xref: /linux/fs/xfs/scrub/scrub.c (revision a44e4f3ab16bc808590763a543a93b6fbf3abcc4)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2017 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_mount.h"
12 #include "xfs_log_format.h"
13 #include "xfs_trans.h"
14 #include "xfs_inode.h"
15 #include "xfs_quota.h"
16 #include "xfs_qm.h"
17 #include "xfs_errortag.h"
18 #include "xfs_error.h"
19 #include "scrub/scrub.h"
20 #include "scrub/common.h"
21 #include "scrub/trace.h"
22 #include "scrub/repair.h"
23 #include "scrub/health.h"
24 
25 /*
26  * Online Scrub and Repair
27  *
28  * Traditionally, XFS (the kernel driver) did not know how to check or
29  * repair on-disk data structures.  That task was left to the xfs_check
30  * and xfs_repair tools, both of which require taking the filesystem
31  * offline for a thorough but time consuming examination.  Online
32  * scrub & repair, on the other hand, enables us to check the metadata
33  * for obvious errors while carefully stepping around the filesystem's
34  * ongoing operations, locking rules, etc.
35  *
36  * Given that most XFS metadata consist of records stored in a btree,
37  * most of the checking functions iterate the btree blocks themselves
38  * looking for irregularities.  When a record block is encountered, each
39  * record can be checked for obviously bad values.  Record values can
40  * also be cross-referenced against other btrees to look for potential
41  * misunderstandings between pieces of metadata.
42  *
43  * It is expected that the checkers responsible for per-AG metadata
44  * structures will lock the AG headers (AGI, AGF, AGFL), iterate the
45  * metadata structure, and perform any relevant cross-referencing before
46  * unlocking the AG and returning the results to userspace.  These
47  * scrubbers must not keep an AG locked for too long to avoid tying up
48  * the block and inode allocators.
49  *
50  * Block maps and b-trees rooted in an inode present a special challenge
51  * because they can involve extents from any AG.  The general scrubber
52  * structure of lock -> check -> xref -> unlock still holds, but AG
53  * locking order rules /must/ be obeyed to avoid deadlocks.  The
54  * ordering rule, of course, is that we must lock in increasing AG
55  * order.  Helper functions are provided to track which AG headers we've
56  * already locked.  If we detect an imminent locking order violation, we
57  * can signal a potential deadlock, in which case the scrubber can jump
58  * out to the top level, lock all the AGs in order, and retry the scrub.
59  *
60  * For file data (directories, extended attributes, symlinks) scrub, we
61  * can simply lock the inode and walk the data.  For btree data
62  * (directories and attributes) we follow the same btree-scrubbing
63  * strategy outlined previously to check the records.
64  *
65  * We use a bit of trickery with transactions to avoid buffer deadlocks
66  * if there is a cycle in the metadata.  The basic problem is that
67  * travelling down a btree involves locking the current buffer at each
68  * tree level.  If a pointer should somehow point back to a buffer that
69  * we've already examined, we will deadlock due to the second buffer
70  * locking attempt.  Note however that grabbing a buffer in transaction
71  * context links the locked buffer to the transaction.  If we try to
72  * re-grab the buffer in the context of the same transaction, we avoid
73  * the second lock attempt and continue.  Between the verifier and the
74  * scrubber, something will notice that something is amiss and report
75  * the corruption.  Therefore, each scrubber will allocate an empty
76  * transaction, attach buffers to it, and cancel the transaction at the
77  * end of the scrub run.  Cancelling a non-dirty transaction simply
78  * unlocks the buffers.
79  *
80  * There are four pieces of data that scrub can communicate to
81  * userspace.  The first is the error code (errno), which can be used to
82  * communicate operational errors in performing the scrub.  There are
83  * also three flags that can be set in the scrub context.  If the data
84  * structure itself is corrupt, the CORRUPT flag will be set.  If
85  * the metadata is correct but otherwise suboptimal, the PREEN flag
86  * will be set.
87  *
88  * We perform secondary validation of filesystem metadata by
89  * cross-referencing every record with all other available metadata.
90  * For example, for block mapping extents, we verify that there are no
91  * records in the free space and inode btrees corresponding to that
92  * space extent and that there is a corresponding entry in the reverse
93  * mapping btree.  Inconsistent metadata is noted by setting the
94  * XCORRUPT flag; btree query function errors are noted by setting the
95  * XFAIL flag and deleting the cursor to prevent further attempts to
96  * cross-reference with a defective btree.
97  *
98  * If a piece of metadata proves corrupt or suboptimal, the userspace
99  * program can ask the kernel to apply some tender loving care (TLC) to
100  * the metadata object by setting the REPAIR flag and re-calling the
101  * scrub ioctl.  "Corruption" is defined by metadata violating the
102  * on-disk specification; operations cannot continue if the violation is
103  * left untreated.  It is possible for XFS to continue if an object is
104  * "suboptimal", however performance may be degraded.  Repairs are
105  * usually performed by rebuilding the metadata entirely out of
106  * redundant metadata.  Optimizing, on the other hand, can sometimes be
107  * done without rebuilding entire structures.
108  *
109  * Generally speaking, the repair code has the following code structure:
110  * Lock -> scrub -> repair -> commit -> re-lock -> re-scrub -> unlock.
111  * The first check helps us figure out if we need to rebuild or simply
112  * optimize the structure so that the rebuild knows what to do.  The
113  * second check evaluates the completeness of the repair; that is what
114  * is reported to userspace.
115  *
116  * A quick note on symbol prefixes:
117  * - "xfs_" are general XFS symbols.
118  * - "xchk_" are symbols related to metadata checking.
119  * - "xrep_" are symbols related to metadata repair.
120  * - "xfs_scrub_" are symbols that tie online fsck to the rest of XFS.
121  */
122 
123 /*
124  * Scrub probe -- userspace uses this to probe if we're willing to scrub
125  * or repair a given mountpoint.  This will be used by xfs_scrub to
126  * probe the kernel's abilities to scrub (and repair) the metadata.  We
127  * do this by validating the ioctl inputs from userspace, preparing the
128  * filesystem for a scrub (or a repair) operation, and immediately
129  * returning to userspace.  Userspace can use the returned errno and
130  * structure state to decide (in broad terms) if scrub/repair are
131  * supported by the running kernel.
132  */
133 static int
134 xchk_probe(
135 	struct xfs_scrub	*sc)
136 {
137 	int			error = 0;
138 
139 	if (xchk_should_terminate(sc, &error))
140 		return error;
141 
142 	return 0;
143 }
144 
145 /* Scrub setup and teardown */
146 
147 /* Free all the resources and finish the transactions. */
148 STATIC int
149 xchk_teardown(
150 	struct xfs_scrub	*sc,
151 	struct xfs_inode	*ip_in,
152 	int			error)
153 {
154 	xchk_ag_free(sc, &sc->sa);
155 	if (sc->tp) {
156 		if (error == 0 && (sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR))
157 			error = xfs_trans_commit(sc->tp);
158 		else
159 			xfs_trans_cancel(sc->tp);
160 		sc->tp = NULL;
161 	}
162 	if (sc->ip) {
163 		if (sc->ilock_flags)
164 			xfs_iunlock(sc->ip, sc->ilock_flags);
165 		if (sc->ip != ip_in &&
166 		    !xfs_internal_inum(sc->mp, sc->ip->i_ino))
167 			xfs_irele(sc->ip);
168 		sc->ip = NULL;
169 	}
170 	if (sc->flags & XCHK_REAPING_DISABLED)
171 		xchk_start_reaping(sc);
172 	if (sc->flags & XCHK_HAS_QUOTAOFFLOCK) {
173 		mutex_unlock(&sc->mp->m_quotainfo->qi_quotaofflock);
174 		sc->flags &= ~XCHK_HAS_QUOTAOFFLOCK;
175 	}
176 	if (sc->buf) {
177 		kmem_free(sc->buf);
178 		sc->buf = NULL;
179 	}
180 	return error;
181 }
182 
183 /* Scrubbing dispatch. */
184 
185 static const struct xchk_meta_ops meta_scrub_ops[] = {
186 	[XFS_SCRUB_TYPE_PROBE] = {	/* ioctl presence test */
187 		.type	= ST_NONE,
188 		.setup	= xchk_setup_fs,
189 		.scrub	= xchk_probe,
190 		.repair = xrep_probe,
191 	},
192 	[XFS_SCRUB_TYPE_SB] = {		/* superblock */
193 		.type	= ST_PERAG,
194 		.setup	= xchk_setup_fs,
195 		.scrub	= xchk_superblock,
196 		.repair	= xrep_superblock,
197 	},
198 	[XFS_SCRUB_TYPE_AGF] = {	/* agf */
199 		.type	= ST_PERAG,
200 		.setup	= xchk_setup_fs,
201 		.scrub	= xchk_agf,
202 		.repair	= xrep_agf,
203 	},
204 	[XFS_SCRUB_TYPE_AGFL]= {	/* agfl */
205 		.type	= ST_PERAG,
206 		.setup	= xchk_setup_fs,
207 		.scrub	= xchk_agfl,
208 		.repair	= xrep_agfl,
209 	},
210 	[XFS_SCRUB_TYPE_AGI] = {	/* agi */
211 		.type	= ST_PERAG,
212 		.setup	= xchk_setup_fs,
213 		.scrub	= xchk_agi,
214 		.repair	= xrep_agi,
215 	},
216 	[XFS_SCRUB_TYPE_BNOBT] = {	/* bnobt */
217 		.type	= ST_PERAG,
218 		.setup	= xchk_setup_ag_allocbt,
219 		.scrub	= xchk_bnobt,
220 		.repair	= xrep_notsupported,
221 	},
222 	[XFS_SCRUB_TYPE_CNTBT] = {	/* cntbt */
223 		.type	= ST_PERAG,
224 		.setup	= xchk_setup_ag_allocbt,
225 		.scrub	= xchk_cntbt,
226 		.repair	= xrep_notsupported,
227 	},
228 	[XFS_SCRUB_TYPE_INOBT] = {	/* inobt */
229 		.type	= ST_PERAG,
230 		.setup	= xchk_setup_ag_iallocbt,
231 		.scrub	= xchk_inobt,
232 		.repair	= xrep_notsupported,
233 	},
234 	[XFS_SCRUB_TYPE_FINOBT] = {	/* finobt */
235 		.type	= ST_PERAG,
236 		.setup	= xchk_setup_ag_iallocbt,
237 		.scrub	= xchk_finobt,
238 		.has	= xfs_sb_version_hasfinobt,
239 		.repair	= xrep_notsupported,
240 	},
241 	[XFS_SCRUB_TYPE_RMAPBT] = {	/* rmapbt */
242 		.type	= ST_PERAG,
243 		.setup	= xchk_setup_ag_rmapbt,
244 		.scrub	= xchk_rmapbt,
245 		.has	= xfs_sb_version_hasrmapbt,
246 		.repair	= xrep_notsupported,
247 	},
248 	[XFS_SCRUB_TYPE_REFCNTBT] = {	/* refcountbt */
249 		.type	= ST_PERAG,
250 		.setup	= xchk_setup_ag_refcountbt,
251 		.scrub	= xchk_refcountbt,
252 		.has	= xfs_sb_version_hasreflink,
253 		.repair	= xrep_notsupported,
254 	},
255 	[XFS_SCRUB_TYPE_INODE] = {	/* inode record */
256 		.type	= ST_INODE,
257 		.setup	= xchk_setup_inode,
258 		.scrub	= xchk_inode,
259 		.repair	= xrep_notsupported,
260 	},
261 	[XFS_SCRUB_TYPE_BMBTD] = {	/* inode data fork */
262 		.type	= ST_INODE,
263 		.setup	= xchk_setup_inode_bmap,
264 		.scrub	= xchk_bmap_data,
265 		.repair	= xrep_notsupported,
266 	},
267 	[XFS_SCRUB_TYPE_BMBTA] = {	/* inode attr fork */
268 		.type	= ST_INODE,
269 		.setup	= xchk_setup_inode_bmap,
270 		.scrub	= xchk_bmap_attr,
271 		.repair	= xrep_notsupported,
272 	},
273 	[XFS_SCRUB_TYPE_BMBTC] = {	/* inode CoW fork */
274 		.type	= ST_INODE,
275 		.setup	= xchk_setup_inode_bmap,
276 		.scrub	= xchk_bmap_cow,
277 		.repair	= xrep_notsupported,
278 	},
279 	[XFS_SCRUB_TYPE_DIR] = {	/* directory */
280 		.type	= ST_INODE,
281 		.setup	= xchk_setup_directory,
282 		.scrub	= xchk_directory,
283 		.repair	= xrep_notsupported,
284 	},
285 	[XFS_SCRUB_TYPE_XATTR] = {	/* extended attributes */
286 		.type	= ST_INODE,
287 		.setup	= xchk_setup_xattr,
288 		.scrub	= xchk_xattr,
289 		.repair	= xrep_notsupported,
290 	},
291 	[XFS_SCRUB_TYPE_SYMLINK] = {	/* symbolic link */
292 		.type	= ST_INODE,
293 		.setup	= xchk_setup_symlink,
294 		.scrub	= xchk_symlink,
295 		.repair	= xrep_notsupported,
296 	},
297 	[XFS_SCRUB_TYPE_PARENT] = {	/* parent pointers */
298 		.type	= ST_INODE,
299 		.setup	= xchk_setup_parent,
300 		.scrub	= xchk_parent,
301 		.repair	= xrep_notsupported,
302 	},
303 	[XFS_SCRUB_TYPE_RTBITMAP] = {	/* realtime bitmap */
304 		.type	= ST_FS,
305 		.setup	= xchk_setup_rt,
306 		.scrub	= xchk_rtbitmap,
307 		.has	= xfs_sb_version_hasrealtime,
308 		.repair	= xrep_notsupported,
309 	},
310 	[XFS_SCRUB_TYPE_RTSUM] = {	/* realtime summary */
311 		.type	= ST_FS,
312 		.setup	= xchk_setup_rt,
313 		.scrub	= xchk_rtsummary,
314 		.has	= xfs_sb_version_hasrealtime,
315 		.repair	= xrep_notsupported,
316 	},
317 	[XFS_SCRUB_TYPE_UQUOTA] = {	/* user quota */
318 		.type	= ST_FS,
319 		.setup	= xchk_setup_quota,
320 		.scrub	= xchk_quota,
321 		.repair	= xrep_notsupported,
322 	},
323 	[XFS_SCRUB_TYPE_GQUOTA] = {	/* group quota */
324 		.type	= ST_FS,
325 		.setup	= xchk_setup_quota,
326 		.scrub	= xchk_quota,
327 		.repair	= xrep_notsupported,
328 	},
329 	[XFS_SCRUB_TYPE_PQUOTA] = {	/* project quota */
330 		.type	= ST_FS,
331 		.setup	= xchk_setup_quota,
332 		.scrub	= xchk_quota,
333 		.repair	= xrep_notsupported,
334 	},
335 	[XFS_SCRUB_TYPE_FSCOUNTERS] = {	/* fs summary counters */
336 		.type	= ST_FS,
337 		.setup	= xchk_setup_fscounters,
338 		.scrub	= xchk_fscounters,
339 		.repair	= xrep_notsupported,
340 	},
341 };
342 
343 /* This isn't a stable feature, warn once per day. */
344 static inline void
345 xchk_experimental_warning(
346 	struct xfs_mount	*mp)
347 {
348 	static struct ratelimit_state scrub_warning = RATELIMIT_STATE_INIT(
349 			"xchk_warning", 86400 * HZ, 1);
350 	ratelimit_set_flags(&scrub_warning, RATELIMIT_MSG_ON_RELEASE);
351 
352 	if (__ratelimit(&scrub_warning))
353 		xfs_alert(mp,
354 "EXPERIMENTAL online scrub feature in use. Use at your own risk!");
355 }
356 
357 static int
358 xchk_validate_inputs(
359 	struct xfs_mount		*mp,
360 	struct xfs_scrub_metadata	*sm)
361 {
362 	int				error;
363 	const struct xchk_meta_ops	*ops;
364 
365 	error = -EINVAL;
366 	/* Check our inputs. */
367 	sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
368 	if (sm->sm_flags & ~XFS_SCRUB_FLAGS_IN)
369 		goto out;
370 	/* sm_reserved[] must be zero */
371 	if (memchr_inv(sm->sm_reserved, 0, sizeof(sm->sm_reserved)))
372 		goto out;
373 
374 	error = -ENOENT;
375 	/* Do we know about this type of metadata? */
376 	if (sm->sm_type >= XFS_SCRUB_TYPE_NR)
377 		goto out;
378 	ops = &meta_scrub_ops[sm->sm_type];
379 	if (ops->setup == NULL || ops->scrub == NULL)
380 		goto out;
381 	/* Does this fs even support this type of metadata? */
382 	if (ops->has && !ops->has(&mp->m_sb))
383 		goto out;
384 
385 	error = -EINVAL;
386 	/* restricting fields must be appropriate for type */
387 	switch (ops->type) {
388 	case ST_NONE:
389 	case ST_FS:
390 		if (sm->sm_ino || sm->sm_gen || sm->sm_agno)
391 			goto out;
392 		break;
393 	case ST_PERAG:
394 		if (sm->sm_ino || sm->sm_gen ||
395 		    sm->sm_agno >= mp->m_sb.sb_agcount)
396 			goto out;
397 		break;
398 	case ST_INODE:
399 		if (sm->sm_agno || (sm->sm_gen && !sm->sm_ino))
400 			goto out;
401 		break;
402 	default:
403 		goto out;
404 	}
405 
406 	/*
407 	 * We only want to repair read-write v5+ filesystems.  Defer the check
408 	 * for ops->repair until after our scrub confirms that we need to
409 	 * perform repairs so that we avoid failing due to not supporting
410 	 * repairing an object that doesn't need repairs.
411 	 */
412 	if (sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) {
413 		error = -EOPNOTSUPP;
414 		if (!xfs_sb_version_hascrc(&mp->m_sb))
415 			goto out;
416 
417 		error = -EROFS;
418 		if (mp->m_flags & XFS_MOUNT_RDONLY)
419 			goto out;
420 	}
421 
422 	error = 0;
423 out:
424 	return error;
425 }
426 
427 #ifdef CONFIG_XFS_ONLINE_REPAIR
428 static inline void xchk_postmortem(struct xfs_scrub *sc)
429 {
430 	/*
431 	 * Userspace asked us to repair something, we repaired it, rescanned
432 	 * it, and the rescan says it's still broken.  Scream about this in
433 	 * the system logs.
434 	 */
435 	if ((sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) &&
436 	    (sc->sm->sm_flags & (XFS_SCRUB_OFLAG_CORRUPT |
437 				 XFS_SCRUB_OFLAG_XCORRUPT)))
438 		xrep_failure(sc->mp);
439 }
440 #else
441 static inline void xchk_postmortem(struct xfs_scrub *sc)
442 {
443 	/*
444 	 * Userspace asked us to scrub something, it's broken, and we have no
445 	 * way of fixing it.  Scream in the logs.
446 	 */
447 	if (sc->sm->sm_flags & (XFS_SCRUB_OFLAG_CORRUPT |
448 				XFS_SCRUB_OFLAG_XCORRUPT))
449 		xfs_alert_ratelimited(sc->mp,
450 				"Corruption detected during scrub.");
451 }
452 #endif /* CONFIG_XFS_ONLINE_REPAIR */
453 
454 /* Dispatch metadata scrubbing. */
455 int
456 xfs_scrub_metadata(
457 	struct xfs_inode		*ip,
458 	struct xfs_scrub_metadata	*sm)
459 {
460 	struct xfs_scrub		sc = {
461 		.mp			= ip->i_mount,
462 		.sm			= sm,
463 		.sa			= {
464 			.agno		= NULLAGNUMBER,
465 		},
466 	};
467 	struct xfs_mount		*mp = ip->i_mount;
468 	int				error = 0;
469 
470 	BUILD_BUG_ON(sizeof(meta_scrub_ops) !=
471 		(sizeof(struct xchk_meta_ops) * XFS_SCRUB_TYPE_NR));
472 
473 	trace_xchk_start(ip, sm, error);
474 
475 	/* Forbidden if we are shut down or mounted norecovery. */
476 	error = -ESHUTDOWN;
477 	if (XFS_FORCED_SHUTDOWN(mp))
478 		goto out;
479 	error = -ENOTRECOVERABLE;
480 	if (mp->m_flags & XFS_MOUNT_NORECOVERY)
481 		goto out;
482 
483 	error = xchk_validate_inputs(mp, sm);
484 	if (error)
485 		goto out;
486 
487 	xchk_experimental_warning(mp);
488 
489 	sc.ops = &meta_scrub_ops[sm->sm_type];
490 	sc.sick_mask = xchk_health_mask_for_scrub_type(sm->sm_type);
491 retry_op:
492 	/* Set up for the operation. */
493 	error = sc.ops->setup(&sc, ip);
494 	if (error)
495 		goto out_teardown;
496 
497 	/* Scrub for errors. */
498 	error = sc.ops->scrub(&sc);
499 	if (!(sc.flags & XCHK_TRY_HARDER) && error == -EDEADLOCK) {
500 		/*
501 		 * Scrubbers return -EDEADLOCK to mean 'try harder'.
502 		 * Tear down everything we hold, then set up again with
503 		 * preparation for worst-case scenarios.
504 		 */
505 		error = xchk_teardown(&sc, ip, 0);
506 		if (error)
507 			goto out;
508 		sc.flags |= XCHK_TRY_HARDER;
509 		goto retry_op;
510 	} else if (error)
511 		goto out_teardown;
512 
513 	xchk_update_health(&sc);
514 
515 	if ((sc.sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) &&
516 	    !(sc.flags & XREP_ALREADY_FIXED)) {
517 		bool needs_fix;
518 
519 		/* Let debug users force us into the repair routines. */
520 		if (XFS_TEST_ERROR(false, mp, XFS_ERRTAG_FORCE_SCRUB_REPAIR))
521 			sc.sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
522 
523 		needs_fix = (sc.sm->sm_flags & (XFS_SCRUB_OFLAG_CORRUPT |
524 						XFS_SCRUB_OFLAG_XCORRUPT |
525 						XFS_SCRUB_OFLAG_PREEN));
526 		/*
527 		 * If userspace asked for a repair but it wasn't necessary,
528 		 * report that back to userspace.
529 		 */
530 		if (!needs_fix) {
531 			sc.sm->sm_flags |= XFS_SCRUB_OFLAG_NO_REPAIR_NEEDED;
532 			goto out_nofix;
533 		}
534 
535 		/*
536 		 * If it's broken, userspace wants us to fix it, and we haven't
537 		 * already tried to fix it, then attempt a repair.
538 		 */
539 		error = xrep_attempt(ip, &sc);
540 		if (error == -EAGAIN) {
541 			/*
542 			 * Either the repair function succeeded or it couldn't
543 			 * get all the resources it needs; either way, we go
544 			 * back to the beginning and call the scrub function.
545 			 */
546 			error = xchk_teardown(&sc, ip, 0);
547 			if (error) {
548 				xrep_failure(mp);
549 				goto out;
550 			}
551 			goto retry_op;
552 		}
553 	}
554 
555 out_nofix:
556 	xchk_postmortem(&sc);
557 out_teardown:
558 	error = xchk_teardown(&sc, ip, error);
559 out:
560 	trace_xchk_done(ip, sm, error);
561 	if (error == -EFSCORRUPTED || error == -EFSBADCRC) {
562 		sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
563 		error = 0;
564 	}
565 	return error;
566 }
567