xref: /linux/fs/xfs/scrub/scrub.c (revision 80e4e12688029e42fc6ab4cf7f229b090c61e6a7)
1 /*
2  * Copyright (C) 2017 Oracle.  All Rights Reserved.
3  *
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it would be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write the Free Software Foundation,
18  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301, USA.
19  */
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_shared.h"
23 #include "xfs_format.h"
24 #include "xfs_trans_resv.h"
25 #include "xfs_mount.h"
26 #include "xfs_defer.h"
27 #include "xfs_btree.h"
28 #include "xfs_bit.h"
29 #include "xfs_log_format.h"
30 #include "xfs_trans.h"
31 #include "xfs_sb.h"
32 #include "xfs_inode.h"
33 #include "xfs_icache.h"
34 #include "xfs_itable.h"
35 #include "xfs_alloc.h"
36 #include "xfs_alloc_btree.h"
37 #include "xfs_bmap.h"
38 #include "xfs_bmap_btree.h"
39 #include "xfs_ialloc.h"
40 #include "xfs_ialloc_btree.h"
41 #include "xfs_refcount.h"
42 #include "xfs_refcount_btree.h"
43 #include "xfs_rmap.h"
44 #include "xfs_rmap_btree.h"
45 #include "scrub/xfs_scrub.h"
46 #include "scrub/scrub.h"
47 #include "scrub/common.h"
48 #include "scrub/trace.h"
49 #include "scrub/scrub.h"
50 #include "scrub/btree.h"
51 
52 /*
53  * Online Scrub and Repair
54  *
55  * Traditionally, XFS (the kernel driver) did not know how to check or
56  * repair on-disk data structures.  That task was left to the xfs_check
57  * and xfs_repair tools, both of which require taking the filesystem
58  * offline for a thorough but time consuming examination.  Online
59  * scrub & repair, on the other hand, enables us to check the metadata
60  * for obvious errors while carefully stepping around the filesystem's
61  * ongoing operations, locking rules, etc.
62  *
63  * Given that most XFS metadata consist of records stored in a btree,
64  * most of the checking functions iterate the btree blocks themselves
65  * looking for irregularities.  When a record block is encountered, each
66  * record can be checked for obviously bad values.  Record values can
67  * also be cross-referenced against other btrees to look for potential
68  * misunderstandings between pieces of metadata.
69  *
70  * It is expected that the checkers responsible for per-AG metadata
71  * structures will lock the AG headers (AGI, AGF, AGFL), iterate the
72  * metadata structure, and perform any relevant cross-referencing before
73  * unlocking the AG and returning the results to userspace.  These
74  * scrubbers must not keep an AG locked for too long to avoid tying up
75  * the block and inode allocators.
76  *
77  * Block maps and b-trees rooted in an inode present a special challenge
78  * because they can involve extents from any AG.  The general scrubber
79  * structure of lock -> check -> xref -> unlock still holds, but AG
80  * locking order rules /must/ be obeyed to avoid deadlocks.  The
81  * ordering rule, of course, is that we must lock in increasing AG
82  * order.  Helper functions are provided to track which AG headers we've
83  * already locked.  If we detect an imminent locking order violation, we
84  * can signal a potential deadlock, in which case the scrubber can jump
85  * out to the top level, lock all the AGs in order, and retry the scrub.
86  *
87  * For file data (directories, extended attributes, symlinks) scrub, we
88  * can simply lock the inode and walk the data.  For btree data
89  * (directories and attributes) we follow the same btree-scrubbing
90  * strategy outlined previously to check the records.
91  *
92  * We use a bit of trickery with transactions to avoid buffer deadlocks
93  * if there is a cycle in the metadata.  The basic problem is that
94  * travelling down a btree involves locking the current buffer at each
95  * tree level.  If a pointer should somehow point back to a buffer that
96  * we've already examined, we will deadlock due to the second buffer
97  * locking attempt.  Note however that grabbing a buffer in transaction
98  * context links the locked buffer to the transaction.  If we try to
99  * re-grab the buffer in the context of the same transaction, we avoid
100  * the second lock attempt and continue.  Between the verifier and the
101  * scrubber, something will notice that something is amiss and report
102  * the corruption.  Therefore, each scrubber will allocate an empty
103  * transaction, attach buffers to it, and cancel the transaction at the
104  * end of the scrub run.  Cancelling a non-dirty transaction simply
105  * unlocks the buffers.
106  *
107  * There are four pieces of data that scrub can communicate to
108  * userspace.  The first is the error code (errno), which can be used to
109  * communicate operational errors in performing the scrub.  There are
110  * also three flags that can be set in the scrub context.  If the data
111  * structure itself is corrupt, the CORRUPT flag will be set.  If
112  * the metadata is correct but otherwise suboptimal, the PREEN flag
113  * will be set.
114  */
115 
116 /*
117  * Scrub probe -- userspace uses this to probe if we're willing to scrub
118  * or repair a given mountpoint.  This will be used by xfs_scrub to
119  * probe the kernel's abilities to scrub (and repair) the metadata.  We
120  * do this by validating the ioctl inputs from userspace, preparing the
121  * filesystem for a scrub (or a repair) operation, and immediately
122  * returning to userspace.  Userspace can use the returned errno and
123  * structure state to decide (in broad terms) if scrub/repair are
124  * supported by the running kernel.
125  */
126 int
127 xfs_scrub_probe(
128 	struct xfs_scrub_context	*sc)
129 {
130 	int				error = 0;
131 
132 	if (sc->sm->sm_ino || sc->sm->sm_agno)
133 		return -EINVAL;
134 	if (xfs_scrub_should_terminate(sc, &error))
135 		return error;
136 
137 	return 0;
138 }
139 
140 /* Scrub setup and teardown */
141 
142 /* Free all the resources and finish the transactions. */
143 STATIC int
144 xfs_scrub_teardown(
145 	struct xfs_scrub_context	*sc,
146 	struct xfs_inode		*ip_in,
147 	int				error)
148 {
149 	xfs_scrub_ag_free(sc, &sc->sa);
150 	if (sc->tp) {
151 		xfs_trans_cancel(sc->tp);
152 		sc->tp = NULL;
153 	}
154 	if (sc->ip) {
155 		xfs_iunlock(sc->ip, sc->ilock_flags);
156 		if (sc->ip != ip_in &&
157 		    !xfs_internal_inum(sc->mp, sc->ip->i_ino))
158 			iput(VFS_I(sc->ip));
159 		sc->ip = NULL;
160 	}
161 	return error;
162 }
163 
164 /* Scrubbing dispatch. */
165 
166 static const struct xfs_scrub_meta_ops meta_scrub_ops[] = {
167 	{ /* ioctl presence test */
168 		.setup	= xfs_scrub_setup_fs,
169 		.scrub	= xfs_scrub_probe,
170 	},
171 	{ /* superblock */
172 		.setup	= xfs_scrub_setup_ag_header,
173 		.scrub	= xfs_scrub_superblock,
174 	},
175 	{ /* agf */
176 		.setup	= xfs_scrub_setup_ag_header,
177 		.scrub	= xfs_scrub_agf,
178 	},
179 	{ /* agfl */
180 		.setup	= xfs_scrub_setup_ag_header,
181 		.scrub	= xfs_scrub_agfl,
182 	},
183 	{ /* agi */
184 		.setup	= xfs_scrub_setup_ag_header,
185 		.scrub	= xfs_scrub_agi,
186 	},
187 	{ /* bnobt */
188 		.setup	= xfs_scrub_setup_ag_allocbt,
189 		.scrub	= xfs_scrub_bnobt,
190 	},
191 	{ /* cntbt */
192 		.setup	= xfs_scrub_setup_ag_allocbt,
193 		.scrub	= xfs_scrub_cntbt,
194 	},
195 	{ /* inobt */
196 		.setup	= xfs_scrub_setup_ag_iallocbt,
197 		.scrub	= xfs_scrub_inobt,
198 	},
199 	{ /* finobt */
200 		.setup	= xfs_scrub_setup_ag_iallocbt,
201 		.scrub	= xfs_scrub_finobt,
202 		.has	= xfs_sb_version_hasfinobt,
203 	},
204 	{ /* rmapbt */
205 		.setup	= xfs_scrub_setup_ag_rmapbt,
206 		.scrub	= xfs_scrub_rmapbt,
207 		.has	= xfs_sb_version_hasrmapbt,
208 	},
209 	{ /* refcountbt */
210 		.setup	= xfs_scrub_setup_ag_refcountbt,
211 		.scrub	= xfs_scrub_refcountbt,
212 		.has	= xfs_sb_version_hasreflink,
213 	},
214 	{ /* inode record */
215 		.setup	= xfs_scrub_setup_inode,
216 		.scrub	= xfs_scrub_inode,
217 	},
218 };
219 
220 /* This isn't a stable feature, warn once per day. */
221 static inline void
222 xfs_scrub_experimental_warning(
223 	struct xfs_mount	*mp)
224 {
225 	static struct ratelimit_state scrub_warning = RATELIMIT_STATE_INIT(
226 			"xfs_scrub_warning", 86400 * HZ, 1);
227 	ratelimit_set_flags(&scrub_warning, RATELIMIT_MSG_ON_RELEASE);
228 
229 	if (__ratelimit(&scrub_warning))
230 		xfs_alert(mp,
231 "EXPERIMENTAL online scrub feature in use. Use at your own risk!");
232 }
233 
234 /* Dispatch metadata scrubbing. */
235 int
236 xfs_scrub_metadata(
237 	struct xfs_inode		*ip,
238 	struct xfs_scrub_metadata	*sm)
239 {
240 	struct xfs_scrub_context	sc;
241 	struct xfs_mount		*mp = ip->i_mount;
242 	const struct xfs_scrub_meta_ops	*ops;
243 	bool				try_harder = false;
244 	int				error = 0;
245 
246 	trace_xfs_scrub_start(ip, sm, error);
247 
248 	/* Forbidden if we are shut down or mounted norecovery. */
249 	error = -ESHUTDOWN;
250 	if (XFS_FORCED_SHUTDOWN(mp))
251 		goto out;
252 	error = -ENOTRECOVERABLE;
253 	if (mp->m_flags & XFS_MOUNT_NORECOVERY)
254 		goto out;
255 
256 	/* Check our inputs. */
257 	error = -EINVAL;
258 	sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
259 	if (sm->sm_flags & ~XFS_SCRUB_FLAGS_IN)
260 		goto out;
261 	if (memchr_inv(sm->sm_reserved, 0, sizeof(sm->sm_reserved)))
262 		goto out;
263 
264 	/* Do we know about this type of metadata? */
265 	error = -ENOENT;
266 	if (sm->sm_type >= XFS_SCRUB_TYPE_NR)
267 		goto out;
268 	ops = &meta_scrub_ops[sm->sm_type];
269 	if (ops->scrub == NULL)
270 		goto out;
271 
272 	/*
273 	 * We won't scrub any filesystem that doesn't have the ability
274 	 * to record unwritten extents.  The option was made default in
275 	 * 2003, removed from mkfs in 2007, and cannot be disabled in
276 	 * v5, so if we find a filesystem without this flag it's either
277 	 * really old or totally unsupported.  Avoid it either way.
278 	 * We also don't support v1-v3 filesystems, which aren't
279 	 * mountable.
280 	 */
281 	error = -EOPNOTSUPP;
282 	if (!xfs_sb_version_hasextflgbit(&mp->m_sb))
283 		goto out;
284 
285 	/* Does this fs even support this type of metadata? */
286 	error = -ENOENT;
287 	if (ops->has && !ops->has(&mp->m_sb))
288 		goto out;
289 
290 	/* We don't know how to repair anything yet. */
291 	error = -EOPNOTSUPP;
292 	if (sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR)
293 		goto out;
294 
295 	xfs_scrub_experimental_warning(mp);
296 
297 retry_op:
298 	/* Set up for the operation. */
299 	memset(&sc, 0, sizeof(sc));
300 	sc.mp = ip->i_mount;
301 	sc.sm = sm;
302 	sc.ops = ops;
303 	sc.try_harder = try_harder;
304 	sc.sa.agno = NULLAGNUMBER;
305 	error = sc.ops->setup(&sc, ip);
306 	if (error)
307 		goto out_teardown;
308 
309 	/* Scrub for errors. */
310 	error = sc.ops->scrub(&sc);
311 	if (!try_harder && error == -EDEADLOCK) {
312 		/*
313 		 * Scrubbers return -EDEADLOCK to mean 'try harder'.
314 		 * Tear down everything we hold, then set up again with
315 		 * preparation for worst-case scenarios.
316 		 */
317 		error = xfs_scrub_teardown(&sc, ip, 0);
318 		if (error)
319 			goto out;
320 		try_harder = true;
321 		goto retry_op;
322 	} else if (error)
323 		goto out_teardown;
324 
325 	if (sc.sm->sm_flags & (XFS_SCRUB_OFLAG_CORRUPT |
326 			       XFS_SCRUB_OFLAG_XCORRUPT))
327 		xfs_alert_ratelimited(mp, "Corruption detected during scrub.");
328 
329 out_teardown:
330 	error = xfs_scrub_teardown(&sc, ip, error);
331 out:
332 	trace_xfs_scrub_done(ip, sm, error);
333 	if (error == -EFSCORRUPTED || error == -EFSBADCRC) {
334 		sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
335 		error = 0;
336 	}
337 	return error;
338 }
339