xref: /linux/fs/xfs/xfs_aops.c (revision 068df0f34e81bc06c5eb5012ec2eda25624e87aa)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_bit.h"
20 #include "xfs_log.h"
21 #include "xfs_inum.h"
22 #include "xfs_sb.h"
23 #include "xfs_ag.h"
24 #include "xfs_trans.h"
25 #include "xfs_mount.h"
26 #include "xfs_bmap_btree.h"
27 #include "xfs_dinode.h"
28 #include "xfs_inode.h"
29 #include "xfs_alloc.h"
30 #include "xfs_error.h"
31 #include "xfs_rw.h"
32 #include "xfs_iomap.h"
33 #include "xfs_vnodeops.h"
34 #include "xfs_trace.h"
35 #include "xfs_bmap.h"
36 #include <linux/gfp.h>
37 #include <linux/mpage.h>
38 #include <linux/pagevec.h>
39 #include <linux/writeback.h>
40 
41 void
42 xfs_count_page_state(
43 	struct page		*page,
44 	int			*delalloc,
45 	int			*unwritten)
46 {
47 	struct buffer_head	*bh, *head;
48 
49 	*delalloc = *unwritten = 0;
50 
51 	bh = head = page_buffers(page);
52 	do {
53 		if (buffer_unwritten(bh))
54 			(*unwritten) = 1;
55 		else if (buffer_delay(bh))
56 			(*delalloc) = 1;
57 	} while ((bh = bh->b_this_page) != head);
58 }
59 
60 STATIC struct block_device *
61 xfs_find_bdev_for_inode(
62 	struct inode		*inode)
63 {
64 	struct xfs_inode	*ip = XFS_I(inode);
65 	struct xfs_mount	*mp = ip->i_mount;
66 
67 	if (XFS_IS_REALTIME_INODE(ip))
68 		return mp->m_rtdev_targp->bt_bdev;
69 	else
70 		return mp->m_ddev_targp->bt_bdev;
71 }
72 
73 /*
74  * We're now finished for good with this ioend structure.
75  * Update the page state via the associated buffer_heads,
76  * release holds on the inode and bio, and finally free
77  * up memory.  Do not use the ioend after this.
78  */
79 STATIC void
80 xfs_destroy_ioend(
81 	xfs_ioend_t		*ioend)
82 {
83 	struct buffer_head	*bh, *next;
84 
85 	for (bh = ioend->io_buffer_head; bh; bh = next) {
86 		next = bh->b_private;
87 		bh->b_end_io(bh, !ioend->io_error);
88 	}
89 
90 	if (ioend->io_iocb) {
91 		if (ioend->io_isasync) {
92 			aio_complete(ioend->io_iocb, ioend->io_error ?
93 					ioend->io_error : ioend->io_result, 0);
94 		}
95 		inode_dio_done(ioend->io_inode);
96 	}
97 
98 	mempool_free(ioend, xfs_ioend_pool);
99 }
100 
101 /*
102  * If the end of the current ioend is beyond the current EOF,
103  * return the new EOF value, otherwise zero.
104  */
105 STATIC xfs_fsize_t
106 xfs_ioend_new_eof(
107 	xfs_ioend_t		*ioend)
108 {
109 	xfs_inode_t		*ip = XFS_I(ioend->io_inode);
110 	xfs_fsize_t		isize;
111 	xfs_fsize_t		bsize;
112 
113 	bsize = ioend->io_offset + ioend->io_size;
114 	isize = MAX(ip->i_size, ip->i_new_size);
115 	isize = MIN(isize, bsize);
116 	return isize > ip->i_d.di_size ? isize : 0;
117 }
118 
119 /*
120  * Fast and loose check if this write could update the on-disk inode size.
121  */
122 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
123 {
124 	return ioend->io_offset + ioend->io_size >
125 		XFS_I(ioend->io_inode)->i_d.di_size;
126 }
127 
128 /*
129  * Update on-disk file size now that data has been written to disk.  The
130  * current in-memory file size is i_size.  If a write is beyond eof i_new_size
131  * will be the intended file size until i_size is updated.  If this write does
132  * not extend all the way to the valid file size then restrict this update to
133  * the end of the write.
134  *
135  * This function does not block as blocking on the inode lock in IO completion
136  * can lead to IO completion order dependency deadlocks.. If it can't get the
137  * inode ilock it will return EAGAIN. Callers must handle this.
138  */
139 STATIC int
140 xfs_setfilesize(
141 	xfs_ioend_t		*ioend)
142 {
143 	xfs_inode_t		*ip = XFS_I(ioend->io_inode);
144 	xfs_fsize_t		isize;
145 
146 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
147 		return EAGAIN;
148 
149 	isize = xfs_ioend_new_eof(ioend);
150 	if (isize) {
151 		trace_xfs_setfilesize(ip, ioend->io_offset, ioend->io_size);
152 		ip->i_d.di_size = isize;
153 		xfs_mark_inode_dirty(ip);
154 	}
155 
156 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
157 	return 0;
158 }
159 
160 /*
161  * Schedule IO completion handling on the final put of an ioend.
162  *
163  * If there is no work to do we might as well call it a day and free the
164  * ioend right now.
165  */
166 STATIC void
167 xfs_finish_ioend(
168 	struct xfs_ioend	*ioend)
169 {
170 	if (atomic_dec_and_test(&ioend->io_remaining)) {
171 		if (ioend->io_type == IO_UNWRITTEN)
172 			queue_work(xfsconvertd_workqueue, &ioend->io_work);
173 		else if (xfs_ioend_is_append(ioend))
174 			queue_work(xfsdatad_workqueue, &ioend->io_work);
175 		else
176 			xfs_destroy_ioend(ioend);
177 	}
178 }
179 
180 /*
181  * IO write completion.
182  */
183 STATIC void
184 xfs_end_io(
185 	struct work_struct *work)
186 {
187 	xfs_ioend_t	*ioend = container_of(work, xfs_ioend_t, io_work);
188 	struct xfs_inode *ip = XFS_I(ioend->io_inode);
189 	int		error = 0;
190 
191 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
192 		ioend->io_error = -EIO;
193 		goto done;
194 	}
195 	if (ioend->io_error)
196 		goto done;
197 
198 	/*
199 	 * For unwritten extents we need to issue transactions to convert a
200 	 * range to normal written extens after the data I/O has finished.
201 	 */
202 	if (ioend->io_type == IO_UNWRITTEN) {
203 		error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
204 						 ioend->io_size);
205 		if (error) {
206 			ioend->io_error = -error;
207 			goto done;
208 		}
209 	}
210 
211 	/*
212 	 * We might have to update the on-disk file size after extending
213 	 * writes.
214 	 */
215 	error = xfs_setfilesize(ioend);
216 	ASSERT(!error || error == EAGAIN);
217 
218 done:
219 	/*
220 	 * If we didn't complete processing of the ioend, requeue it to the
221 	 * tail of the workqueue for another attempt later. Otherwise destroy
222 	 * it.
223 	 */
224 	if (error == EAGAIN) {
225 		atomic_inc(&ioend->io_remaining);
226 		xfs_finish_ioend(ioend);
227 		/* ensure we don't spin on blocked ioends */
228 		delay(1);
229 	} else {
230 		xfs_destroy_ioend(ioend);
231 	}
232 }
233 
234 /*
235  * Call IO completion handling in caller context on the final put of an ioend.
236  */
237 STATIC void
238 xfs_finish_ioend_sync(
239 	struct xfs_ioend	*ioend)
240 {
241 	if (atomic_dec_and_test(&ioend->io_remaining))
242 		xfs_end_io(&ioend->io_work);
243 }
244 
245 /*
246  * Allocate and initialise an IO completion structure.
247  * We need to track unwritten extent write completion here initially.
248  * We'll need to extend this for updating the ondisk inode size later
249  * (vs. incore size).
250  */
251 STATIC xfs_ioend_t *
252 xfs_alloc_ioend(
253 	struct inode		*inode,
254 	unsigned int		type)
255 {
256 	xfs_ioend_t		*ioend;
257 
258 	ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
259 
260 	/*
261 	 * Set the count to 1 initially, which will prevent an I/O
262 	 * completion callback from happening before we have started
263 	 * all the I/O from calling the completion routine too early.
264 	 */
265 	atomic_set(&ioend->io_remaining, 1);
266 	ioend->io_isasync = 0;
267 	ioend->io_error = 0;
268 	ioend->io_list = NULL;
269 	ioend->io_type = type;
270 	ioend->io_inode = inode;
271 	ioend->io_buffer_head = NULL;
272 	ioend->io_buffer_tail = NULL;
273 	ioend->io_offset = 0;
274 	ioend->io_size = 0;
275 	ioend->io_iocb = NULL;
276 	ioend->io_result = 0;
277 
278 	INIT_WORK(&ioend->io_work, xfs_end_io);
279 	return ioend;
280 }
281 
282 STATIC int
283 xfs_map_blocks(
284 	struct inode		*inode,
285 	loff_t			offset,
286 	struct xfs_bmbt_irec	*imap,
287 	int			type,
288 	int			nonblocking)
289 {
290 	struct xfs_inode	*ip = XFS_I(inode);
291 	struct xfs_mount	*mp = ip->i_mount;
292 	ssize_t			count = 1 << inode->i_blkbits;
293 	xfs_fileoff_t		offset_fsb, end_fsb;
294 	int			error = 0;
295 	int			bmapi_flags = XFS_BMAPI_ENTIRE;
296 	int			nimaps = 1;
297 
298 	if (XFS_FORCED_SHUTDOWN(mp))
299 		return -XFS_ERROR(EIO);
300 
301 	if (type == IO_UNWRITTEN)
302 		bmapi_flags |= XFS_BMAPI_IGSTATE;
303 
304 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
305 		if (nonblocking)
306 			return -XFS_ERROR(EAGAIN);
307 		xfs_ilock(ip, XFS_ILOCK_SHARED);
308 	}
309 
310 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
311 	       (ip->i_df.if_flags & XFS_IFEXTENTS));
312 	ASSERT(offset <= mp->m_maxioffset);
313 
314 	if (offset + count > mp->m_maxioffset)
315 		count = mp->m_maxioffset - offset;
316 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
317 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
318 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
319 				imap, &nimaps, bmapi_flags);
320 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
321 
322 	if (error)
323 		return -XFS_ERROR(error);
324 
325 	if (type == IO_DELALLOC &&
326 	    (!nimaps || isnullstartblock(imap->br_startblock))) {
327 		error = xfs_iomap_write_allocate(ip, offset, count, imap);
328 		if (!error)
329 			trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
330 		return -XFS_ERROR(error);
331 	}
332 
333 #ifdef DEBUG
334 	if (type == IO_UNWRITTEN) {
335 		ASSERT(nimaps);
336 		ASSERT(imap->br_startblock != HOLESTARTBLOCK);
337 		ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
338 	}
339 #endif
340 	if (nimaps)
341 		trace_xfs_map_blocks_found(ip, offset, count, type, imap);
342 	return 0;
343 }
344 
345 STATIC int
346 xfs_imap_valid(
347 	struct inode		*inode,
348 	struct xfs_bmbt_irec	*imap,
349 	xfs_off_t		offset)
350 {
351 	offset >>= inode->i_blkbits;
352 
353 	return offset >= imap->br_startoff &&
354 		offset < imap->br_startoff + imap->br_blockcount;
355 }
356 
357 /*
358  * BIO completion handler for buffered IO.
359  */
360 STATIC void
361 xfs_end_bio(
362 	struct bio		*bio,
363 	int			error)
364 {
365 	xfs_ioend_t		*ioend = bio->bi_private;
366 
367 	ASSERT(atomic_read(&bio->bi_cnt) >= 1);
368 	ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
369 
370 	/* Toss bio and pass work off to an xfsdatad thread */
371 	bio->bi_private = NULL;
372 	bio->bi_end_io = NULL;
373 	bio_put(bio);
374 
375 	xfs_finish_ioend(ioend);
376 }
377 
378 STATIC void
379 xfs_submit_ioend_bio(
380 	struct writeback_control *wbc,
381 	xfs_ioend_t		*ioend,
382 	struct bio		*bio)
383 {
384 	atomic_inc(&ioend->io_remaining);
385 	bio->bi_private = ioend;
386 	bio->bi_end_io = xfs_end_bio;
387 
388 	/*
389 	 * If the I/O is beyond EOF we mark the inode dirty immediately
390 	 * but don't update the inode size until I/O completion.
391 	 */
392 	if (xfs_ioend_new_eof(ioend))
393 		xfs_mark_inode_dirty(XFS_I(ioend->io_inode));
394 
395 	submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
396 }
397 
398 STATIC struct bio *
399 xfs_alloc_ioend_bio(
400 	struct buffer_head	*bh)
401 {
402 	int			nvecs = bio_get_nr_vecs(bh->b_bdev);
403 	struct bio		*bio = bio_alloc(GFP_NOIO, nvecs);
404 
405 	ASSERT(bio->bi_private == NULL);
406 	bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
407 	bio->bi_bdev = bh->b_bdev;
408 	return bio;
409 }
410 
411 STATIC void
412 xfs_start_buffer_writeback(
413 	struct buffer_head	*bh)
414 {
415 	ASSERT(buffer_mapped(bh));
416 	ASSERT(buffer_locked(bh));
417 	ASSERT(!buffer_delay(bh));
418 	ASSERT(!buffer_unwritten(bh));
419 
420 	mark_buffer_async_write(bh);
421 	set_buffer_uptodate(bh);
422 	clear_buffer_dirty(bh);
423 }
424 
425 STATIC void
426 xfs_start_page_writeback(
427 	struct page		*page,
428 	int			clear_dirty,
429 	int			buffers)
430 {
431 	ASSERT(PageLocked(page));
432 	ASSERT(!PageWriteback(page));
433 	if (clear_dirty)
434 		clear_page_dirty_for_io(page);
435 	set_page_writeback(page);
436 	unlock_page(page);
437 	/* If no buffers on the page are to be written, finish it here */
438 	if (!buffers)
439 		end_page_writeback(page);
440 }
441 
442 static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
443 {
444 	return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
445 }
446 
447 /*
448  * Submit all of the bios for all of the ioends we have saved up, covering the
449  * initial writepage page and also any probed pages.
450  *
451  * Because we may have multiple ioends spanning a page, we need to start
452  * writeback on all the buffers before we submit them for I/O. If we mark the
453  * buffers as we got, then we can end up with a page that only has buffers
454  * marked async write and I/O complete on can occur before we mark the other
455  * buffers async write.
456  *
457  * The end result of this is that we trip a bug in end_page_writeback() because
458  * we call it twice for the one page as the code in end_buffer_async_write()
459  * assumes that all buffers on the page are started at the same time.
460  *
461  * The fix is two passes across the ioend list - one to start writeback on the
462  * buffer_heads, and then submit them for I/O on the second pass.
463  */
464 STATIC void
465 xfs_submit_ioend(
466 	struct writeback_control *wbc,
467 	xfs_ioend_t		*ioend)
468 {
469 	xfs_ioend_t		*head = ioend;
470 	xfs_ioend_t		*next;
471 	struct buffer_head	*bh;
472 	struct bio		*bio;
473 	sector_t		lastblock = 0;
474 
475 	/* Pass 1 - start writeback */
476 	do {
477 		next = ioend->io_list;
478 		for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
479 			xfs_start_buffer_writeback(bh);
480 	} while ((ioend = next) != NULL);
481 
482 	/* Pass 2 - submit I/O */
483 	ioend = head;
484 	do {
485 		next = ioend->io_list;
486 		bio = NULL;
487 
488 		for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
489 
490 			if (!bio) {
491  retry:
492 				bio = xfs_alloc_ioend_bio(bh);
493 			} else if (bh->b_blocknr != lastblock + 1) {
494 				xfs_submit_ioend_bio(wbc, ioend, bio);
495 				goto retry;
496 			}
497 
498 			if (bio_add_buffer(bio, bh) != bh->b_size) {
499 				xfs_submit_ioend_bio(wbc, ioend, bio);
500 				goto retry;
501 			}
502 
503 			lastblock = bh->b_blocknr;
504 		}
505 		if (bio)
506 			xfs_submit_ioend_bio(wbc, ioend, bio);
507 		xfs_finish_ioend(ioend);
508 	} while ((ioend = next) != NULL);
509 }
510 
511 /*
512  * Cancel submission of all buffer_heads so far in this endio.
513  * Toss the endio too.  Only ever called for the initial page
514  * in a writepage request, so only ever one page.
515  */
516 STATIC void
517 xfs_cancel_ioend(
518 	xfs_ioend_t		*ioend)
519 {
520 	xfs_ioend_t		*next;
521 	struct buffer_head	*bh, *next_bh;
522 
523 	do {
524 		next = ioend->io_list;
525 		bh = ioend->io_buffer_head;
526 		do {
527 			next_bh = bh->b_private;
528 			clear_buffer_async_write(bh);
529 			unlock_buffer(bh);
530 		} while ((bh = next_bh) != NULL);
531 
532 		mempool_free(ioend, xfs_ioend_pool);
533 	} while ((ioend = next) != NULL);
534 }
535 
536 /*
537  * Test to see if we've been building up a completion structure for
538  * earlier buffers -- if so, we try to append to this ioend if we
539  * can, otherwise we finish off any current ioend and start another.
540  * Return true if we've finished the given ioend.
541  */
542 STATIC void
543 xfs_add_to_ioend(
544 	struct inode		*inode,
545 	struct buffer_head	*bh,
546 	xfs_off_t		offset,
547 	unsigned int		type,
548 	xfs_ioend_t		**result,
549 	int			need_ioend)
550 {
551 	xfs_ioend_t		*ioend = *result;
552 
553 	if (!ioend || need_ioend || type != ioend->io_type) {
554 		xfs_ioend_t	*previous = *result;
555 
556 		ioend = xfs_alloc_ioend(inode, type);
557 		ioend->io_offset = offset;
558 		ioend->io_buffer_head = bh;
559 		ioend->io_buffer_tail = bh;
560 		if (previous)
561 			previous->io_list = ioend;
562 		*result = ioend;
563 	} else {
564 		ioend->io_buffer_tail->b_private = bh;
565 		ioend->io_buffer_tail = bh;
566 	}
567 
568 	bh->b_private = NULL;
569 	ioend->io_size += bh->b_size;
570 }
571 
572 STATIC void
573 xfs_map_buffer(
574 	struct inode		*inode,
575 	struct buffer_head	*bh,
576 	struct xfs_bmbt_irec	*imap,
577 	xfs_off_t		offset)
578 {
579 	sector_t		bn;
580 	struct xfs_mount	*m = XFS_I(inode)->i_mount;
581 	xfs_off_t		iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
582 	xfs_daddr_t		iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
583 
584 	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
585 	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
586 
587 	bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
588 	      ((offset - iomap_offset) >> inode->i_blkbits);
589 
590 	ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
591 
592 	bh->b_blocknr = bn;
593 	set_buffer_mapped(bh);
594 }
595 
596 STATIC void
597 xfs_map_at_offset(
598 	struct inode		*inode,
599 	struct buffer_head	*bh,
600 	struct xfs_bmbt_irec	*imap,
601 	xfs_off_t		offset)
602 {
603 	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
604 	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
605 
606 	xfs_map_buffer(inode, bh, imap, offset);
607 	set_buffer_mapped(bh);
608 	clear_buffer_delay(bh);
609 	clear_buffer_unwritten(bh);
610 }
611 
612 /*
613  * Test if a given page is suitable for writing as part of an unwritten
614  * or delayed allocate extent.
615  */
616 STATIC int
617 xfs_is_delayed_page(
618 	struct page		*page,
619 	unsigned int		type)
620 {
621 	if (PageWriteback(page))
622 		return 0;
623 
624 	if (page->mapping && page_has_buffers(page)) {
625 		struct buffer_head	*bh, *head;
626 		int			acceptable = 0;
627 
628 		bh = head = page_buffers(page);
629 		do {
630 			if (buffer_unwritten(bh))
631 				acceptable = (type == IO_UNWRITTEN);
632 			else if (buffer_delay(bh))
633 				acceptable = (type == IO_DELALLOC);
634 			else if (buffer_dirty(bh) && buffer_mapped(bh))
635 				acceptable = (type == IO_OVERWRITE);
636 			else
637 				break;
638 		} while ((bh = bh->b_this_page) != head);
639 
640 		if (acceptable)
641 			return 1;
642 	}
643 
644 	return 0;
645 }
646 
647 /*
648  * Allocate & map buffers for page given the extent map. Write it out.
649  * except for the original page of a writepage, this is called on
650  * delalloc/unwritten pages only, for the original page it is possible
651  * that the page has no mapping at all.
652  */
653 STATIC int
654 xfs_convert_page(
655 	struct inode		*inode,
656 	struct page		*page,
657 	loff_t			tindex,
658 	struct xfs_bmbt_irec	*imap,
659 	xfs_ioend_t		**ioendp,
660 	struct writeback_control *wbc)
661 {
662 	struct buffer_head	*bh, *head;
663 	xfs_off_t		end_offset;
664 	unsigned long		p_offset;
665 	unsigned int		type;
666 	int			len, page_dirty;
667 	int			count = 0, done = 0, uptodate = 1;
668  	xfs_off_t		offset = page_offset(page);
669 
670 	if (page->index != tindex)
671 		goto fail;
672 	if (!trylock_page(page))
673 		goto fail;
674 	if (PageWriteback(page))
675 		goto fail_unlock_page;
676 	if (page->mapping != inode->i_mapping)
677 		goto fail_unlock_page;
678 	if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
679 		goto fail_unlock_page;
680 
681 	/*
682 	 * page_dirty is initially a count of buffers on the page before
683 	 * EOF and is decremented as we move each into a cleanable state.
684 	 *
685 	 * Derivation:
686 	 *
687 	 * End offset is the highest offset that this page should represent.
688 	 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
689 	 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
690 	 * hence give us the correct page_dirty count. On any other page,
691 	 * it will be zero and in that case we need page_dirty to be the
692 	 * count of buffers on the page.
693 	 */
694 	end_offset = min_t(unsigned long long,
695 			(xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
696 			i_size_read(inode));
697 
698 	len = 1 << inode->i_blkbits;
699 	p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
700 					PAGE_CACHE_SIZE);
701 	p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
702 	page_dirty = p_offset / len;
703 
704 	bh = head = page_buffers(page);
705 	do {
706 		if (offset >= end_offset)
707 			break;
708 		if (!buffer_uptodate(bh))
709 			uptodate = 0;
710 		if (!(PageUptodate(page) || buffer_uptodate(bh))) {
711 			done = 1;
712 			continue;
713 		}
714 
715 		if (buffer_unwritten(bh) || buffer_delay(bh) ||
716 		    buffer_mapped(bh)) {
717 			if (buffer_unwritten(bh))
718 				type = IO_UNWRITTEN;
719 			else if (buffer_delay(bh))
720 				type = IO_DELALLOC;
721 			else
722 				type = IO_OVERWRITE;
723 
724 			if (!xfs_imap_valid(inode, imap, offset)) {
725 				done = 1;
726 				continue;
727 			}
728 
729 			lock_buffer(bh);
730 			if (type != IO_OVERWRITE)
731 				xfs_map_at_offset(inode, bh, imap, offset);
732 			xfs_add_to_ioend(inode, bh, offset, type,
733 					 ioendp, done);
734 
735 			page_dirty--;
736 			count++;
737 		} else {
738 			done = 1;
739 		}
740 	} while (offset += len, (bh = bh->b_this_page) != head);
741 
742 	if (uptodate && bh == head)
743 		SetPageUptodate(page);
744 
745 	if (count) {
746 		if (--wbc->nr_to_write <= 0 &&
747 		    wbc->sync_mode == WB_SYNC_NONE)
748 			done = 1;
749 	}
750 	xfs_start_page_writeback(page, !page_dirty, count);
751 
752 	return done;
753  fail_unlock_page:
754 	unlock_page(page);
755  fail:
756 	return 1;
757 }
758 
759 /*
760  * Convert & write out a cluster of pages in the same extent as defined
761  * by mp and following the start page.
762  */
763 STATIC void
764 xfs_cluster_write(
765 	struct inode		*inode,
766 	pgoff_t			tindex,
767 	struct xfs_bmbt_irec	*imap,
768 	xfs_ioend_t		**ioendp,
769 	struct writeback_control *wbc,
770 	pgoff_t			tlast)
771 {
772 	struct pagevec		pvec;
773 	int			done = 0, i;
774 
775 	pagevec_init(&pvec, 0);
776 	while (!done && tindex <= tlast) {
777 		unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
778 
779 		if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
780 			break;
781 
782 		for (i = 0; i < pagevec_count(&pvec); i++) {
783 			done = xfs_convert_page(inode, pvec.pages[i], tindex++,
784 					imap, ioendp, wbc);
785 			if (done)
786 				break;
787 		}
788 
789 		pagevec_release(&pvec);
790 		cond_resched();
791 	}
792 }
793 
794 STATIC void
795 xfs_vm_invalidatepage(
796 	struct page		*page,
797 	unsigned long		offset)
798 {
799 	trace_xfs_invalidatepage(page->mapping->host, page, offset);
800 	block_invalidatepage(page, offset);
801 }
802 
803 /*
804  * If the page has delalloc buffers on it, we need to punch them out before we
805  * invalidate the page. If we don't, we leave a stale delalloc mapping on the
806  * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
807  * is done on that same region - the delalloc extent is returned when none is
808  * supposed to be there.
809  *
810  * We prevent this by truncating away the delalloc regions on the page before
811  * invalidating it. Because they are delalloc, we can do this without needing a
812  * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
813  * truncation without a transaction as there is no space left for block
814  * reservation (typically why we see a ENOSPC in writeback).
815  *
816  * This is not a performance critical path, so for now just do the punching a
817  * buffer head at a time.
818  */
819 STATIC void
820 xfs_aops_discard_page(
821 	struct page		*page)
822 {
823 	struct inode		*inode = page->mapping->host;
824 	struct xfs_inode	*ip = XFS_I(inode);
825 	struct buffer_head	*bh, *head;
826 	loff_t			offset = page_offset(page);
827 
828 	if (!xfs_is_delayed_page(page, IO_DELALLOC))
829 		goto out_invalidate;
830 
831 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
832 		goto out_invalidate;
833 
834 	xfs_alert(ip->i_mount,
835 		"page discard on page %p, inode 0x%llx, offset %llu.",
836 			page, ip->i_ino, offset);
837 
838 	xfs_ilock(ip, XFS_ILOCK_EXCL);
839 	bh = head = page_buffers(page);
840 	do {
841 		int		error;
842 		xfs_fileoff_t	start_fsb;
843 
844 		if (!buffer_delay(bh))
845 			goto next_buffer;
846 
847 		start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
848 		error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
849 		if (error) {
850 			/* something screwed, just bail */
851 			if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
852 				xfs_alert(ip->i_mount,
853 			"page discard unable to remove delalloc mapping.");
854 			}
855 			break;
856 		}
857 next_buffer:
858 		offset += 1 << inode->i_blkbits;
859 
860 	} while ((bh = bh->b_this_page) != head);
861 
862 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
863 out_invalidate:
864 	xfs_vm_invalidatepage(page, 0);
865 	return;
866 }
867 
868 /*
869  * Write out a dirty page.
870  *
871  * For delalloc space on the page we need to allocate space and flush it.
872  * For unwritten space on the page we need to start the conversion to
873  * regular allocated space.
874  * For any other dirty buffer heads on the page we should flush them.
875  */
876 STATIC int
877 xfs_vm_writepage(
878 	struct page		*page,
879 	struct writeback_control *wbc)
880 {
881 	struct inode		*inode = page->mapping->host;
882 	struct buffer_head	*bh, *head;
883 	struct xfs_bmbt_irec	imap;
884 	xfs_ioend_t		*ioend = NULL, *iohead = NULL;
885 	loff_t			offset;
886 	unsigned int		type;
887 	__uint64_t              end_offset;
888 	pgoff_t                 end_index, last_index;
889 	ssize_t			len;
890 	int			err, imap_valid = 0, uptodate = 1;
891 	int			count = 0;
892 	int			nonblocking = 0;
893 
894 	trace_xfs_writepage(inode, page, 0);
895 
896 	ASSERT(page_has_buffers(page));
897 
898 	/*
899 	 * Refuse to write the page out if we are called from reclaim context.
900 	 *
901 	 * This avoids stack overflows when called from deeply used stacks in
902 	 * random callers for direct reclaim or memcg reclaim.  We explicitly
903 	 * allow reclaim from kswapd as the stack usage there is relatively low.
904 	 *
905 	 * This should never happen except in the case of a VM regression so
906 	 * warn about it.
907 	 */
908 	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
909 			PF_MEMALLOC))
910 		goto redirty;
911 
912 	/*
913 	 * Given that we do not allow direct reclaim to call us, we should
914 	 * never be called while in a filesystem transaction.
915 	 */
916 	if (WARN_ON(current->flags & PF_FSTRANS))
917 		goto redirty;
918 
919 	/* Is this page beyond the end of the file? */
920 	offset = i_size_read(inode);
921 	end_index = offset >> PAGE_CACHE_SHIFT;
922 	last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
923 	if (page->index >= end_index) {
924 		if ((page->index >= end_index + 1) ||
925 		    !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
926 			unlock_page(page);
927 			return 0;
928 		}
929 	}
930 
931 	end_offset = min_t(unsigned long long,
932 			(xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
933 			offset);
934 	len = 1 << inode->i_blkbits;
935 
936 	bh = head = page_buffers(page);
937 	offset = page_offset(page);
938 	type = IO_OVERWRITE;
939 
940 	if (wbc->sync_mode == WB_SYNC_NONE)
941 		nonblocking = 1;
942 
943 	do {
944 		int new_ioend = 0;
945 
946 		if (offset >= end_offset)
947 			break;
948 		if (!buffer_uptodate(bh))
949 			uptodate = 0;
950 
951 		/*
952 		 * set_page_dirty dirties all buffers in a page, independent
953 		 * of their state.  The dirty state however is entirely
954 		 * meaningless for holes (!mapped && uptodate), so skip
955 		 * buffers covering holes here.
956 		 */
957 		if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
958 			imap_valid = 0;
959 			continue;
960 		}
961 
962 		if (buffer_unwritten(bh)) {
963 			if (type != IO_UNWRITTEN) {
964 				type = IO_UNWRITTEN;
965 				imap_valid = 0;
966 			}
967 		} else if (buffer_delay(bh)) {
968 			if (type != IO_DELALLOC) {
969 				type = IO_DELALLOC;
970 				imap_valid = 0;
971 			}
972 		} else if (buffer_uptodate(bh)) {
973 			if (type != IO_OVERWRITE) {
974 				type = IO_OVERWRITE;
975 				imap_valid = 0;
976 			}
977 		} else {
978 			if (PageUptodate(page)) {
979 				ASSERT(buffer_mapped(bh));
980 				imap_valid = 0;
981 			}
982 			continue;
983 		}
984 
985 		if (imap_valid)
986 			imap_valid = xfs_imap_valid(inode, &imap, offset);
987 		if (!imap_valid) {
988 			/*
989 			 * If we didn't have a valid mapping then we need to
990 			 * put the new mapping into a separate ioend structure.
991 			 * This ensures non-contiguous extents always have
992 			 * separate ioends, which is particularly important
993 			 * for unwritten extent conversion at I/O completion
994 			 * time.
995 			 */
996 			new_ioend = 1;
997 			err = xfs_map_blocks(inode, offset, &imap, type,
998 					     nonblocking);
999 			if (err)
1000 				goto error;
1001 			imap_valid = xfs_imap_valid(inode, &imap, offset);
1002 		}
1003 		if (imap_valid) {
1004 			lock_buffer(bh);
1005 			if (type != IO_OVERWRITE)
1006 				xfs_map_at_offset(inode, bh, &imap, offset);
1007 			xfs_add_to_ioend(inode, bh, offset, type, &ioend,
1008 					 new_ioend);
1009 			count++;
1010 		}
1011 
1012 		if (!iohead)
1013 			iohead = ioend;
1014 
1015 	} while (offset += len, ((bh = bh->b_this_page) != head));
1016 
1017 	if (uptodate && bh == head)
1018 		SetPageUptodate(page);
1019 
1020 	xfs_start_page_writeback(page, 1, count);
1021 
1022 	if (ioend && imap_valid) {
1023 		xfs_off_t		end_index;
1024 
1025 		end_index = imap.br_startoff + imap.br_blockcount;
1026 
1027 		/* to bytes */
1028 		end_index <<= inode->i_blkbits;
1029 
1030 		/* to pages */
1031 		end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1032 
1033 		/* check against file size */
1034 		if (end_index > last_index)
1035 			end_index = last_index;
1036 
1037 		xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
1038 				  wbc, end_index);
1039 	}
1040 
1041 	if (iohead)
1042 		xfs_submit_ioend(wbc, iohead);
1043 
1044 	return 0;
1045 
1046 error:
1047 	if (iohead)
1048 		xfs_cancel_ioend(iohead);
1049 
1050 	if (err == -EAGAIN)
1051 		goto redirty;
1052 
1053 	xfs_aops_discard_page(page);
1054 	ClearPageUptodate(page);
1055 	unlock_page(page);
1056 	return err;
1057 
1058 redirty:
1059 	redirty_page_for_writepage(wbc, page);
1060 	unlock_page(page);
1061 	return 0;
1062 }
1063 
1064 STATIC int
1065 xfs_vm_writepages(
1066 	struct address_space	*mapping,
1067 	struct writeback_control *wbc)
1068 {
1069 	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1070 	return generic_writepages(mapping, wbc);
1071 }
1072 
1073 /*
1074  * Called to move a page into cleanable state - and from there
1075  * to be released. The page should already be clean. We always
1076  * have buffer heads in this call.
1077  *
1078  * Returns 1 if the page is ok to release, 0 otherwise.
1079  */
1080 STATIC int
1081 xfs_vm_releasepage(
1082 	struct page		*page,
1083 	gfp_t			gfp_mask)
1084 {
1085 	int			delalloc, unwritten;
1086 
1087 	trace_xfs_releasepage(page->mapping->host, page, 0);
1088 
1089 	xfs_count_page_state(page, &delalloc, &unwritten);
1090 
1091 	if (WARN_ON(delalloc))
1092 		return 0;
1093 	if (WARN_ON(unwritten))
1094 		return 0;
1095 
1096 	return try_to_free_buffers(page);
1097 }
1098 
1099 STATIC int
1100 __xfs_get_blocks(
1101 	struct inode		*inode,
1102 	sector_t		iblock,
1103 	struct buffer_head	*bh_result,
1104 	int			create,
1105 	int			direct)
1106 {
1107 	struct xfs_inode	*ip = XFS_I(inode);
1108 	struct xfs_mount	*mp = ip->i_mount;
1109 	xfs_fileoff_t		offset_fsb, end_fsb;
1110 	int			error = 0;
1111 	int			lockmode = 0;
1112 	struct xfs_bmbt_irec	imap;
1113 	int			nimaps = 1;
1114 	xfs_off_t		offset;
1115 	ssize_t			size;
1116 	int			new = 0;
1117 
1118 	if (XFS_FORCED_SHUTDOWN(mp))
1119 		return -XFS_ERROR(EIO);
1120 
1121 	offset = (xfs_off_t)iblock << inode->i_blkbits;
1122 	ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1123 	size = bh_result->b_size;
1124 
1125 	if (!create && direct && offset >= i_size_read(inode))
1126 		return 0;
1127 
1128 	if (create) {
1129 		lockmode = XFS_ILOCK_EXCL;
1130 		xfs_ilock(ip, lockmode);
1131 	} else {
1132 		lockmode = xfs_ilock_map_shared(ip);
1133 	}
1134 
1135 	ASSERT(offset <= mp->m_maxioffset);
1136 	if (offset + size > mp->m_maxioffset)
1137 		size = mp->m_maxioffset - offset;
1138 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1139 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
1140 
1141 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1142 				&imap, &nimaps, XFS_BMAPI_ENTIRE);
1143 	if (error)
1144 		goto out_unlock;
1145 
1146 	if (create &&
1147 	    (!nimaps ||
1148 	     (imap.br_startblock == HOLESTARTBLOCK ||
1149 	      imap.br_startblock == DELAYSTARTBLOCK))) {
1150 		if (direct) {
1151 			error = xfs_iomap_write_direct(ip, offset, size,
1152 						       &imap, nimaps);
1153 		} else {
1154 			error = xfs_iomap_write_delay(ip, offset, size, &imap);
1155 		}
1156 		if (error)
1157 			goto out_unlock;
1158 
1159 		trace_xfs_get_blocks_alloc(ip, offset, size, 0, &imap);
1160 	} else if (nimaps) {
1161 		trace_xfs_get_blocks_found(ip, offset, size, 0, &imap);
1162 	} else {
1163 		trace_xfs_get_blocks_notfound(ip, offset, size);
1164 		goto out_unlock;
1165 	}
1166 	xfs_iunlock(ip, lockmode);
1167 
1168 	if (imap.br_startblock != HOLESTARTBLOCK &&
1169 	    imap.br_startblock != DELAYSTARTBLOCK) {
1170 		/*
1171 		 * For unwritten extents do not report a disk address on
1172 		 * the read case (treat as if we're reading into a hole).
1173 		 */
1174 		if (create || !ISUNWRITTEN(&imap))
1175 			xfs_map_buffer(inode, bh_result, &imap, offset);
1176 		if (create && ISUNWRITTEN(&imap)) {
1177 			if (direct)
1178 				bh_result->b_private = inode;
1179 			set_buffer_unwritten(bh_result);
1180 		}
1181 	}
1182 
1183 	/*
1184 	 * If this is a realtime file, data may be on a different device.
1185 	 * to that pointed to from the buffer_head b_bdev currently.
1186 	 */
1187 	bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1188 
1189 	/*
1190 	 * If we previously allocated a block out beyond eof and we are now
1191 	 * coming back to use it then we will need to flag it as new even if it
1192 	 * has a disk address.
1193 	 *
1194 	 * With sub-block writes into unwritten extents we also need to mark
1195 	 * the buffer as new so that the unwritten parts of the buffer gets
1196 	 * correctly zeroed.
1197 	 */
1198 	if (create &&
1199 	    ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1200 	     (offset >= i_size_read(inode)) ||
1201 	     (new || ISUNWRITTEN(&imap))))
1202 		set_buffer_new(bh_result);
1203 
1204 	if (imap.br_startblock == DELAYSTARTBLOCK) {
1205 		BUG_ON(direct);
1206 		if (create) {
1207 			set_buffer_uptodate(bh_result);
1208 			set_buffer_mapped(bh_result);
1209 			set_buffer_delay(bh_result);
1210 		}
1211 	}
1212 
1213 	/*
1214 	 * If this is O_DIRECT or the mpage code calling tell them how large
1215 	 * the mapping is, so that we can avoid repeated get_blocks calls.
1216 	 */
1217 	if (direct || size > (1 << inode->i_blkbits)) {
1218 		xfs_off_t		mapping_size;
1219 
1220 		mapping_size = imap.br_startoff + imap.br_blockcount - iblock;
1221 		mapping_size <<= inode->i_blkbits;
1222 
1223 		ASSERT(mapping_size > 0);
1224 		if (mapping_size > size)
1225 			mapping_size = size;
1226 		if (mapping_size > LONG_MAX)
1227 			mapping_size = LONG_MAX;
1228 
1229 		bh_result->b_size = mapping_size;
1230 	}
1231 
1232 	return 0;
1233 
1234 out_unlock:
1235 	xfs_iunlock(ip, lockmode);
1236 	return -error;
1237 }
1238 
1239 int
1240 xfs_get_blocks(
1241 	struct inode		*inode,
1242 	sector_t		iblock,
1243 	struct buffer_head	*bh_result,
1244 	int			create)
1245 {
1246 	return __xfs_get_blocks(inode, iblock, bh_result, create, 0);
1247 }
1248 
1249 STATIC int
1250 xfs_get_blocks_direct(
1251 	struct inode		*inode,
1252 	sector_t		iblock,
1253 	struct buffer_head	*bh_result,
1254 	int			create)
1255 {
1256 	return __xfs_get_blocks(inode, iblock, bh_result, create, 1);
1257 }
1258 
1259 /*
1260  * Complete a direct I/O write request.
1261  *
1262  * If the private argument is non-NULL __xfs_get_blocks signals us that we
1263  * need to issue a transaction to convert the range from unwritten to written
1264  * extents.  In case this is regular synchronous I/O we just call xfs_end_io
1265  * to do this and we are done.  But in case this was a successful AIO
1266  * request this handler is called from interrupt context, from which we
1267  * can't start transactions.  In that case offload the I/O completion to
1268  * the workqueues we also use for buffered I/O completion.
1269  */
1270 STATIC void
1271 xfs_end_io_direct_write(
1272 	struct kiocb		*iocb,
1273 	loff_t			offset,
1274 	ssize_t			size,
1275 	void			*private,
1276 	int			ret,
1277 	bool			is_async)
1278 {
1279 	struct xfs_ioend	*ioend = iocb->private;
1280 
1281 	/*
1282 	 * blockdev_direct_IO can return an error even after the I/O
1283 	 * completion handler was called.  Thus we need to protect
1284 	 * against double-freeing.
1285 	 */
1286 	iocb->private = NULL;
1287 
1288 	ioend->io_offset = offset;
1289 	ioend->io_size = size;
1290 	ioend->io_iocb = iocb;
1291 	ioend->io_result = ret;
1292 	if (private && size > 0)
1293 		ioend->io_type = IO_UNWRITTEN;
1294 
1295 	if (is_async) {
1296 		ioend->io_isasync = 1;
1297 		xfs_finish_ioend(ioend);
1298 	} else {
1299 		xfs_finish_ioend_sync(ioend);
1300 	}
1301 }
1302 
1303 STATIC ssize_t
1304 xfs_vm_direct_IO(
1305 	int			rw,
1306 	struct kiocb		*iocb,
1307 	const struct iovec	*iov,
1308 	loff_t			offset,
1309 	unsigned long		nr_segs)
1310 {
1311 	struct inode		*inode = iocb->ki_filp->f_mapping->host;
1312 	struct block_device	*bdev = xfs_find_bdev_for_inode(inode);
1313 	ssize_t			ret;
1314 
1315 	if (rw & WRITE) {
1316 		iocb->private = xfs_alloc_ioend(inode, IO_DIRECT);
1317 
1318 		ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1319 					    offset, nr_segs,
1320 					    xfs_get_blocks_direct,
1321 					    xfs_end_io_direct_write, NULL, 0);
1322 		if (ret != -EIOCBQUEUED && iocb->private)
1323 			xfs_destroy_ioend(iocb->private);
1324 	} else {
1325 		ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1326 					    offset, nr_segs,
1327 					    xfs_get_blocks_direct,
1328 					    NULL, NULL, 0);
1329 	}
1330 
1331 	return ret;
1332 }
1333 
1334 STATIC void
1335 xfs_vm_write_failed(
1336 	struct address_space	*mapping,
1337 	loff_t			to)
1338 {
1339 	struct inode		*inode = mapping->host;
1340 
1341 	if (to > inode->i_size) {
1342 		/*
1343 		 * punch out the delalloc blocks we have already allocated. We
1344 		 * don't call xfs_setattr() to do this as we may be in the
1345 		 * middle of a multi-iovec write and so the vfs inode->i_size
1346 		 * will not match the xfs ip->i_size and so it will zero too
1347 		 * much. Hence we jus truncate the page cache to zero what is
1348 		 * necessary and punch the delalloc blocks directly.
1349 		 */
1350 		struct xfs_inode	*ip = XFS_I(inode);
1351 		xfs_fileoff_t		start_fsb;
1352 		xfs_fileoff_t		end_fsb;
1353 		int			error;
1354 
1355 		truncate_pagecache(inode, to, inode->i_size);
1356 
1357 		/*
1358 		 * Check if there are any blocks that are outside of i_size
1359 		 * that need to be trimmed back.
1360 		 */
1361 		start_fsb = XFS_B_TO_FSB(ip->i_mount, inode->i_size) + 1;
1362 		end_fsb = XFS_B_TO_FSB(ip->i_mount, to);
1363 		if (end_fsb <= start_fsb)
1364 			return;
1365 
1366 		xfs_ilock(ip, XFS_ILOCK_EXCL);
1367 		error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1368 							end_fsb - start_fsb);
1369 		if (error) {
1370 			/* something screwed, just bail */
1371 			if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1372 				xfs_alert(ip->i_mount,
1373 			"xfs_vm_write_failed: unable to clean up ino %lld",
1374 						ip->i_ino);
1375 			}
1376 		}
1377 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1378 	}
1379 }
1380 
1381 STATIC int
1382 xfs_vm_write_begin(
1383 	struct file		*file,
1384 	struct address_space	*mapping,
1385 	loff_t			pos,
1386 	unsigned		len,
1387 	unsigned		flags,
1388 	struct page		**pagep,
1389 	void			**fsdata)
1390 {
1391 	int			ret;
1392 
1393 	ret = block_write_begin(mapping, pos, len, flags | AOP_FLAG_NOFS,
1394 				pagep, xfs_get_blocks);
1395 	if (unlikely(ret))
1396 		xfs_vm_write_failed(mapping, pos + len);
1397 	return ret;
1398 }
1399 
1400 STATIC int
1401 xfs_vm_write_end(
1402 	struct file		*file,
1403 	struct address_space	*mapping,
1404 	loff_t			pos,
1405 	unsigned		len,
1406 	unsigned		copied,
1407 	struct page		*page,
1408 	void			*fsdata)
1409 {
1410 	int			ret;
1411 
1412 	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
1413 	if (unlikely(ret < len))
1414 		xfs_vm_write_failed(mapping, pos + len);
1415 	return ret;
1416 }
1417 
1418 STATIC sector_t
1419 xfs_vm_bmap(
1420 	struct address_space	*mapping,
1421 	sector_t		block)
1422 {
1423 	struct inode		*inode = (struct inode *)mapping->host;
1424 	struct xfs_inode	*ip = XFS_I(inode);
1425 
1426 	trace_xfs_vm_bmap(XFS_I(inode));
1427 	xfs_ilock(ip, XFS_IOLOCK_SHARED);
1428 	xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF);
1429 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1430 	return generic_block_bmap(mapping, block, xfs_get_blocks);
1431 }
1432 
1433 STATIC int
1434 xfs_vm_readpage(
1435 	struct file		*unused,
1436 	struct page		*page)
1437 {
1438 	return mpage_readpage(page, xfs_get_blocks);
1439 }
1440 
1441 STATIC int
1442 xfs_vm_readpages(
1443 	struct file		*unused,
1444 	struct address_space	*mapping,
1445 	struct list_head	*pages,
1446 	unsigned		nr_pages)
1447 {
1448 	return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1449 }
1450 
1451 const struct address_space_operations xfs_address_space_operations = {
1452 	.readpage		= xfs_vm_readpage,
1453 	.readpages		= xfs_vm_readpages,
1454 	.writepage		= xfs_vm_writepage,
1455 	.writepages		= xfs_vm_writepages,
1456 	.releasepage		= xfs_vm_releasepage,
1457 	.invalidatepage		= xfs_vm_invalidatepage,
1458 	.write_begin		= xfs_vm_write_begin,
1459 	.write_end		= xfs_vm_write_end,
1460 	.bmap			= xfs_vm_bmap,
1461 	.direct_IO		= xfs_vm_direct_IO,
1462 	.migratepage		= buffer_migrate_page,
1463 	.is_partially_uptodate  = block_is_partially_uptodate,
1464 	.error_remove_page	= generic_error_remove_page,
1465 };
1466