xref: /linux/fs/xfs/scrub/scrub.c (revision f79e4d5f92a129a1159c973735007d4ddc8541f3)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2017 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_mount.h"
12 #include "xfs_defer.h"
13 #include "xfs_btree.h"
14 #include "xfs_bit.h"
15 #include "xfs_log_format.h"
16 #include "xfs_trans.h"
17 #include "xfs_sb.h"
18 #include "xfs_inode.h"
19 #include "xfs_icache.h"
20 #include "xfs_itable.h"
21 #include "xfs_alloc.h"
22 #include "xfs_alloc_btree.h"
23 #include "xfs_bmap.h"
24 #include "xfs_bmap_btree.h"
25 #include "xfs_ialloc.h"
26 #include "xfs_ialloc_btree.h"
27 #include "xfs_refcount.h"
28 #include "xfs_refcount_btree.h"
29 #include "xfs_rmap.h"
30 #include "xfs_rmap_btree.h"
31 #include "xfs_quota.h"
32 #include "xfs_qm.h"
33 #include "xfs_errortag.h"
34 #include "xfs_error.h"
35 #include "xfs_log.h"
36 #include "xfs_trans_priv.h"
37 #include "scrub/xfs_scrub.h"
38 #include "scrub/scrub.h"
39 #include "scrub/common.h"
40 #include "scrub/trace.h"
41 #include "scrub/btree.h"
42 #include "scrub/repair.h"
43 
44 /*
45  * Online Scrub and Repair
46  *
47  * Traditionally, XFS (the kernel driver) did not know how to check or
48  * repair on-disk data structures.  That task was left to the xfs_check
49  * and xfs_repair tools, both of which require taking the filesystem
50  * offline for a thorough but time consuming examination.  Online
51  * scrub & repair, on the other hand, enables us to check the metadata
52  * for obvious errors while carefully stepping around the filesystem's
53  * ongoing operations, locking rules, etc.
54  *
55  * Given that most XFS metadata consist of records stored in a btree,
56  * most of the checking functions iterate the btree blocks themselves
57  * looking for irregularities.  When a record block is encountered, each
58  * record can be checked for obviously bad values.  Record values can
59  * also be cross-referenced against other btrees to look for potential
60  * misunderstandings between pieces of metadata.
61  *
62  * It is expected that the checkers responsible for per-AG metadata
63  * structures will lock the AG headers (AGI, AGF, AGFL), iterate the
64  * metadata structure, and perform any relevant cross-referencing before
65  * unlocking the AG and returning the results to userspace.  These
66  * scrubbers must not keep an AG locked for too long to avoid tying up
67  * the block and inode allocators.
68  *
69  * Block maps and b-trees rooted in an inode present a special challenge
70  * because they can involve extents from any AG.  The general scrubber
71  * structure of lock -> check -> xref -> unlock still holds, but AG
72  * locking order rules /must/ be obeyed to avoid deadlocks.  The
73  * ordering rule, of course, is that we must lock in increasing AG
74  * order.  Helper functions are provided to track which AG headers we've
75  * already locked.  If we detect an imminent locking order violation, we
76  * can signal a potential deadlock, in which case the scrubber can jump
77  * out to the top level, lock all the AGs in order, and retry the scrub.
78  *
79  * For file data (directories, extended attributes, symlinks) scrub, we
80  * can simply lock the inode and walk the data.  For btree data
81  * (directories and attributes) we follow the same btree-scrubbing
82  * strategy outlined previously to check the records.
83  *
84  * We use a bit of trickery with transactions to avoid buffer deadlocks
85  * if there is a cycle in the metadata.  The basic problem is that
86  * travelling down a btree involves locking the current buffer at each
87  * tree level.  If a pointer should somehow point back to a buffer that
88  * we've already examined, we will deadlock due to the second buffer
89  * locking attempt.  Note however that grabbing a buffer in transaction
90  * context links the locked buffer to the transaction.  If we try to
91  * re-grab the buffer in the context of the same transaction, we avoid
92  * the second lock attempt and continue.  Between the verifier and the
93  * scrubber, something will notice that something is amiss and report
94  * the corruption.  Therefore, each scrubber will allocate an empty
95  * transaction, attach buffers to it, and cancel the transaction at the
96  * end of the scrub run.  Cancelling a non-dirty transaction simply
97  * unlocks the buffers.
98  *
99  * There are four pieces of data that scrub can communicate to
100  * userspace.  The first is the error code (errno), which can be used to
101  * communicate operational errors in performing the scrub.  There are
102  * also three flags that can be set in the scrub context.  If the data
103  * structure itself is corrupt, the CORRUPT flag will be set.  If
104  * the metadata is correct but otherwise suboptimal, the PREEN flag
105  * will be set.
106  *
107  * We perform secondary validation of filesystem metadata by
108  * cross-referencing every record with all other available metadata.
109  * For example, for block mapping extents, we verify that there are no
110  * records in the free space and inode btrees corresponding to that
111  * space extent and that there is a corresponding entry in the reverse
112  * mapping btree.  Inconsistent metadata is noted by setting the
113  * XCORRUPT flag; btree query function errors are noted by setting the
114  * XFAIL flag and deleting the cursor to prevent further attempts to
115  * cross-reference with a defective btree.
116  *
117  * If a piece of metadata proves corrupt or suboptimal, the userspace
118  * program can ask the kernel to apply some tender loving care (TLC) to
119  * the metadata object by setting the REPAIR flag and re-calling the
120  * scrub ioctl.  "Corruption" is defined by metadata violating the
121  * on-disk specification; operations cannot continue if the violation is
122  * left untreated.  It is possible for XFS to continue if an object is
123  * "suboptimal", however performance may be degraded.  Repairs are
124  * usually performed by rebuilding the metadata entirely out of
125  * redundant metadata.  Optimizing, on the other hand, can sometimes be
126  * done without rebuilding entire structures.
127  *
128  * Generally speaking, the repair code has the following code structure:
129  * Lock -> scrub -> repair -> commit -> re-lock -> re-scrub -> unlock.
130  * The first check helps us figure out if we need to rebuild or simply
131  * optimize the structure so that the rebuild knows what to do.  The
132  * second check evaluates the completeness of the repair; that is what
133  * is reported to userspace.
134  */
135 
136 /*
137  * Scrub probe -- userspace uses this to probe if we're willing to scrub
138  * or repair a given mountpoint.  This will be used by xfs_scrub to
139  * probe the kernel's abilities to scrub (and repair) the metadata.  We
140  * do this by validating the ioctl inputs from userspace, preparing the
141  * filesystem for a scrub (or a repair) operation, and immediately
142  * returning to userspace.  Userspace can use the returned errno and
143  * structure state to decide (in broad terms) if scrub/repair are
144  * supported by the running kernel.
145  */
146 static int
147 xfs_scrub_probe(
148 	struct xfs_scrub_context	*sc)
149 {
150 	int				error = 0;
151 
152 	if (xfs_scrub_should_terminate(sc, &error))
153 		return error;
154 
155 	return 0;
156 }
157 
158 /* Scrub setup and teardown */
159 
160 /* Free all the resources and finish the transactions. */
161 STATIC int
162 xfs_scrub_teardown(
163 	struct xfs_scrub_context	*sc,
164 	struct xfs_inode		*ip_in,
165 	int				error)
166 {
167 	xfs_scrub_ag_free(sc, &sc->sa);
168 	if (sc->tp) {
169 		if (error == 0 && (sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR))
170 			error = xfs_trans_commit(sc->tp);
171 		else
172 			xfs_trans_cancel(sc->tp);
173 		sc->tp = NULL;
174 	}
175 	if (sc->ip) {
176 		if (sc->ilock_flags)
177 			xfs_iunlock(sc->ip, sc->ilock_flags);
178 		if (sc->ip != ip_in &&
179 		    !xfs_internal_inum(sc->mp, sc->ip->i_ino))
180 			iput(VFS_I(sc->ip));
181 		sc->ip = NULL;
182 	}
183 	if (sc->has_quotaofflock)
184 		mutex_unlock(&sc->mp->m_quotainfo->qi_quotaofflock);
185 	if (sc->buf) {
186 		kmem_free(sc->buf);
187 		sc->buf = NULL;
188 	}
189 	return error;
190 }
191 
192 /* Scrubbing dispatch. */
193 
194 static const struct xfs_scrub_meta_ops meta_scrub_ops[] = {
195 	[XFS_SCRUB_TYPE_PROBE] = {	/* ioctl presence test */
196 		.type	= ST_NONE,
197 		.setup	= xfs_scrub_setup_fs,
198 		.scrub	= xfs_scrub_probe,
199 		.repair = xfs_repair_probe,
200 	},
201 	[XFS_SCRUB_TYPE_SB] = {		/* superblock */
202 		.type	= ST_PERAG,
203 		.setup	= xfs_scrub_setup_fs,
204 		.scrub	= xfs_scrub_superblock,
205 		.repair	= xfs_repair_superblock,
206 	},
207 	[XFS_SCRUB_TYPE_AGF] = {	/* agf */
208 		.type	= ST_PERAG,
209 		.setup	= xfs_scrub_setup_fs,
210 		.scrub	= xfs_scrub_agf,
211 		.repair	= xfs_repair_notsupported,
212 	},
213 	[XFS_SCRUB_TYPE_AGFL]= {	/* agfl */
214 		.type	= ST_PERAG,
215 		.setup	= xfs_scrub_setup_fs,
216 		.scrub	= xfs_scrub_agfl,
217 		.repair	= xfs_repair_notsupported,
218 	},
219 	[XFS_SCRUB_TYPE_AGI] = {	/* agi */
220 		.type	= ST_PERAG,
221 		.setup	= xfs_scrub_setup_fs,
222 		.scrub	= xfs_scrub_agi,
223 		.repair	= xfs_repair_notsupported,
224 	},
225 	[XFS_SCRUB_TYPE_BNOBT] = {	/* bnobt */
226 		.type	= ST_PERAG,
227 		.setup	= xfs_scrub_setup_ag_allocbt,
228 		.scrub	= xfs_scrub_bnobt,
229 		.repair	= xfs_repair_notsupported,
230 	},
231 	[XFS_SCRUB_TYPE_CNTBT] = {	/* cntbt */
232 		.type	= ST_PERAG,
233 		.setup	= xfs_scrub_setup_ag_allocbt,
234 		.scrub	= xfs_scrub_cntbt,
235 		.repair	= xfs_repair_notsupported,
236 	},
237 	[XFS_SCRUB_TYPE_INOBT] = {	/* inobt */
238 		.type	= ST_PERAG,
239 		.setup	= xfs_scrub_setup_ag_iallocbt,
240 		.scrub	= xfs_scrub_inobt,
241 		.repair	= xfs_repair_notsupported,
242 	},
243 	[XFS_SCRUB_TYPE_FINOBT] = {	/* finobt */
244 		.type	= ST_PERAG,
245 		.setup	= xfs_scrub_setup_ag_iallocbt,
246 		.scrub	= xfs_scrub_finobt,
247 		.has	= xfs_sb_version_hasfinobt,
248 		.repair	= xfs_repair_notsupported,
249 	},
250 	[XFS_SCRUB_TYPE_RMAPBT] = {	/* rmapbt */
251 		.type	= ST_PERAG,
252 		.setup	= xfs_scrub_setup_ag_rmapbt,
253 		.scrub	= xfs_scrub_rmapbt,
254 		.has	= xfs_sb_version_hasrmapbt,
255 		.repair	= xfs_repair_notsupported,
256 	},
257 	[XFS_SCRUB_TYPE_REFCNTBT] = {	/* refcountbt */
258 		.type	= ST_PERAG,
259 		.setup	= xfs_scrub_setup_ag_refcountbt,
260 		.scrub	= xfs_scrub_refcountbt,
261 		.has	= xfs_sb_version_hasreflink,
262 		.repair	= xfs_repair_notsupported,
263 	},
264 	[XFS_SCRUB_TYPE_INODE] = {	/* inode record */
265 		.type	= ST_INODE,
266 		.setup	= xfs_scrub_setup_inode,
267 		.scrub	= xfs_scrub_inode,
268 		.repair	= xfs_repair_notsupported,
269 	},
270 	[XFS_SCRUB_TYPE_BMBTD] = {	/* inode data fork */
271 		.type	= ST_INODE,
272 		.setup	= xfs_scrub_setup_inode_bmap,
273 		.scrub	= xfs_scrub_bmap_data,
274 		.repair	= xfs_repair_notsupported,
275 	},
276 	[XFS_SCRUB_TYPE_BMBTA] = {	/* inode attr fork */
277 		.type	= ST_INODE,
278 		.setup	= xfs_scrub_setup_inode_bmap,
279 		.scrub	= xfs_scrub_bmap_attr,
280 		.repair	= xfs_repair_notsupported,
281 	},
282 	[XFS_SCRUB_TYPE_BMBTC] = {	/* inode CoW fork */
283 		.type	= ST_INODE,
284 		.setup	= xfs_scrub_setup_inode_bmap,
285 		.scrub	= xfs_scrub_bmap_cow,
286 		.repair	= xfs_repair_notsupported,
287 	},
288 	[XFS_SCRUB_TYPE_DIR] = {	/* directory */
289 		.type	= ST_INODE,
290 		.setup	= xfs_scrub_setup_directory,
291 		.scrub	= xfs_scrub_directory,
292 		.repair	= xfs_repair_notsupported,
293 	},
294 	[XFS_SCRUB_TYPE_XATTR] = {	/* extended attributes */
295 		.type	= ST_INODE,
296 		.setup	= xfs_scrub_setup_xattr,
297 		.scrub	= xfs_scrub_xattr,
298 		.repair	= xfs_repair_notsupported,
299 	},
300 	[XFS_SCRUB_TYPE_SYMLINK] = {	/* symbolic link */
301 		.type	= ST_INODE,
302 		.setup	= xfs_scrub_setup_symlink,
303 		.scrub	= xfs_scrub_symlink,
304 		.repair	= xfs_repair_notsupported,
305 	},
306 	[XFS_SCRUB_TYPE_PARENT] = {	/* parent pointers */
307 		.type	= ST_INODE,
308 		.setup	= xfs_scrub_setup_parent,
309 		.scrub	= xfs_scrub_parent,
310 		.repair	= xfs_repair_notsupported,
311 	},
312 	[XFS_SCRUB_TYPE_RTBITMAP] = {	/* realtime bitmap */
313 		.type	= ST_FS,
314 		.setup	= xfs_scrub_setup_rt,
315 		.scrub	= xfs_scrub_rtbitmap,
316 		.has	= xfs_sb_version_hasrealtime,
317 		.repair	= xfs_repair_notsupported,
318 	},
319 	[XFS_SCRUB_TYPE_RTSUM] = {	/* realtime summary */
320 		.type	= ST_FS,
321 		.setup	= xfs_scrub_setup_rt,
322 		.scrub	= xfs_scrub_rtsummary,
323 		.has	= xfs_sb_version_hasrealtime,
324 		.repair	= xfs_repair_notsupported,
325 	},
326 	[XFS_SCRUB_TYPE_UQUOTA] = {	/* user quota */
327 		.type	= ST_FS,
328 		.setup	= xfs_scrub_setup_quota,
329 		.scrub	= xfs_scrub_quota,
330 		.repair	= xfs_repair_notsupported,
331 	},
332 	[XFS_SCRUB_TYPE_GQUOTA] = {	/* group quota */
333 		.type	= ST_FS,
334 		.setup	= xfs_scrub_setup_quota,
335 		.scrub	= xfs_scrub_quota,
336 		.repair	= xfs_repair_notsupported,
337 	},
338 	[XFS_SCRUB_TYPE_PQUOTA] = {	/* project quota */
339 		.type	= ST_FS,
340 		.setup	= xfs_scrub_setup_quota,
341 		.scrub	= xfs_scrub_quota,
342 		.repair	= xfs_repair_notsupported,
343 	},
344 };
345 
346 /* This isn't a stable feature, warn once per day. */
347 static inline void
348 xfs_scrub_experimental_warning(
349 	struct xfs_mount	*mp)
350 {
351 	static struct ratelimit_state scrub_warning = RATELIMIT_STATE_INIT(
352 			"xfs_scrub_warning", 86400 * HZ, 1);
353 	ratelimit_set_flags(&scrub_warning, RATELIMIT_MSG_ON_RELEASE);
354 
355 	if (__ratelimit(&scrub_warning))
356 		xfs_alert(mp,
357 "EXPERIMENTAL online scrub feature in use. Use at your own risk!");
358 }
359 
360 static int
361 xfs_scrub_validate_inputs(
362 	struct xfs_mount		*mp,
363 	struct xfs_scrub_metadata	*sm)
364 {
365 	int				error;
366 	const struct xfs_scrub_meta_ops	*ops;
367 
368 	error = -EINVAL;
369 	/* Check our inputs. */
370 	sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
371 	if (sm->sm_flags & ~XFS_SCRUB_FLAGS_IN)
372 		goto out;
373 	/* sm_reserved[] must be zero */
374 	if (memchr_inv(sm->sm_reserved, 0, sizeof(sm->sm_reserved)))
375 		goto out;
376 
377 	error = -ENOENT;
378 	/* Do we know about this type of metadata? */
379 	if (sm->sm_type >= XFS_SCRUB_TYPE_NR)
380 		goto out;
381 	ops = &meta_scrub_ops[sm->sm_type];
382 	if (ops->setup == NULL || ops->scrub == NULL)
383 		goto out;
384 	/* Does this fs even support this type of metadata? */
385 	if (ops->has && !ops->has(&mp->m_sb))
386 		goto out;
387 
388 	error = -EINVAL;
389 	/* restricting fields must be appropriate for type */
390 	switch (ops->type) {
391 	case ST_NONE:
392 	case ST_FS:
393 		if (sm->sm_ino || sm->sm_gen || sm->sm_agno)
394 			goto out;
395 		break;
396 	case ST_PERAG:
397 		if (sm->sm_ino || sm->sm_gen ||
398 		    sm->sm_agno >= mp->m_sb.sb_agcount)
399 			goto out;
400 		break;
401 	case ST_INODE:
402 		if (sm->sm_agno || (sm->sm_gen && !sm->sm_ino))
403 			goto out;
404 		break;
405 	default:
406 		goto out;
407 	}
408 
409 	error = -EOPNOTSUPP;
410 	/*
411 	 * We won't scrub any filesystem that doesn't have the ability
412 	 * to record unwritten extents.  The option was made default in
413 	 * 2003, removed from mkfs in 2007, and cannot be disabled in
414 	 * v5, so if we find a filesystem without this flag it's either
415 	 * really old or totally unsupported.  Avoid it either way.
416 	 * We also don't support v1-v3 filesystems, which aren't
417 	 * mountable.
418 	 */
419 	if (!xfs_sb_version_hasextflgbit(&mp->m_sb))
420 		goto out;
421 
422 	/*
423 	 * We only want to repair read-write v5+ filesystems.  Defer the check
424 	 * for ops->repair until after our scrub confirms that we need to
425 	 * perform repairs so that we avoid failing due to not supporting
426 	 * repairing an object that doesn't need repairs.
427 	 */
428 	if (sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) {
429 		error = -EOPNOTSUPP;
430 		if (!xfs_sb_version_hascrc(&mp->m_sb))
431 			goto out;
432 
433 		error = -EROFS;
434 		if (mp->m_flags & XFS_MOUNT_RDONLY)
435 			goto out;
436 	}
437 
438 	error = 0;
439 out:
440 	return error;
441 }
442 
443 #ifdef CONFIG_XFS_ONLINE_REPAIR
444 static inline void xfs_scrub_postmortem(struct xfs_scrub_context *sc)
445 {
446 	/*
447 	 * Userspace asked us to repair something, we repaired it, rescanned
448 	 * it, and the rescan says it's still broken.  Scream about this in
449 	 * the system logs.
450 	 */
451 	if ((sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) &&
452 	    (sc->sm->sm_flags & (XFS_SCRUB_OFLAG_CORRUPT |
453 				 XFS_SCRUB_OFLAG_XCORRUPT)))
454 		xfs_repair_failure(sc->mp);
455 }
456 #else
457 static inline void xfs_scrub_postmortem(struct xfs_scrub_context *sc)
458 {
459 	/*
460 	 * Userspace asked us to scrub something, it's broken, and we have no
461 	 * way of fixing it.  Scream in the logs.
462 	 */
463 	if (sc->sm->sm_flags & (XFS_SCRUB_OFLAG_CORRUPT |
464 				XFS_SCRUB_OFLAG_XCORRUPT))
465 		xfs_alert_ratelimited(sc->mp,
466 				"Corruption detected during scrub.");
467 }
468 #endif /* CONFIG_XFS_ONLINE_REPAIR */
469 
470 /* Dispatch metadata scrubbing. */
471 int
472 xfs_scrub_metadata(
473 	struct xfs_inode		*ip,
474 	struct xfs_scrub_metadata	*sm)
475 {
476 	struct xfs_scrub_context	sc;
477 	struct xfs_mount		*mp = ip->i_mount;
478 	bool				try_harder = false;
479 	bool				already_fixed = false;
480 	int				error = 0;
481 
482 	BUILD_BUG_ON(sizeof(meta_scrub_ops) !=
483 		(sizeof(struct xfs_scrub_meta_ops) * XFS_SCRUB_TYPE_NR));
484 
485 	trace_xfs_scrub_start(ip, sm, error);
486 
487 	/* Forbidden if we are shut down or mounted norecovery. */
488 	error = -ESHUTDOWN;
489 	if (XFS_FORCED_SHUTDOWN(mp))
490 		goto out;
491 	error = -ENOTRECOVERABLE;
492 	if (mp->m_flags & XFS_MOUNT_NORECOVERY)
493 		goto out;
494 
495 	error = xfs_scrub_validate_inputs(mp, sm);
496 	if (error)
497 		goto out;
498 
499 	xfs_scrub_experimental_warning(mp);
500 
501 retry_op:
502 	/* Set up for the operation. */
503 	memset(&sc, 0, sizeof(sc));
504 	sc.mp = ip->i_mount;
505 	sc.sm = sm;
506 	sc.ops = &meta_scrub_ops[sm->sm_type];
507 	sc.try_harder = try_harder;
508 	sc.sa.agno = NULLAGNUMBER;
509 	error = sc.ops->setup(&sc, ip);
510 	if (error)
511 		goto out_teardown;
512 
513 	/* Scrub for errors. */
514 	error = sc.ops->scrub(&sc);
515 	if (!try_harder && error == -EDEADLOCK) {
516 		/*
517 		 * Scrubbers return -EDEADLOCK to mean 'try harder'.
518 		 * Tear down everything we hold, then set up again with
519 		 * preparation for worst-case scenarios.
520 		 */
521 		error = xfs_scrub_teardown(&sc, ip, 0);
522 		if (error)
523 			goto out;
524 		try_harder = true;
525 		goto retry_op;
526 	} else if (error)
527 		goto out_teardown;
528 
529 	if ((sc.sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) && !already_fixed) {
530 		bool needs_fix;
531 
532 		/* Let debug users force us into the repair routines. */
533 		if (XFS_TEST_ERROR(false, mp, XFS_ERRTAG_FORCE_SCRUB_REPAIR))
534 			sc.sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
535 
536 		needs_fix = (sc.sm->sm_flags & (XFS_SCRUB_OFLAG_CORRUPT |
537 						XFS_SCRUB_OFLAG_XCORRUPT |
538 						XFS_SCRUB_OFLAG_PREEN));
539 		/*
540 		 * If userspace asked for a repair but it wasn't necessary,
541 		 * report that back to userspace.
542 		 */
543 		if (!needs_fix) {
544 			sc.sm->sm_flags |= XFS_SCRUB_OFLAG_NO_REPAIR_NEEDED;
545 			goto out_nofix;
546 		}
547 
548 		/*
549 		 * If it's broken, userspace wants us to fix it, and we haven't
550 		 * already tried to fix it, then attempt a repair.
551 		 */
552 		error = xfs_repair_attempt(ip, &sc, &already_fixed);
553 		if (error == -EAGAIN) {
554 			if (sc.try_harder)
555 				try_harder = true;
556 			error = xfs_scrub_teardown(&sc, ip, 0);
557 			if (error) {
558 				xfs_repair_failure(mp);
559 				goto out;
560 			}
561 			goto retry_op;
562 		}
563 	}
564 
565 out_nofix:
566 	xfs_scrub_postmortem(&sc);
567 out_teardown:
568 	error = xfs_scrub_teardown(&sc, ip, error);
569 out:
570 	trace_xfs_scrub_done(ip, sm, error);
571 	if (error == -EFSCORRUPTED || error == -EFSBADCRC) {
572 		sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
573 		error = 0;
574 	}
575 	return error;
576 }
577