798 { 799 trace_xfs_invalidatepage(page->mapping->host, page, offset); 800 block_invalidatepage(page, offset); 801 } 802 803 /* 804 * If the page has delalloc buffers on it, we need to punch them out before we 805 * invalidate the page. If we don't, we leave a stale delalloc mapping on the 806 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read 807 * is done on that same region - the delalloc extent is returned when none is 808 * supposed to be there. 809 * 810 * We prevent this by truncating away the delalloc regions on the page before 811 * invalidating it. Because they are delalloc, we can do this without needing a 812 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this 813 * truncation without a transaction as there is no space left for block 814 * reservation (typically why we see a ENOSPC in writeback). 815 * 816 * This is not a performance critical path, so for now just do the punching a 817 * buffer head at a time. 818 */ 819 STATIC void 820 xfs_aops_discard_page( 821 struct page *page) 822 { 823 struct inode *inode = page->mapping->host; 824 struct xfs_inode *ip = XFS_I(inode); 825 struct buffer_head *bh, *head; 826 loff_t offset = page_offset(page); 827 828 if (!xfs_is_delayed_page(page, IO_DELALLOC)) 829 goto out_invalidate; 830 831 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 832 goto out_invalidate; 833 834 xfs_alert(ip->i_mount, 835 "page discard on page %p, inode 0x%llx, offset %llu.", 836 page, ip->i_ino, offset); 837 838 xfs_ilock(ip, XFS_ILOCK_EXCL); 839 bh = head = page_buffers(page); 840 do { 841 int error; 842 xfs_fileoff_t start_fsb; 843 844 if (!buffer_delay(bh)) 845 goto next_buffer; 846 847 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset); 848 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1); 849 if (error) { 850 /* something screwed, just bail */ 851 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { 852 xfs_alert(ip->i_mount, 853 "page discard unable to remove delalloc mapping."); 854 } 855 break; 856 } 857 next_buffer: 858 offset += 1 << inode->i_blkbits; 859 860 } while ((bh = bh->b_this_page) != head); 861 862 xfs_iunlock(ip, XFS_ILOCK_EXCL); 863 out_invalidate: 864 xfs_vm_invalidatepage(page, 0); 865 return; 866 } 867 868 /* 869 * Write out a dirty page. 870 * 871 * For delalloc space on the page we need to allocate space and flush it. 872 * For unwritten space on the page we need to start the conversion to 873 * regular allocated space. 874 * For any other dirty buffer heads on the page we should flush them. 875 */ 876 STATIC int 877 xfs_vm_writepage( 878 struct page *page, 879 struct writeback_control *wbc) 880 { 881 struct inode *inode = page->mapping->host; 882 struct buffer_head *bh, *head; 883 struct xfs_bmbt_irec imap; 884 xfs_ioend_t *ioend = NULL, *iohead = NULL; 885 loff_t offset; 886 unsigned int type; 887 __uint64_t end_offset; 888 pgoff_t end_index, last_index; 889 ssize_t len; 890 int err, imap_valid = 0, uptodate = 1; 891 int count = 0; 892 int nonblocking = 0; 893 894 trace_xfs_writepage(inode, page, 0); 895 896 ASSERT(page_has_buffers(page)); 897 898 /* 899 * Refuse to write the page out if we are called from reclaim context. 900 * 901 * This avoids stack overflows when called from deeply used stacks in 902 * random callers for direct reclaim or memcg reclaim. We explicitly 903 * allow reclaim from kswapd as the stack usage there is relatively low. 904 * 905 * This should never happen except in the case of a VM regression so 906 * warn about it. 907 */ 908 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == 909 PF_MEMALLOC)) 910 goto redirty; 911 912 /* 913 * Given that we do not allow direct reclaim to call us, we should 914 * never be called while in a filesystem transaction. 915 */ 916 if (WARN_ON(current->flags & PF_FSTRANS)) 917 goto redirty; 918 919 /* Is this page beyond the end of the file? */ 920 offset = i_size_read(inode); 921 end_index = offset >> PAGE_CACHE_SHIFT; 922 last_index = (offset - 1) >> PAGE_CACHE_SHIFT; 923 if (page->index >= end_index) { 924 if ((page->index >= end_index + 1) || 925 !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) { 926 unlock_page(page); 927 return 0; 928 } 929 } 930 931 end_offset = min_t(unsigned long long, 932 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, 933 offset); 934 len = 1 << inode->i_blkbits; 935 936 bh = head = page_buffers(page); 937 offset = page_offset(page); 938 type = IO_OVERWRITE; 939 940 if (wbc->sync_mode == WB_SYNC_NONE) 941 nonblocking = 1; 942 943 do { 944 int new_ioend = 0; 945 946 if (offset >= end_offset) 947 break; 948 if (!buffer_uptodate(bh)) 949 uptodate = 0; 950 951 /* 952 * set_page_dirty dirties all buffers in a page, independent 953 * of their state. The dirty state however is entirely 954 * meaningless for holes (!mapped && uptodate), so skip 955 * buffers covering holes here. 956 */ 957 if (!buffer_mapped(bh) && buffer_uptodate(bh)) { 958 imap_valid = 0; 959 continue; 960 } 961 962 if (buffer_unwritten(bh)) { 963 if (type != IO_UNWRITTEN) { 964 type = IO_UNWRITTEN; 965 imap_valid = 0; 966 } 967 } else if (buffer_delay(bh)) { 968 if (type != IO_DELALLOC) { 969 type = IO_DELALLOC; 970 imap_valid = 0; 971 } 972 } else if (buffer_uptodate(bh)) { 973 if (type != IO_OVERWRITE) { 974 type = IO_OVERWRITE; 975 imap_valid = 0; 976 } 977 } else { 978 if (PageUptodate(page)) { 979 ASSERT(buffer_mapped(bh)); 980 imap_valid = 0; 981 } 982 continue; 983 } 984 985 if (imap_valid) 986 imap_valid = xfs_imap_valid(inode, &imap, offset); 987 if (!imap_valid) { 988 /* 989 * If we didn't have a valid mapping then we need to 990 * put the new mapping into a separate ioend structure. 991 * This ensures non-contiguous extents always have 992 * separate ioends, which is particularly important 993 * for unwritten extent conversion at I/O completion 994 * time. 995 */ 996 new_ioend = 1; 997 err = xfs_map_blocks(inode, offset, &imap, type, 998 nonblocking); 999 if (err) 1000 goto error; 1001 imap_valid = xfs_imap_valid(inode, &imap, offset); 1002 } 1003 if (imap_valid) { 1004 lock_buffer(bh); 1005 if (type != IO_OVERWRITE) 1006 xfs_map_at_offset(inode, bh, &imap, offset); 1007 xfs_add_to_ioend(inode, bh, offset, type, &ioend, 1008 new_ioend); 1009 count++; 1010 } 1011 1012 if (!iohead) 1013 iohead = ioend; 1014 1015 } while (offset += len, ((bh = bh->b_this_page) != head)); 1016 1017 if (uptodate && bh == head) 1018 SetPageUptodate(page); 1019 1020 xfs_start_page_writeback(page, 1, count); 1021 1022 if (ioend && imap_valid) { 1023 xfs_off_t end_index; 1024 1025 end_index = imap.br_startoff + imap.br_blockcount; 1026 1027 /* to bytes */ 1028 end_index <<= inode->i_blkbits; 1029 1030 /* to pages */ 1031 end_index = (end_index - 1) >> PAGE_CACHE_SHIFT; 1032 1033 /* check against file size */ 1034 if (end_index > last_index) 1035 end_index = last_index; 1036 1037 xfs_cluster_write(inode, page->index + 1, &imap, &ioend, 1038 wbc, end_index); 1039 } 1040 1041 if (iohead) 1042 xfs_submit_ioend(wbc, iohead); 1043 1044 return 0; 1045 1046 error: 1047 if (iohead) 1048 xfs_cancel_ioend(iohead); 1049 1050 if (err == -EAGAIN) 1051 goto redirty; 1052 1053 xfs_aops_discard_page(page); 1054 ClearPageUptodate(page); 1055 unlock_page(page); 1056 return err; 1057 1058 redirty: 1059 redirty_page_for_writepage(wbc, page); 1060 unlock_page(page); 1061 return 0; 1062 } 1063 1064 STATIC int 1065 xfs_vm_writepages( 1066 struct address_space *mapping, 1067 struct writeback_control *wbc) 1068 { 1069 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED); 1070 return generic_writepages(mapping, wbc); 1071 } 1072 1073 /* 1074 * Called to move a page into cleanable state - and from there 1075 * to be released. The page should already be clean. We always 1076 * have buffer heads in this call. 1077 * 1078 * Returns 1 if the page is ok to release, 0 otherwise. 1079 */ 1080 STATIC int 1081 xfs_vm_releasepage( 1082 struct page *page, 1083 gfp_t gfp_mask) 1084 { 1085 int delalloc, unwritten; 1086 1087 trace_xfs_releasepage(page->mapping->host, page, 0); 1088 1089 xfs_count_page_state(page, &delalloc, &unwritten); 1090 1091 if (WARN_ON(delalloc)) 1092 return 0; 1093 if (WARN_ON(unwritten)) 1094 return 0; 1095 1096 return try_to_free_buffers(page); 1097 } 1098 1099 STATIC int 1100 __xfs_get_blocks( 1101 struct inode *inode, 1102 sector_t iblock, 1103 struct buffer_head *bh_result, 1104 int create, 1105 int direct) 1106 { 1107 struct xfs_inode *ip = XFS_I(inode); 1108 struct xfs_mount *mp = ip->i_mount; 1109 xfs_fileoff_t offset_fsb, end_fsb; 1110 int error = 0; 1111 int lockmode = 0; 1112 struct xfs_bmbt_irec imap; 1113 int nimaps = 1; 1114 xfs_off_t offset; 1115 ssize_t size; 1116 int new = 0; 1117 1118 if (XFS_FORCED_SHUTDOWN(mp)) 1119 return -XFS_ERROR(EIO); 1120 1121 offset = (xfs_off_t)iblock << inode->i_blkbits; 1122 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits)); 1123 size = bh_result->b_size; 1124 1125 if (!create && direct && offset >= i_size_read(inode)) 1126 return 0; 1127 1128 if (create) { 1129 lockmode = XFS_ILOCK_EXCL; 1130 xfs_ilock(ip, lockmode); 1131 } else { 1132 lockmode = xfs_ilock_map_shared(ip); 1133 } 1134 1135 ASSERT(offset <= mp->m_maxioffset); 1136 if (offset + size > mp->m_maxioffset) 1137 size = mp->m_maxioffset - offset; 1138 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size); 1139 offset_fsb = XFS_B_TO_FSBT(mp, offset); 1140 1141 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, 1142 &imap, &nimaps, XFS_BMAPI_ENTIRE); 1143 if (error) 1144 goto out_unlock; 1145 1146 if (create && 1147 (!nimaps || 1148 (imap.br_startblock == HOLESTARTBLOCK || 1149 imap.br_startblock == DELAYSTARTBLOCK))) { 1150 if (direct) { 1151 error = xfs_iomap_write_direct(ip, offset, size, 1152 &imap, nimaps); 1153 } else { 1154 error = xfs_iomap_write_delay(ip, offset, size, &imap); 1155 } 1156 if (error) 1157 goto out_unlock; 1158 1159 trace_xfs_get_blocks_alloc(ip, offset, size, 0, &imap); 1160 } else if (nimaps) { 1161 trace_xfs_get_blocks_found(ip, offset, size, 0, &imap); 1162 } else { 1163 trace_xfs_get_blocks_notfound(ip, offset, size); 1164 goto out_unlock; 1165 } 1166 xfs_iunlock(ip, lockmode); 1167 1168 if (imap.br_startblock != HOLESTARTBLOCK && 1169 imap.br_startblock != DELAYSTARTBLOCK) { 1170 /* 1171 * For unwritten extents do not report a disk address on 1172 * the read case (treat as if we're reading into a hole). 1173 */ 1174 if (create || !ISUNWRITTEN(&imap)) 1175 xfs_map_buffer(inode, bh_result, &imap, offset); 1176 if (create && ISUNWRITTEN(&imap)) { 1177 if (direct) 1178 bh_result->b_private = inode; 1179 set_buffer_unwritten(bh_result); 1180 } 1181 } 1182 1183 /* 1184 * If this is a realtime file, data may be on a different device. 1185 * to that pointed to from the buffer_head b_bdev currently. 1186 */ 1187 bh_result->b_bdev = xfs_find_bdev_for_inode(inode); 1188 1189 /* 1190 * If we previously allocated a block out beyond eof and we are now 1191 * coming back to use it then we will need to flag it as new even if it 1192 * has a disk address. 1193 * 1194 * With sub-block writes into unwritten extents we also need to mark 1195 * the buffer as new so that the unwritten parts of the buffer gets 1196 * correctly zeroed. 1197 */ 1198 if (create && 1199 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) || 1200 (offset >= i_size_read(inode)) || 1201 (new || ISUNWRITTEN(&imap)))) 1202 set_buffer_new(bh_result); 1203 1204 if (imap.br_startblock == DELAYSTARTBLOCK) { 1205 BUG_ON(direct); 1206 if (create) { 1207 set_buffer_uptodate(bh_result); 1208 set_buffer_mapped(bh_result); 1209 set_buffer_delay(bh_result); 1210 } 1211 } 1212 1213 /* 1214 * If this is O_DIRECT or the mpage code calling tell them how large 1215 * the mapping is, so that we can avoid repeated get_blocks calls. 1216 */ 1217 if (direct || size > (1 << inode->i_blkbits)) { 1218 xfs_off_t mapping_size; 1219 1220 mapping_size = imap.br_startoff + imap.br_blockcount - iblock; 1221 mapping_size <<= inode->i_blkbits; 1222 1223 ASSERT(mapping_size > 0); 1224 if (mapping_size > size) 1225 mapping_size = size; 1226 if (mapping_size > LONG_MAX) 1227 mapping_size = LONG_MAX; 1228 1229 bh_result->b_size = mapping_size; 1230 } 1231 1232 return 0; 1233 1234 out_unlock: 1235 xfs_iunlock(ip, lockmode); 1236 return -error; 1237 } 1238 1239 int 1240 xfs_get_blocks( 1241 struct inode *inode, 1242 sector_t iblock, 1243 struct buffer_head *bh_result, 1244 int create) 1245 { 1246 return __xfs_get_blocks(inode, iblock, bh_result, create, 0); 1247 } 1248 1249 STATIC int 1250 xfs_get_blocks_direct( 1251 struct inode *inode, 1252 sector_t iblock, 1253 struct buffer_head *bh_result, 1254 int create) 1255 { 1256 return __xfs_get_blocks(inode, iblock, bh_result, create, 1); 1257 } 1258 1259 /* 1260 * Complete a direct I/O write request. 1261 * 1262 * If the private argument is non-NULL __xfs_get_blocks signals us that we 1263 * need to issue a transaction to convert the range from unwritten to written 1264 * extents. In case this is regular synchronous I/O we just call xfs_end_io 1265 * to do this and we are done. But in case this was a successful AIO 1266 * request this handler is called from interrupt context, from which we 1267 * can't start transactions. In that case offload the I/O completion to 1268 * the workqueues we also use for buffered I/O completion. 1269 */ 1270 STATIC void 1271 xfs_end_io_direct_write( 1272 struct kiocb *iocb, 1273 loff_t offset, 1274 ssize_t size, 1275 void *private, 1276 int ret, 1277 bool is_async) 1278 { 1279 struct xfs_ioend *ioend = iocb->private; 1280 1281 /* 1282 * blockdev_direct_IO can return an error even after the I/O 1283 * completion handler was called. Thus we need to protect 1284 * against double-freeing. 1285 */ 1286 iocb->private = NULL; 1287 1288 ioend->io_offset = offset; 1289 ioend->io_size = size; 1290 ioend->io_iocb = iocb; 1291 ioend->io_result = ret; 1292 if (private && size > 0) 1293 ioend->io_type = IO_UNWRITTEN; 1294 1295 if (is_async) { 1296 ioend->io_isasync = 1; 1297 xfs_finish_ioend(ioend); 1298 } else { 1299 xfs_finish_ioend_sync(ioend); 1300 } 1301 } 1302 1303 STATIC ssize_t 1304 xfs_vm_direct_IO( 1305 int rw, 1306 struct kiocb *iocb, 1307 const struct iovec *iov, 1308 loff_t offset, 1309 unsigned long nr_segs) 1310 { 1311 struct inode *inode = iocb->ki_filp->f_mapping->host; 1312 struct block_device *bdev = xfs_find_bdev_for_inode(inode); 1313 ssize_t ret; 1314 1315 if (rw & WRITE) { 1316 iocb->private = xfs_alloc_ioend(inode, IO_DIRECT); 1317 1318 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov, 1319 offset, nr_segs, 1320 xfs_get_blocks_direct, 1321 xfs_end_io_direct_write, NULL, 0); 1322 if (ret != -EIOCBQUEUED && iocb->private) 1323 xfs_destroy_ioend(iocb->private); 1324 } else { 1325 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov, 1326 offset, nr_segs, 1327 xfs_get_blocks_direct, 1328 NULL, NULL, 0); 1329 } 1330 1331 return ret; 1332 } 1333 1334 STATIC void 1335 xfs_vm_write_failed( 1336 struct address_space *mapping, 1337 loff_t to) 1338 { 1339 struct inode *inode = mapping->host; 1340 1341 if (to > inode->i_size) { 1342 /* 1343 * punch out the delalloc blocks we have already allocated. We 1344 * don't call xfs_setattr() to do this as we may be in the 1345 * middle of a multi-iovec write and so the vfs inode->i_size 1346 * will not match the xfs ip->i_size and so it will zero too 1347 * much. Hence we jus truncate the page cache to zero what is 1348 * necessary and punch the delalloc blocks directly. 1349 */ 1350 struct xfs_inode *ip = XFS_I(inode); 1351 xfs_fileoff_t start_fsb; 1352 xfs_fileoff_t end_fsb; 1353 int error; 1354 1355 truncate_pagecache(inode, to, inode->i_size); 1356 1357 /* 1358 * Check if there are any blocks that are outside of i_size 1359 * that need to be trimmed back. 1360 */ 1361 start_fsb = XFS_B_TO_FSB(ip->i_mount, inode->i_size) + 1; 1362 end_fsb = XFS_B_TO_FSB(ip->i_mount, to); 1363 if (end_fsb <= start_fsb) 1364 return; 1365 1366 xfs_ilock(ip, XFS_ILOCK_EXCL); 1367 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1368 end_fsb - start_fsb); 1369 if (error) { 1370 /* something screwed, just bail */ 1371 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { 1372 xfs_alert(ip->i_mount, 1373 "xfs_vm_write_failed: unable to clean up ino %lld", 1374 ip->i_ino); 1375 } 1376 } 1377 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1378 } 1379 } 1380 1381 STATIC int 1382 xfs_vm_write_begin( 1383 struct file *file, 1384 struct address_space *mapping, 1385 loff_t pos, 1386 unsigned len, 1387 unsigned flags, 1388 struct page **pagep, 1389 void **fsdata) 1390 { 1391 int ret; 1392 1393 ret = block_write_begin(mapping, pos, len, flags | AOP_FLAG_NOFS, 1394 pagep, xfs_get_blocks); 1395 if (unlikely(ret)) 1396 xfs_vm_write_failed(mapping, pos + len); 1397 return ret; 1398 } 1399 1400 STATIC int 1401 xfs_vm_write_end( 1402 struct file *file, 1403 struct address_space *mapping, 1404 loff_t pos, 1405 unsigned len, 1406 unsigned copied, 1407 struct page *page, 1408 void *fsdata) 1409 { 1410 int ret; 1411 1412 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata); 1413 if (unlikely(ret < len)) 1414 xfs_vm_write_failed(mapping, pos + len); 1415 return ret; 1416 } 1417 1418 STATIC sector_t 1419 xfs_vm_bmap( 1420 struct address_space *mapping, 1421 sector_t block) 1422 { 1423 struct inode *inode = (struct inode *)mapping->host; 1424 struct xfs_inode *ip = XFS_I(inode); 1425 1426 trace_xfs_vm_bmap(XFS_I(inode)); 1427 xfs_ilock(ip, XFS_IOLOCK_SHARED); 1428 xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF); 1429 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 1430 return generic_block_bmap(mapping, block, xfs_get_blocks); 1431 } 1432 1433 STATIC int 1434 xfs_vm_readpage( 1435 struct file *unused, 1436 struct page *page) 1437 { 1438 return mpage_readpage(page, xfs_get_blocks); 1439 } 1440 1441 STATIC int 1442 xfs_vm_readpages( 1443 struct file *unused, 1444 struct address_space *mapping, 1445 struct list_head *pages, 1446 unsigned nr_pages) 1447 { 1448 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks); 1449 } 1450 1451 const struct address_space_operations xfs_address_space_operations = { 1452 .readpage = xfs_vm_readpage, 1453 .readpages = xfs_vm_readpages, 1454 .writepage = xfs_vm_writepage, 1455 .writepages = xfs_vm_writepages, 1456 .releasepage = xfs_vm_releasepage, 1457 .invalidatepage = xfs_vm_invalidatepage, 1458 .write_begin = xfs_vm_write_begin, 1459 .write_end = xfs_vm_write_end, 1460 .bmap = xfs_vm_bmap, 1461 .direct_IO = xfs_vm_direct_IO, 1462 .migratepage = buffer_migrate_page, 1463 .is_partially_uptodate = block_is_partially_uptodate, 1464 .error_remove_page = generic_error_remove_page, 1465 }; 1466