xref: /linux/fs/xfs/scrub/scrub.c (revision ac8fd122e070ce0e60c608d4f085f7af77290844)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2017 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_mount.h"
12 #include "xfs_log_format.h"
13 #include "xfs_trans.h"
14 #include "xfs_inode.h"
15 #include "xfs_quota.h"
16 #include "xfs_qm.h"
17 #include "xfs_errortag.h"
18 #include "xfs_error.h"
19 #include "xfs_scrub.h"
20 #include "scrub/scrub.h"
21 #include "scrub/common.h"
22 #include "scrub/trace.h"
23 #include "scrub/repair.h"
24 #include "scrub/health.h"
25 
26 /*
27  * Online Scrub and Repair
28  *
29  * Traditionally, XFS (the kernel driver) did not know how to check or
30  * repair on-disk data structures.  That task was left to the xfs_check
31  * and xfs_repair tools, both of which require taking the filesystem
32  * offline for a thorough but time consuming examination.  Online
33  * scrub & repair, on the other hand, enables us to check the metadata
34  * for obvious errors while carefully stepping around the filesystem's
35  * ongoing operations, locking rules, etc.
36  *
37  * Given that most XFS metadata consist of records stored in a btree,
38  * most of the checking functions iterate the btree blocks themselves
39  * looking for irregularities.  When a record block is encountered, each
40  * record can be checked for obviously bad values.  Record values can
41  * also be cross-referenced against other btrees to look for potential
42  * misunderstandings between pieces of metadata.
43  *
44  * It is expected that the checkers responsible for per-AG metadata
45  * structures will lock the AG headers (AGI, AGF, AGFL), iterate the
46  * metadata structure, and perform any relevant cross-referencing before
47  * unlocking the AG and returning the results to userspace.  These
48  * scrubbers must not keep an AG locked for too long to avoid tying up
49  * the block and inode allocators.
50  *
51  * Block maps and b-trees rooted in an inode present a special challenge
52  * because they can involve extents from any AG.  The general scrubber
53  * structure of lock -> check -> xref -> unlock still holds, but AG
54  * locking order rules /must/ be obeyed to avoid deadlocks.  The
55  * ordering rule, of course, is that we must lock in increasing AG
56  * order.  Helper functions are provided to track which AG headers we've
57  * already locked.  If we detect an imminent locking order violation, we
58  * can signal a potential deadlock, in which case the scrubber can jump
59  * out to the top level, lock all the AGs in order, and retry the scrub.
60  *
61  * For file data (directories, extended attributes, symlinks) scrub, we
62  * can simply lock the inode and walk the data.  For btree data
63  * (directories and attributes) we follow the same btree-scrubbing
64  * strategy outlined previously to check the records.
65  *
66  * We use a bit of trickery with transactions to avoid buffer deadlocks
67  * if there is a cycle in the metadata.  The basic problem is that
68  * travelling down a btree involves locking the current buffer at each
69  * tree level.  If a pointer should somehow point back to a buffer that
70  * we've already examined, we will deadlock due to the second buffer
71  * locking attempt.  Note however that grabbing a buffer in transaction
72  * context links the locked buffer to the transaction.  If we try to
73  * re-grab the buffer in the context of the same transaction, we avoid
74  * the second lock attempt and continue.  Between the verifier and the
75  * scrubber, something will notice that something is amiss and report
76  * the corruption.  Therefore, each scrubber will allocate an empty
77  * transaction, attach buffers to it, and cancel the transaction at the
78  * end of the scrub run.  Cancelling a non-dirty transaction simply
79  * unlocks the buffers.
80  *
81  * There are four pieces of data that scrub can communicate to
82  * userspace.  The first is the error code (errno), which can be used to
83  * communicate operational errors in performing the scrub.  There are
84  * also three flags that can be set in the scrub context.  If the data
85  * structure itself is corrupt, the CORRUPT flag will be set.  If
86  * the metadata is correct but otherwise suboptimal, the PREEN flag
87  * will be set.
88  *
89  * We perform secondary validation of filesystem metadata by
90  * cross-referencing every record with all other available metadata.
91  * For example, for block mapping extents, we verify that there are no
92  * records in the free space and inode btrees corresponding to that
93  * space extent and that there is a corresponding entry in the reverse
94  * mapping btree.  Inconsistent metadata is noted by setting the
95  * XCORRUPT flag; btree query function errors are noted by setting the
96  * XFAIL flag and deleting the cursor to prevent further attempts to
97  * cross-reference with a defective btree.
98  *
99  * If a piece of metadata proves corrupt or suboptimal, the userspace
100  * program can ask the kernel to apply some tender loving care (TLC) to
101  * the metadata object by setting the REPAIR flag and re-calling the
102  * scrub ioctl.  "Corruption" is defined by metadata violating the
103  * on-disk specification; operations cannot continue if the violation is
104  * left untreated.  It is possible for XFS to continue if an object is
105  * "suboptimal", however performance may be degraded.  Repairs are
106  * usually performed by rebuilding the metadata entirely out of
107  * redundant metadata.  Optimizing, on the other hand, can sometimes be
108  * done without rebuilding entire structures.
109  *
110  * Generally speaking, the repair code has the following code structure:
111  * Lock -> scrub -> repair -> commit -> re-lock -> re-scrub -> unlock.
112  * The first check helps us figure out if we need to rebuild or simply
113  * optimize the structure so that the rebuild knows what to do.  The
114  * second check evaluates the completeness of the repair; that is what
115  * is reported to userspace.
116  *
117  * A quick note on symbol prefixes:
118  * - "xfs_" are general XFS symbols.
119  * - "xchk_" are symbols related to metadata checking.
120  * - "xrep_" are symbols related to metadata repair.
121  * - "xfs_scrub_" are symbols that tie online fsck to the rest of XFS.
122  */
123 
124 /*
125  * Scrub probe -- userspace uses this to probe if we're willing to scrub
126  * or repair a given mountpoint.  This will be used by xfs_scrub to
127  * probe the kernel's abilities to scrub (and repair) the metadata.  We
128  * do this by validating the ioctl inputs from userspace, preparing the
129  * filesystem for a scrub (or a repair) operation, and immediately
130  * returning to userspace.  Userspace can use the returned errno and
131  * structure state to decide (in broad terms) if scrub/repair are
132  * supported by the running kernel.
133  */
134 static int
135 xchk_probe(
136 	struct xfs_scrub	*sc)
137 {
138 	int			error = 0;
139 
140 	if (xchk_should_terminate(sc, &error))
141 		return error;
142 
143 	return 0;
144 }
145 
146 /* Scrub setup and teardown */
147 
148 /* Free all the resources and finish the transactions. */
149 STATIC int
150 xchk_teardown(
151 	struct xfs_scrub	*sc,
152 	struct xfs_inode	*ip_in,
153 	int			error)
154 {
155 	xchk_ag_free(sc, &sc->sa);
156 	if (sc->tp) {
157 		if (error == 0 && (sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR))
158 			error = xfs_trans_commit(sc->tp);
159 		else
160 			xfs_trans_cancel(sc->tp);
161 		sc->tp = NULL;
162 	}
163 	if (sc->ip) {
164 		if (sc->ilock_flags)
165 			xfs_iunlock(sc->ip, sc->ilock_flags);
166 		if (sc->ip != ip_in &&
167 		    !xfs_internal_inum(sc->mp, sc->ip->i_ino))
168 			xfs_irele(sc->ip);
169 		sc->ip = NULL;
170 	}
171 	if (sc->flags & XCHK_REAPING_DISABLED)
172 		xchk_start_reaping(sc);
173 	if (sc->flags & XCHK_HAS_QUOTAOFFLOCK) {
174 		mutex_unlock(&sc->mp->m_quotainfo->qi_quotaofflock);
175 		sc->flags &= ~XCHK_HAS_QUOTAOFFLOCK;
176 	}
177 	if (sc->buf) {
178 		kmem_free(sc->buf);
179 		sc->buf = NULL;
180 	}
181 	return error;
182 }
183 
184 /* Scrubbing dispatch. */
185 
186 static const struct xchk_meta_ops meta_scrub_ops[] = {
187 	[XFS_SCRUB_TYPE_PROBE] = {	/* ioctl presence test */
188 		.type	= ST_NONE,
189 		.setup	= xchk_setup_fs,
190 		.scrub	= xchk_probe,
191 		.repair = xrep_probe,
192 	},
193 	[XFS_SCRUB_TYPE_SB] = {		/* superblock */
194 		.type	= ST_PERAG,
195 		.setup	= xchk_setup_fs,
196 		.scrub	= xchk_superblock,
197 		.repair	= xrep_superblock,
198 	},
199 	[XFS_SCRUB_TYPE_AGF] = {	/* agf */
200 		.type	= ST_PERAG,
201 		.setup	= xchk_setup_fs,
202 		.scrub	= xchk_agf,
203 		.repair	= xrep_agf,
204 	},
205 	[XFS_SCRUB_TYPE_AGFL]= {	/* agfl */
206 		.type	= ST_PERAG,
207 		.setup	= xchk_setup_fs,
208 		.scrub	= xchk_agfl,
209 		.repair	= xrep_agfl,
210 	},
211 	[XFS_SCRUB_TYPE_AGI] = {	/* agi */
212 		.type	= ST_PERAG,
213 		.setup	= xchk_setup_fs,
214 		.scrub	= xchk_agi,
215 		.repair	= xrep_agi,
216 	},
217 	[XFS_SCRUB_TYPE_BNOBT] = {	/* bnobt */
218 		.type	= ST_PERAG,
219 		.setup	= xchk_setup_ag_allocbt,
220 		.scrub	= xchk_bnobt,
221 		.repair	= xrep_notsupported,
222 	},
223 	[XFS_SCRUB_TYPE_CNTBT] = {	/* cntbt */
224 		.type	= ST_PERAG,
225 		.setup	= xchk_setup_ag_allocbt,
226 		.scrub	= xchk_cntbt,
227 		.repair	= xrep_notsupported,
228 	},
229 	[XFS_SCRUB_TYPE_INOBT] = {	/* inobt */
230 		.type	= ST_PERAG,
231 		.setup	= xchk_setup_ag_iallocbt,
232 		.scrub	= xchk_inobt,
233 		.repair	= xrep_notsupported,
234 	},
235 	[XFS_SCRUB_TYPE_FINOBT] = {	/* finobt */
236 		.type	= ST_PERAG,
237 		.setup	= xchk_setup_ag_iallocbt,
238 		.scrub	= xchk_finobt,
239 		.has	= xfs_sb_version_hasfinobt,
240 		.repair	= xrep_notsupported,
241 	},
242 	[XFS_SCRUB_TYPE_RMAPBT] = {	/* rmapbt */
243 		.type	= ST_PERAG,
244 		.setup	= xchk_setup_ag_rmapbt,
245 		.scrub	= xchk_rmapbt,
246 		.has	= xfs_sb_version_hasrmapbt,
247 		.repair	= xrep_notsupported,
248 	},
249 	[XFS_SCRUB_TYPE_REFCNTBT] = {	/* refcountbt */
250 		.type	= ST_PERAG,
251 		.setup	= xchk_setup_ag_refcountbt,
252 		.scrub	= xchk_refcountbt,
253 		.has	= xfs_sb_version_hasreflink,
254 		.repair	= xrep_notsupported,
255 	},
256 	[XFS_SCRUB_TYPE_INODE] = {	/* inode record */
257 		.type	= ST_INODE,
258 		.setup	= xchk_setup_inode,
259 		.scrub	= xchk_inode,
260 		.repair	= xrep_notsupported,
261 	},
262 	[XFS_SCRUB_TYPE_BMBTD] = {	/* inode data fork */
263 		.type	= ST_INODE,
264 		.setup	= xchk_setup_inode_bmap,
265 		.scrub	= xchk_bmap_data,
266 		.repair	= xrep_notsupported,
267 	},
268 	[XFS_SCRUB_TYPE_BMBTA] = {	/* inode attr fork */
269 		.type	= ST_INODE,
270 		.setup	= xchk_setup_inode_bmap,
271 		.scrub	= xchk_bmap_attr,
272 		.repair	= xrep_notsupported,
273 	},
274 	[XFS_SCRUB_TYPE_BMBTC] = {	/* inode CoW fork */
275 		.type	= ST_INODE,
276 		.setup	= xchk_setup_inode_bmap,
277 		.scrub	= xchk_bmap_cow,
278 		.repair	= xrep_notsupported,
279 	},
280 	[XFS_SCRUB_TYPE_DIR] = {	/* directory */
281 		.type	= ST_INODE,
282 		.setup	= xchk_setup_directory,
283 		.scrub	= xchk_directory,
284 		.repair	= xrep_notsupported,
285 	},
286 	[XFS_SCRUB_TYPE_XATTR] = {	/* extended attributes */
287 		.type	= ST_INODE,
288 		.setup	= xchk_setup_xattr,
289 		.scrub	= xchk_xattr,
290 		.repair	= xrep_notsupported,
291 	},
292 	[XFS_SCRUB_TYPE_SYMLINK] = {	/* symbolic link */
293 		.type	= ST_INODE,
294 		.setup	= xchk_setup_symlink,
295 		.scrub	= xchk_symlink,
296 		.repair	= xrep_notsupported,
297 	},
298 	[XFS_SCRUB_TYPE_PARENT] = {	/* parent pointers */
299 		.type	= ST_INODE,
300 		.setup	= xchk_setup_parent,
301 		.scrub	= xchk_parent,
302 		.repair	= xrep_notsupported,
303 	},
304 	[XFS_SCRUB_TYPE_RTBITMAP] = {	/* realtime bitmap */
305 		.type	= ST_FS,
306 		.setup	= xchk_setup_rt,
307 		.scrub	= xchk_rtbitmap,
308 		.has	= xfs_sb_version_hasrealtime,
309 		.repair	= xrep_notsupported,
310 	},
311 	[XFS_SCRUB_TYPE_RTSUM] = {	/* realtime summary */
312 		.type	= ST_FS,
313 		.setup	= xchk_setup_rt,
314 		.scrub	= xchk_rtsummary,
315 		.has	= xfs_sb_version_hasrealtime,
316 		.repair	= xrep_notsupported,
317 	},
318 	[XFS_SCRUB_TYPE_UQUOTA] = {	/* user quota */
319 		.type	= ST_FS,
320 		.setup	= xchk_setup_quota,
321 		.scrub	= xchk_quota,
322 		.repair	= xrep_notsupported,
323 	},
324 	[XFS_SCRUB_TYPE_GQUOTA] = {	/* group quota */
325 		.type	= ST_FS,
326 		.setup	= xchk_setup_quota,
327 		.scrub	= xchk_quota,
328 		.repair	= xrep_notsupported,
329 	},
330 	[XFS_SCRUB_TYPE_PQUOTA] = {	/* project quota */
331 		.type	= ST_FS,
332 		.setup	= xchk_setup_quota,
333 		.scrub	= xchk_quota,
334 		.repair	= xrep_notsupported,
335 	},
336 	[XFS_SCRUB_TYPE_FSCOUNTERS] = {	/* fs summary counters */
337 		.type	= ST_FS,
338 		.setup	= xchk_setup_fscounters,
339 		.scrub	= xchk_fscounters,
340 		.repair	= xrep_notsupported,
341 	},
342 };
343 
344 /* This isn't a stable feature, warn once per day. */
345 static inline void
346 xchk_experimental_warning(
347 	struct xfs_mount	*mp)
348 {
349 	static struct ratelimit_state scrub_warning = RATELIMIT_STATE_INIT(
350 			"xchk_warning", 86400 * HZ, 1);
351 	ratelimit_set_flags(&scrub_warning, RATELIMIT_MSG_ON_RELEASE);
352 
353 	if (__ratelimit(&scrub_warning))
354 		xfs_alert(mp,
355 "EXPERIMENTAL online scrub feature in use. Use at your own risk!");
356 }
357 
358 static int
359 xchk_validate_inputs(
360 	struct xfs_mount		*mp,
361 	struct xfs_scrub_metadata	*sm)
362 {
363 	int				error;
364 	const struct xchk_meta_ops	*ops;
365 
366 	error = -EINVAL;
367 	/* Check our inputs. */
368 	sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
369 	if (sm->sm_flags & ~XFS_SCRUB_FLAGS_IN)
370 		goto out;
371 	/* sm_reserved[] must be zero */
372 	if (memchr_inv(sm->sm_reserved, 0, sizeof(sm->sm_reserved)))
373 		goto out;
374 
375 	error = -ENOENT;
376 	/* Do we know about this type of metadata? */
377 	if (sm->sm_type >= XFS_SCRUB_TYPE_NR)
378 		goto out;
379 	ops = &meta_scrub_ops[sm->sm_type];
380 	if (ops->setup == NULL || ops->scrub == NULL)
381 		goto out;
382 	/* Does this fs even support this type of metadata? */
383 	if (ops->has && !ops->has(&mp->m_sb))
384 		goto out;
385 
386 	error = -EINVAL;
387 	/* restricting fields must be appropriate for type */
388 	switch (ops->type) {
389 	case ST_NONE:
390 	case ST_FS:
391 		if (sm->sm_ino || sm->sm_gen || sm->sm_agno)
392 			goto out;
393 		break;
394 	case ST_PERAG:
395 		if (sm->sm_ino || sm->sm_gen ||
396 		    sm->sm_agno >= mp->m_sb.sb_agcount)
397 			goto out;
398 		break;
399 	case ST_INODE:
400 		if (sm->sm_agno || (sm->sm_gen && !sm->sm_ino))
401 			goto out;
402 		break;
403 	default:
404 		goto out;
405 	}
406 
407 	/*
408 	 * We only want to repair read-write v5+ filesystems.  Defer the check
409 	 * for ops->repair until after our scrub confirms that we need to
410 	 * perform repairs so that we avoid failing due to not supporting
411 	 * repairing an object that doesn't need repairs.
412 	 */
413 	if (sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) {
414 		error = -EOPNOTSUPP;
415 		if (!xfs_sb_version_hascrc(&mp->m_sb))
416 			goto out;
417 
418 		error = -EROFS;
419 		if (mp->m_flags & XFS_MOUNT_RDONLY)
420 			goto out;
421 	}
422 
423 	error = 0;
424 out:
425 	return error;
426 }
427 
428 #ifdef CONFIG_XFS_ONLINE_REPAIR
429 static inline void xchk_postmortem(struct xfs_scrub *sc)
430 {
431 	/*
432 	 * Userspace asked us to repair something, we repaired it, rescanned
433 	 * it, and the rescan says it's still broken.  Scream about this in
434 	 * the system logs.
435 	 */
436 	if ((sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) &&
437 	    (sc->sm->sm_flags & (XFS_SCRUB_OFLAG_CORRUPT |
438 				 XFS_SCRUB_OFLAG_XCORRUPT)))
439 		xrep_failure(sc->mp);
440 }
441 #else
442 static inline void xchk_postmortem(struct xfs_scrub *sc)
443 {
444 	/*
445 	 * Userspace asked us to scrub something, it's broken, and we have no
446 	 * way of fixing it.  Scream in the logs.
447 	 */
448 	if (sc->sm->sm_flags & (XFS_SCRUB_OFLAG_CORRUPT |
449 				XFS_SCRUB_OFLAG_XCORRUPT))
450 		xfs_alert_ratelimited(sc->mp,
451 				"Corruption detected during scrub.");
452 }
453 #endif /* CONFIG_XFS_ONLINE_REPAIR */
454 
455 /* Dispatch metadata scrubbing. */
456 int
457 xfs_scrub_metadata(
458 	struct xfs_inode		*ip,
459 	struct xfs_scrub_metadata	*sm)
460 {
461 	struct xfs_scrub		sc = {
462 		.mp			= ip->i_mount,
463 		.sm			= sm,
464 		.sa			= {
465 			.agno		= NULLAGNUMBER,
466 		},
467 	};
468 	struct xfs_mount		*mp = ip->i_mount;
469 	int				error = 0;
470 
471 	BUILD_BUG_ON(sizeof(meta_scrub_ops) !=
472 		(sizeof(struct xchk_meta_ops) * XFS_SCRUB_TYPE_NR));
473 
474 	trace_xchk_start(ip, sm, error);
475 
476 	/* Forbidden if we are shut down or mounted norecovery. */
477 	error = -ESHUTDOWN;
478 	if (XFS_FORCED_SHUTDOWN(mp))
479 		goto out;
480 	error = -ENOTRECOVERABLE;
481 	if (mp->m_flags & XFS_MOUNT_NORECOVERY)
482 		goto out;
483 
484 	error = xchk_validate_inputs(mp, sm);
485 	if (error)
486 		goto out;
487 
488 	xchk_experimental_warning(mp);
489 
490 	sc.ops = &meta_scrub_ops[sm->sm_type];
491 	sc.sick_mask = xchk_health_mask_for_scrub_type(sm->sm_type);
492 retry_op:
493 	/* Set up for the operation. */
494 	error = sc.ops->setup(&sc, ip);
495 	if (error)
496 		goto out_teardown;
497 
498 	/* Scrub for errors. */
499 	error = sc.ops->scrub(&sc);
500 	if (!(sc.flags & XCHK_TRY_HARDER) && error == -EDEADLOCK) {
501 		/*
502 		 * Scrubbers return -EDEADLOCK to mean 'try harder'.
503 		 * Tear down everything we hold, then set up again with
504 		 * preparation for worst-case scenarios.
505 		 */
506 		error = xchk_teardown(&sc, ip, 0);
507 		if (error)
508 			goto out;
509 		sc.flags |= XCHK_TRY_HARDER;
510 		goto retry_op;
511 	} else if (error)
512 		goto out_teardown;
513 
514 	xchk_update_health(&sc);
515 
516 	if ((sc.sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) &&
517 	    !(sc.flags & XREP_ALREADY_FIXED)) {
518 		bool needs_fix;
519 
520 		/* Let debug users force us into the repair routines. */
521 		if (XFS_TEST_ERROR(false, mp, XFS_ERRTAG_FORCE_SCRUB_REPAIR))
522 			sc.sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
523 
524 		needs_fix = (sc.sm->sm_flags & (XFS_SCRUB_OFLAG_CORRUPT |
525 						XFS_SCRUB_OFLAG_XCORRUPT |
526 						XFS_SCRUB_OFLAG_PREEN));
527 		/*
528 		 * If userspace asked for a repair but it wasn't necessary,
529 		 * report that back to userspace.
530 		 */
531 		if (!needs_fix) {
532 			sc.sm->sm_flags |= XFS_SCRUB_OFLAG_NO_REPAIR_NEEDED;
533 			goto out_nofix;
534 		}
535 
536 		/*
537 		 * If it's broken, userspace wants us to fix it, and we haven't
538 		 * already tried to fix it, then attempt a repair.
539 		 */
540 		error = xrep_attempt(ip, &sc);
541 		if (error == -EAGAIN) {
542 			/*
543 			 * Either the repair function succeeded or it couldn't
544 			 * get all the resources it needs; either way, we go
545 			 * back to the beginning and call the scrub function.
546 			 */
547 			error = xchk_teardown(&sc, ip, 0);
548 			if (error) {
549 				xrep_failure(mp);
550 				goto out;
551 			}
552 			goto retry_op;
553 		}
554 	}
555 
556 out_nofix:
557 	xchk_postmortem(&sc);
558 out_teardown:
559 	error = xchk_teardown(&sc, ip, error);
560 out:
561 	trace_xchk_done(ip, sm, error);
562 	if (error == -EFSCORRUPTED || error == -EFSBADCRC) {
563 		sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
564 		error = 0;
565 	}
566 	return error;
567 }
568