xref: /linux/fs/xfs/scrub/scrub.c (revision 2b0cfa6e49566c8fa6759734cf821aa6e8271a9e)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2017-2023 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <djwong@kernel.org>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_mount.h"
12 #include "xfs_log_format.h"
13 #include "xfs_trans.h"
14 #include "xfs_inode.h"
15 #include "xfs_quota.h"
16 #include "xfs_qm.h"
17 #include "xfs_scrub.h"
18 #include "scrub/scrub.h"
19 #include "scrub/common.h"
20 #include "scrub/trace.h"
21 #include "scrub/repair.h"
22 #include "scrub/health.h"
23 #include "scrub/stats.h"
24 #include "scrub/xfile.h"
25 
26 /*
27  * Online Scrub and Repair
28  *
29  * Traditionally, XFS (the kernel driver) did not know how to check or
30  * repair on-disk data structures.  That task was left to the xfs_check
31  * and xfs_repair tools, both of which require taking the filesystem
32  * offline for a thorough but time consuming examination.  Online
33  * scrub & repair, on the other hand, enables us to check the metadata
34  * for obvious errors while carefully stepping around the filesystem's
35  * ongoing operations, locking rules, etc.
36  *
37  * Given that most XFS metadata consist of records stored in a btree,
38  * most of the checking functions iterate the btree blocks themselves
39  * looking for irregularities.  When a record block is encountered, each
40  * record can be checked for obviously bad values.  Record values can
41  * also be cross-referenced against other btrees to look for potential
42  * misunderstandings between pieces of metadata.
43  *
44  * It is expected that the checkers responsible for per-AG metadata
45  * structures will lock the AG headers (AGI, AGF, AGFL), iterate the
46  * metadata structure, and perform any relevant cross-referencing before
47  * unlocking the AG and returning the results to userspace.  These
48  * scrubbers must not keep an AG locked for too long to avoid tying up
49  * the block and inode allocators.
50  *
51  * Block maps and b-trees rooted in an inode present a special challenge
52  * because they can involve extents from any AG.  The general scrubber
53  * structure of lock -> check -> xref -> unlock still holds, but AG
54  * locking order rules /must/ be obeyed to avoid deadlocks.  The
55  * ordering rule, of course, is that we must lock in increasing AG
56  * order.  Helper functions are provided to track which AG headers we've
57  * already locked.  If we detect an imminent locking order violation, we
58  * can signal a potential deadlock, in which case the scrubber can jump
59  * out to the top level, lock all the AGs in order, and retry the scrub.
60  *
61  * For file data (directories, extended attributes, symlinks) scrub, we
62  * can simply lock the inode and walk the data.  For btree data
63  * (directories and attributes) we follow the same btree-scrubbing
64  * strategy outlined previously to check the records.
65  *
66  * We use a bit of trickery with transactions to avoid buffer deadlocks
67  * if there is a cycle in the metadata.  The basic problem is that
68  * travelling down a btree involves locking the current buffer at each
69  * tree level.  If a pointer should somehow point back to a buffer that
70  * we've already examined, we will deadlock due to the second buffer
71  * locking attempt.  Note however that grabbing a buffer in transaction
72  * context links the locked buffer to the transaction.  If we try to
73  * re-grab the buffer in the context of the same transaction, we avoid
74  * the second lock attempt and continue.  Between the verifier and the
75  * scrubber, something will notice that something is amiss and report
76  * the corruption.  Therefore, each scrubber will allocate an empty
77  * transaction, attach buffers to it, and cancel the transaction at the
78  * end of the scrub run.  Cancelling a non-dirty transaction simply
79  * unlocks the buffers.
80  *
81  * There are four pieces of data that scrub can communicate to
82  * userspace.  The first is the error code (errno), which can be used to
83  * communicate operational errors in performing the scrub.  There are
84  * also three flags that can be set in the scrub context.  If the data
85  * structure itself is corrupt, the CORRUPT flag will be set.  If
86  * the metadata is correct but otherwise suboptimal, the PREEN flag
87  * will be set.
88  *
89  * We perform secondary validation of filesystem metadata by
90  * cross-referencing every record with all other available metadata.
91  * For example, for block mapping extents, we verify that there are no
92  * records in the free space and inode btrees corresponding to that
93  * space extent and that there is a corresponding entry in the reverse
94  * mapping btree.  Inconsistent metadata is noted by setting the
95  * XCORRUPT flag; btree query function errors are noted by setting the
96  * XFAIL flag and deleting the cursor to prevent further attempts to
97  * cross-reference with a defective btree.
98  *
99  * If a piece of metadata proves corrupt or suboptimal, the userspace
100  * program can ask the kernel to apply some tender loving care (TLC) to
101  * the metadata object by setting the REPAIR flag and re-calling the
102  * scrub ioctl.  "Corruption" is defined by metadata violating the
103  * on-disk specification; operations cannot continue if the violation is
104  * left untreated.  It is possible for XFS to continue if an object is
105  * "suboptimal", however performance may be degraded.  Repairs are
106  * usually performed by rebuilding the metadata entirely out of
107  * redundant metadata.  Optimizing, on the other hand, can sometimes be
108  * done without rebuilding entire structures.
109  *
110  * Generally speaking, the repair code has the following code structure:
111  * Lock -> scrub -> repair -> commit -> re-lock -> re-scrub -> unlock.
112  * The first check helps us figure out if we need to rebuild or simply
113  * optimize the structure so that the rebuild knows what to do.  The
114  * second check evaluates the completeness of the repair; that is what
115  * is reported to userspace.
116  *
117  * A quick note on symbol prefixes:
118  * - "xfs_" are general XFS symbols.
119  * - "xchk_" are symbols related to metadata checking.
120  * - "xrep_" are symbols related to metadata repair.
121  * - "xfs_scrub_" are symbols that tie online fsck to the rest of XFS.
122  */
123 
124 /*
125  * Scrub probe -- userspace uses this to probe if we're willing to scrub
126  * or repair a given mountpoint.  This will be used by xfs_scrub to
127  * probe the kernel's abilities to scrub (and repair) the metadata.  We
128  * do this by validating the ioctl inputs from userspace, preparing the
129  * filesystem for a scrub (or a repair) operation, and immediately
130  * returning to userspace.  Userspace can use the returned errno and
131  * structure state to decide (in broad terms) if scrub/repair are
132  * supported by the running kernel.
133  */
134 static int
135 xchk_probe(
136 	struct xfs_scrub	*sc)
137 {
138 	int			error = 0;
139 
140 	if (xchk_should_terminate(sc, &error))
141 		return error;
142 
143 	return 0;
144 }
145 
146 /* Scrub setup and teardown */
147 
148 static inline void
149 xchk_fsgates_disable(
150 	struct xfs_scrub	*sc)
151 {
152 	if (!(sc->flags & XCHK_FSGATES_ALL))
153 		return;
154 
155 	trace_xchk_fsgates_disable(sc, sc->flags & XCHK_FSGATES_ALL);
156 
157 	if (sc->flags & XCHK_FSGATES_DRAIN)
158 		xfs_drain_wait_disable();
159 
160 	sc->flags &= ~XCHK_FSGATES_ALL;
161 }
162 
163 /* Free all the resources and finish the transactions. */
164 STATIC int
165 xchk_teardown(
166 	struct xfs_scrub	*sc,
167 	int			error)
168 {
169 	xchk_ag_free(sc, &sc->sa);
170 	if (sc->tp) {
171 		if (error == 0 && (sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR))
172 			error = xfs_trans_commit(sc->tp);
173 		else
174 			xfs_trans_cancel(sc->tp);
175 		sc->tp = NULL;
176 	}
177 	if (sc->ip) {
178 		if (sc->ilock_flags)
179 			xchk_iunlock(sc, sc->ilock_flags);
180 		xchk_irele(sc, sc->ip);
181 		sc->ip = NULL;
182 	}
183 	if (sc->flags & XCHK_HAVE_FREEZE_PROT) {
184 		sc->flags &= ~XCHK_HAVE_FREEZE_PROT;
185 		mnt_drop_write_file(sc->file);
186 	}
187 	if (sc->xfile) {
188 		xfile_destroy(sc->xfile);
189 		sc->xfile = NULL;
190 	}
191 	if (sc->buf) {
192 		if (sc->buf_cleanup)
193 			sc->buf_cleanup(sc->buf);
194 		kvfree(sc->buf);
195 		sc->buf_cleanup = NULL;
196 		sc->buf = NULL;
197 	}
198 
199 	xchk_fsgates_disable(sc);
200 	return error;
201 }
202 
203 /* Scrubbing dispatch. */
204 
205 static const struct xchk_meta_ops meta_scrub_ops[] = {
206 	[XFS_SCRUB_TYPE_PROBE] = {	/* ioctl presence test */
207 		.type	= ST_NONE,
208 		.setup	= xchk_setup_fs,
209 		.scrub	= xchk_probe,
210 		.repair = xrep_probe,
211 	},
212 	[XFS_SCRUB_TYPE_SB] = {		/* superblock */
213 		.type	= ST_PERAG,
214 		.setup	= xchk_setup_agheader,
215 		.scrub	= xchk_superblock,
216 		.repair	= xrep_superblock,
217 	},
218 	[XFS_SCRUB_TYPE_AGF] = {	/* agf */
219 		.type	= ST_PERAG,
220 		.setup	= xchk_setup_agheader,
221 		.scrub	= xchk_agf,
222 		.repair	= xrep_agf,
223 	},
224 	[XFS_SCRUB_TYPE_AGFL]= {	/* agfl */
225 		.type	= ST_PERAG,
226 		.setup	= xchk_setup_agheader,
227 		.scrub	= xchk_agfl,
228 		.repair	= xrep_agfl,
229 	},
230 	[XFS_SCRUB_TYPE_AGI] = {	/* agi */
231 		.type	= ST_PERAG,
232 		.setup	= xchk_setup_agheader,
233 		.scrub	= xchk_agi,
234 		.repair	= xrep_agi,
235 	},
236 	[XFS_SCRUB_TYPE_BNOBT] = {	/* bnobt */
237 		.type	= ST_PERAG,
238 		.setup	= xchk_setup_ag_allocbt,
239 		.scrub	= xchk_allocbt,
240 		.repair	= xrep_allocbt,
241 		.repair_eval = xrep_revalidate_allocbt,
242 	},
243 	[XFS_SCRUB_TYPE_CNTBT] = {	/* cntbt */
244 		.type	= ST_PERAG,
245 		.setup	= xchk_setup_ag_allocbt,
246 		.scrub	= xchk_allocbt,
247 		.repair	= xrep_allocbt,
248 		.repair_eval = xrep_revalidate_allocbt,
249 	},
250 	[XFS_SCRUB_TYPE_INOBT] = {	/* inobt */
251 		.type	= ST_PERAG,
252 		.setup	= xchk_setup_ag_iallocbt,
253 		.scrub	= xchk_iallocbt,
254 		.repair	= xrep_iallocbt,
255 		.repair_eval = xrep_revalidate_iallocbt,
256 	},
257 	[XFS_SCRUB_TYPE_FINOBT] = {	/* finobt */
258 		.type	= ST_PERAG,
259 		.setup	= xchk_setup_ag_iallocbt,
260 		.scrub	= xchk_iallocbt,
261 		.has	= xfs_has_finobt,
262 		.repair	= xrep_iallocbt,
263 		.repair_eval = xrep_revalidate_iallocbt,
264 	},
265 	[XFS_SCRUB_TYPE_RMAPBT] = {	/* rmapbt */
266 		.type	= ST_PERAG,
267 		.setup	= xchk_setup_ag_rmapbt,
268 		.scrub	= xchk_rmapbt,
269 		.has	= xfs_has_rmapbt,
270 		.repair	= xrep_notsupported,
271 	},
272 	[XFS_SCRUB_TYPE_REFCNTBT] = {	/* refcountbt */
273 		.type	= ST_PERAG,
274 		.setup	= xchk_setup_ag_refcountbt,
275 		.scrub	= xchk_refcountbt,
276 		.has	= xfs_has_reflink,
277 		.repair	= xrep_refcountbt,
278 	},
279 	[XFS_SCRUB_TYPE_INODE] = {	/* inode record */
280 		.type	= ST_INODE,
281 		.setup	= xchk_setup_inode,
282 		.scrub	= xchk_inode,
283 		.repair	= xrep_inode,
284 	},
285 	[XFS_SCRUB_TYPE_BMBTD] = {	/* inode data fork */
286 		.type	= ST_INODE,
287 		.setup	= xchk_setup_inode_bmap,
288 		.scrub	= xchk_bmap_data,
289 		.repair	= xrep_bmap_data,
290 	},
291 	[XFS_SCRUB_TYPE_BMBTA] = {	/* inode attr fork */
292 		.type	= ST_INODE,
293 		.setup	= xchk_setup_inode_bmap,
294 		.scrub	= xchk_bmap_attr,
295 		.repair	= xrep_bmap_attr,
296 	},
297 	[XFS_SCRUB_TYPE_BMBTC] = {	/* inode CoW fork */
298 		.type	= ST_INODE,
299 		.setup	= xchk_setup_inode_bmap,
300 		.scrub	= xchk_bmap_cow,
301 		.repair	= xrep_bmap_cow,
302 	},
303 	[XFS_SCRUB_TYPE_DIR] = {	/* directory */
304 		.type	= ST_INODE,
305 		.setup	= xchk_setup_directory,
306 		.scrub	= xchk_directory,
307 		.repair	= xrep_notsupported,
308 	},
309 	[XFS_SCRUB_TYPE_XATTR] = {	/* extended attributes */
310 		.type	= ST_INODE,
311 		.setup	= xchk_setup_xattr,
312 		.scrub	= xchk_xattr,
313 		.repair	= xrep_notsupported,
314 	},
315 	[XFS_SCRUB_TYPE_SYMLINK] = {	/* symbolic link */
316 		.type	= ST_INODE,
317 		.setup	= xchk_setup_symlink,
318 		.scrub	= xchk_symlink,
319 		.repair	= xrep_notsupported,
320 	},
321 	[XFS_SCRUB_TYPE_PARENT] = {	/* parent pointers */
322 		.type	= ST_INODE,
323 		.setup	= xchk_setup_parent,
324 		.scrub	= xchk_parent,
325 		.repair	= xrep_notsupported,
326 	},
327 	[XFS_SCRUB_TYPE_RTBITMAP] = {	/* realtime bitmap */
328 		.type	= ST_FS,
329 		.setup	= xchk_setup_rtbitmap,
330 		.scrub	= xchk_rtbitmap,
331 		.repair	= xrep_rtbitmap,
332 	},
333 	[XFS_SCRUB_TYPE_RTSUM] = {	/* realtime summary */
334 		.type	= ST_FS,
335 		.setup	= xchk_setup_rtsummary,
336 		.scrub	= xchk_rtsummary,
337 		.repair	= xrep_notsupported,
338 	},
339 	[XFS_SCRUB_TYPE_UQUOTA] = {	/* user quota */
340 		.type	= ST_FS,
341 		.setup	= xchk_setup_quota,
342 		.scrub	= xchk_quota,
343 		.repair	= xrep_quota,
344 	},
345 	[XFS_SCRUB_TYPE_GQUOTA] = {	/* group quota */
346 		.type	= ST_FS,
347 		.setup	= xchk_setup_quota,
348 		.scrub	= xchk_quota,
349 		.repair	= xrep_quota,
350 	},
351 	[XFS_SCRUB_TYPE_PQUOTA] = {	/* project quota */
352 		.type	= ST_FS,
353 		.setup	= xchk_setup_quota,
354 		.scrub	= xchk_quota,
355 		.repair	= xrep_quota,
356 	},
357 	[XFS_SCRUB_TYPE_FSCOUNTERS] = {	/* fs summary counters */
358 		.type	= ST_FS,
359 		.setup	= xchk_setup_fscounters,
360 		.scrub	= xchk_fscounters,
361 		.repair	= xrep_notsupported,
362 	},
363 };
364 
365 static int
366 xchk_validate_inputs(
367 	struct xfs_mount		*mp,
368 	struct xfs_scrub_metadata	*sm)
369 {
370 	int				error;
371 	const struct xchk_meta_ops	*ops;
372 
373 	error = -EINVAL;
374 	/* Check our inputs. */
375 	sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
376 	if (sm->sm_flags & ~XFS_SCRUB_FLAGS_IN)
377 		goto out;
378 	/* sm_reserved[] must be zero */
379 	if (memchr_inv(sm->sm_reserved, 0, sizeof(sm->sm_reserved)))
380 		goto out;
381 
382 	error = -ENOENT;
383 	/* Do we know about this type of metadata? */
384 	if (sm->sm_type >= XFS_SCRUB_TYPE_NR)
385 		goto out;
386 	ops = &meta_scrub_ops[sm->sm_type];
387 	if (ops->setup == NULL || ops->scrub == NULL)
388 		goto out;
389 	/* Does this fs even support this type of metadata? */
390 	if (ops->has && !ops->has(mp))
391 		goto out;
392 
393 	error = -EINVAL;
394 	/* restricting fields must be appropriate for type */
395 	switch (ops->type) {
396 	case ST_NONE:
397 	case ST_FS:
398 		if (sm->sm_ino || sm->sm_gen || sm->sm_agno)
399 			goto out;
400 		break;
401 	case ST_PERAG:
402 		if (sm->sm_ino || sm->sm_gen ||
403 		    sm->sm_agno >= mp->m_sb.sb_agcount)
404 			goto out;
405 		break;
406 	case ST_INODE:
407 		if (sm->sm_agno || (sm->sm_gen && !sm->sm_ino))
408 			goto out;
409 		break;
410 	default:
411 		goto out;
412 	}
413 
414 	/* No rebuild without repair. */
415 	if ((sm->sm_flags & XFS_SCRUB_IFLAG_FORCE_REBUILD) &&
416 	    !(sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR))
417 		return -EINVAL;
418 
419 	/*
420 	 * We only want to repair read-write v5+ filesystems.  Defer the check
421 	 * for ops->repair until after our scrub confirms that we need to
422 	 * perform repairs so that we avoid failing due to not supporting
423 	 * repairing an object that doesn't need repairs.
424 	 */
425 	if (sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) {
426 		error = -EOPNOTSUPP;
427 		if (!xfs_has_crc(mp))
428 			goto out;
429 
430 		error = -EROFS;
431 		if (xfs_is_readonly(mp))
432 			goto out;
433 	}
434 
435 	error = 0;
436 out:
437 	return error;
438 }
439 
440 #ifdef CONFIG_XFS_ONLINE_REPAIR
441 static inline void xchk_postmortem(struct xfs_scrub *sc)
442 {
443 	/*
444 	 * Userspace asked us to repair something, we repaired it, rescanned
445 	 * it, and the rescan says it's still broken.  Scream about this in
446 	 * the system logs.
447 	 */
448 	if ((sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) &&
449 	    (sc->sm->sm_flags & (XFS_SCRUB_OFLAG_CORRUPT |
450 				 XFS_SCRUB_OFLAG_XCORRUPT)))
451 		xrep_failure(sc->mp);
452 }
453 #else
454 static inline void xchk_postmortem(struct xfs_scrub *sc)
455 {
456 	/*
457 	 * Userspace asked us to scrub something, it's broken, and we have no
458 	 * way of fixing it.  Scream in the logs.
459 	 */
460 	if (sc->sm->sm_flags & (XFS_SCRUB_OFLAG_CORRUPT |
461 				XFS_SCRUB_OFLAG_XCORRUPT))
462 		xfs_alert_ratelimited(sc->mp,
463 				"Corruption detected during scrub.");
464 }
465 #endif /* CONFIG_XFS_ONLINE_REPAIR */
466 
467 /* Dispatch metadata scrubbing. */
468 int
469 xfs_scrub_metadata(
470 	struct file			*file,
471 	struct xfs_scrub_metadata	*sm)
472 {
473 	struct xchk_stats_run		run = { };
474 	struct xfs_scrub		*sc;
475 	struct xfs_mount		*mp = XFS_I(file_inode(file))->i_mount;
476 	u64				check_start;
477 	int				error = 0;
478 
479 	BUILD_BUG_ON(sizeof(meta_scrub_ops) !=
480 		(sizeof(struct xchk_meta_ops) * XFS_SCRUB_TYPE_NR));
481 
482 	trace_xchk_start(XFS_I(file_inode(file)), sm, error);
483 
484 	/* Forbidden if we are shut down or mounted norecovery. */
485 	error = -ESHUTDOWN;
486 	if (xfs_is_shutdown(mp))
487 		goto out;
488 	error = -ENOTRECOVERABLE;
489 	if (xfs_has_norecovery(mp))
490 		goto out;
491 
492 	error = xchk_validate_inputs(mp, sm);
493 	if (error)
494 		goto out;
495 
496 	xfs_warn_mount(mp, XFS_OPSTATE_WARNED_SCRUB,
497  "EXPERIMENTAL online scrub feature in use. Use at your own risk!");
498 
499 	sc = kzalloc(sizeof(struct xfs_scrub), XCHK_GFP_FLAGS);
500 	if (!sc) {
501 		error = -ENOMEM;
502 		goto out;
503 	}
504 
505 	sc->mp = mp;
506 	sc->file = file;
507 	sc->sm = sm;
508 	sc->ops = &meta_scrub_ops[sm->sm_type];
509 	sc->sick_mask = xchk_health_mask_for_scrub_type(sm->sm_type);
510 retry_op:
511 	/*
512 	 * When repairs are allowed, prevent freezing or readonly remount while
513 	 * scrub is running with a real transaction.
514 	 */
515 	if (sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) {
516 		error = mnt_want_write_file(sc->file);
517 		if (error)
518 			goto out_sc;
519 
520 		sc->flags |= XCHK_HAVE_FREEZE_PROT;
521 	}
522 
523 	/* Set up for the operation. */
524 	error = sc->ops->setup(sc);
525 	if (error == -EDEADLOCK && !(sc->flags & XCHK_TRY_HARDER))
526 		goto try_harder;
527 	if (error == -ECHRNG && !(sc->flags & XCHK_NEED_DRAIN))
528 		goto need_drain;
529 	if (error)
530 		goto out_teardown;
531 
532 	/* Scrub for errors. */
533 	check_start = xchk_stats_now();
534 	if ((sc->flags & XREP_ALREADY_FIXED) && sc->ops->repair_eval != NULL)
535 		error = sc->ops->repair_eval(sc);
536 	else
537 		error = sc->ops->scrub(sc);
538 	run.scrub_ns += xchk_stats_elapsed_ns(check_start);
539 	if (error == -EDEADLOCK && !(sc->flags & XCHK_TRY_HARDER))
540 		goto try_harder;
541 	if (error == -ECHRNG && !(sc->flags & XCHK_NEED_DRAIN))
542 		goto need_drain;
543 	if (error || (sm->sm_flags & XFS_SCRUB_OFLAG_INCOMPLETE))
544 		goto out_teardown;
545 
546 	xchk_update_health(sc);
547 
548 	if (xchk_could_repair(sc)) {
549 		/*
550 		 * If userspace asked for a repair but it wasn't necessary,
551 		 * report that back to userspace.
552 		 */
553 		if (!xrep_will_attempt(sc)) {
554 			sc->sm->sm_flags |= XFS_SCRUB_OFLAG_NO_REPAIR_NEEDED;
555 			goto out_nofix;
556 		}
557 
558 		/*
559 		 * If it's broken, userspace wants us to fix it, and we haven't
560 		 * already tried to fix it, then attempt a repair.
561 		 */
562 		error = xrep_attempt(sc, &run);
563 		if (error == -EAGAIN) {
564 			/*
565 			 * Either the repair function succeeded or it couldn't
566 			 * get all the resources it needs; either way, we go
567 			 * back to the beginning and call the scrub function.
568 			 */
569 			error = xchk_teardown(sc, 0);
570 			if (error) {
571 				xrep_failure(mp);
572 				goto out_sc;
573 			}
574 			goto retry_op;
575 		}
576 	}
577 
578 out_nofix:
579 	xchk_postmortem(sc);
580 out_teardown:
581 	error = xchk_teardown(sc, error);
582 out_sc:
583 	if (error != -ENOENT)
584 		xchk_stats_merge(mp, sm, &run);
585 	kfree(sc);
586 out:
587 	trace_xchk_done(XFS_I(file_inode(file)), sm, error);
588 	if (error == -EFSCORRUPTED || error == -EFSBADCRC) {
589 		sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
590 		error = 0;
591 	}
592 	return error;
593 need_drain:
594 	error = xchk_teardown(sc, 0);
595 	if (error)
596 		goto out_sc;
597 	sc->flags |= XCHK_NEED_DRAIN;
598 	run.retries++;
599 	goto retry_op;
600 try_harder:
601 	/*
602 	 * Scrubbers return -EDEADLOCK to mean 'try harder'.  Tear down
603 	 * everything we hold, then set up again with preparation for
604 	 * worst-case scenarios.
605 	 */
606 	error = xchk_teardown(sc, 0);
607 	if (error)
608 		goto out_sc;
609 	sc->flags |= XCHK_TRY_HARDER;
610 	run.retries++;
611 	goto retry_op;
612 }
613