1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (c) 2018-2024 Oracle. All Rights Reserved. 4 * Author: Darrick J. Wong <djwong@kernel.org> 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_trans_resv.h" 11 #include "xfs_mount.h" 12 #include "xfs_defer.h" 13 #include "xfs_btree.h" 14 #include "xfs_btree_staging.h" 15 #include "xfs_buf_mem.h" 16 #include "xfs_btree_mem.h" 17 #include "xfs_bit.h" 18 #include "xfs_log_format.h" 19 #include "xfs_trans.h" 20 #include "xfs_sb.h" 21 #include "xfs_alloc.h" 22 #include "xfs_alloc_btree.h" 23 #include "xfs_ialloc.h" 24 #include "xfs_ialloc_btree.h" 25 #include "xfs_rmap.h" 26 #include "xfs_rmap_btree.h" 27 #include "xfs_inode.h" 28 #include "xfs_icache.h" 29 #include "xfs_bmap.h" 30 #include "xfs_bmap_btree.h" 31 #include "xfs_refcount.h" 32 #include "xfs_refcount_btree.h" 33 #include "xfs_ag.h" 34 #include "scrub/xfs_scrub.h" 35 #include "scrub/scrub.h" 36 #include "scrub/common.h" 37 #include "scrub/btree.h" 38 #include "scrub/trace.h" 39 #include "scrub/repair.h" 40 #include "scrub/bitmap.h" 41 #include "scrub/agb_bitmap.h" 42 #include "scrub/xfile.h" 43 #include "scrub/xfarray.h" 44 #include "scrub/iscan.h" 45 #include "scrub/newbt.h" 46 #include "scrub/reap.h" 47 48 /* 49 * Reverse Mapping Btree Repair 50 * ============================ 51 * 52 * This is the most involved of all the AG space btree rebuilds. Everywhere 53 * else in XFS we lock inodes and then AG data structures, but generating the 54 * list of rmap records requires that we be able to scan both block mapping 55 * btrees of every inode in the filesystem to see if it owns any extents in 56 * this AG. We can't tolerate any inode updates while we do this, so we 57 * freeze the filesystem to lock everyone else out, and grant ourselves 58 * special privileges to run transactions with regular background reclamation 59 * turned off. 60 * 61 * We also have to be very careful not to allow inode reclaim to start a 62 * transaction because all transactions (other than our own) will block. 63 * Deferred inode inactivation helps us out there. 64 * 65 * I) Reverse mappings for all non-space metadata and file data are collected 66 * according to the following algorithm: 67 * 68 * 1. For each fork of each inode: 69 * 1.1. Create a bitmap BMBIT to track bmbt blocks if necessary. 70 * 1.2. If the incore extent map isn't loaded, walk the bmbt to accumulate 71 * bmaps into rmap records (see 1.1.4). Set bits in BMBIT for each btree 72 * block. 73 * 1.3. If the incore extent map is loaded but the fork is in btree format, 74 * just visit the bmbt blocks to set the corresponding BMBIT areas. 75 * 1.4. From the incore extent map, accumulate each bmap that falls into our 76 * target AG. Remember, multiple bmap records can map to a single rmap 77 * record, so we cannot simply emit rmap records 1:1. 78 * 1.5. Emit rmap records for each extent in BMBIT and free it. 79 * 2. Create bitmaps INOBIT and ICHUNKBIT. 80 * 3. For each record in the inobt, set the corresponding areas in ICHUNKBIT, 81 * and set bits in INOBIT for each btree block. If the inobt has no records 82 * at all, we must be careful to record its root in INOBIT. 83 * 4. For each block in the finobt, set the corresponding INOBIT area. 84 * 5. Emit rmap records for each extent in INOBIT and ICHUNKBIT and free them. 85 * 6. Create bitmaps REFCBIT and COWBIT. 86 * 7. For each CoW staging extent in the refcountbt, set the corresponding 87 * areas in COWBIT. 88 * 8. For each block in the refcountbt, set the corresponding REFCBIT area. 89 * 9. Emit rmap records for each extent in REFCBIT and COWBIT and free them. 90 * A. Emit rmap for the AG headers. 91 * B. Emit rmap for the log, if there is one. 92 * 93 * II) The rmapbt shape and space metadata rmaps are computed as follows: 94 * 95 * 1. Count the rmaps collected in the previous step. (= NR) 96 * 2. Estimate the number of rmapbt blocks needed to store NR records. (= RMB) 97 * 3. Reserve RMB blocks through the newbt using the allocator in normap mode. 98 * 4. Create bitmap AGBIT. 99 * 5. For each reservation in the newbt, set the corresponding areas in AGBIT. 100 * 6. For each block in the AGFL, bnobt, and cntbt, set the bits in AGBIT. 101 * 7. Count the extents in AGBIT. (= AGNR) 102 * 8. Estimate the number of rmapbt blocks needed for NR + AGNR rmaps. (= RMB') 103 * 9. If RMB' >= RMB, reserve RMB' - RMB more newbt blocks, set RMB = RMB', 104 * and clear AGBIT. Go to step 5. 105 * A. Emit rmaps for each extent in AGBIT. 106 * 107 * III) The rmapbt is constructed and set in place as follows: 108 * 109 * 1. Sort the rmap records. 110 * 2. Bulk load the rmaps. 111 * 112 * IV) Reap the old btree blocks. 113 * 114 * 1. Create a bitmap OLDRMBIT. 115 * 2. For each gap in the new rmapbt, set the corresponding areas of OLDRMBIT. 116 * 3. For each extent in the bnobt, clear the corresponding parts of OLDRMBIT. 117 * 4. Reap the extents corresponding to the set areas in OLDRMBIT. These are 118 * the parts of the AG that the rmap didn't find during its scan of the 119 * primary metadata and aren't known to be in the free space, which implies 120 * that they were the old rmapbt blocks. 121 * 5. Commit. 122 * 123 * We use the 'xrep_rmap' prefix for all the rmap functions. 124 */ 125 126 /* Context for collecting rmaps */ 127 struct xrep_rmap { 128 /* new rmapbt information */ 129 struct xrep_newbt new_btree; 130 131 /* lock for the xfbtree and xfile */ 132 struct mutex lock; 133 134 /* rmap records generated from primary metadata */ 135 struct xfbtree rmap_btree; 136 137 struct xfs_scrub *sc; 138 139 /* in-memory btree cursor for the xfs_btree_bload iteration */ 140 struct xfs_btree_cur *mcur; 141 142 /* Hooks into rmap update code. */ 143 struct xfs_rmap_hook rhook; 144 145 /* inode scan cursor */ 146 struct xchk_iscan iscan; 147 148 /* Number of non-freespace records found. */ 149 unsigned long long nr_records; 150 151 /* bnobt/cntbt contribution to btreeblks */ 152 xfs_agblock_t freesp_btblocks; 153 154 /* old agf_rmap_blocks counter */ 155 unsigned int old_rmapbt_fsbcount; 156 }; 157 158 /* Set us up to repair reverse mapping btrees. */ 159 int 160 xrep_setup_ag_rmapbt( 161 struct xfs_scrub *sc) 162 { 163 struct xrep_rmap *rr; 164 char *descr; 165 int error; 166 167 xchk_fsgates_enable(sc, XCHK_FSGATES_RMAP); 168 169 descr = xchk_xfile_ag_descr(sc, "reverse mapping records"); 170 error = xrep_setup_xfbtree(sc, descr); 171 kfree(descr); 172 if (error) 173 return error; 174 175 rr = kzalloc(sizeof(struct xrep_rmap), XCHK_GFP_FLAGS); 176 if (!rr) 177 return -ENOMEM; 178 179 rr->sc = sc; 180 sc->buf = rr; 181 return 0; 182 } 183 184 /* Make sure there's nothing funny about this mapping. */ 185 STATIC int 186 xrep_rmap_check_mapping( 187 struct xfs_scrub *sc, 188 const struct xfs_rmap_irec *rec) 189 { 190 enum xbtree_recpacking outcome; 191 int error; 192 193 if (xfs_rmap_check_irec(sc->sa.pag, rec) != NULL) 194 return -EFSCORRUPTED; 195 196 /* Make sure this isn't free space. */ 197 error = xfs_alloc_has_records(sc->sa.bno_cur, rec->rm_startblock, 198 rec->rm_blockcount, &outcome); 199 if (error) 200 return error; 201 if (outcome != XBTREE_RECPACKING_EMPTY) 202 return -EFSCORRUPTED; 203 204 return 0; 205 } 206 207 /* Store a reverse-mapping record. */ 208 static inline int 209 xrep_rmap_stash( 210 struct xrep_rmap *rr, 211 xfs_agblock_t startblock, 212 xfs_extlen_t blockcount, 213 uint64_t owner, 214 uint64_t offset, 215 unsigned int flags) 216 { 217 struct xfs_rmap_irec rmap = { 218 .rm_startblock = startblock, 219 .rm_blockcount = blockcount, 220 .rm_owner = owner, 221 .rm_offset = offset, 222 .rm_flags = flags, 223 }; 224 struct xfs_scrub *sc = rr->sc; 225 struct xfs_btree_cur *mcur; 226 int error = 0; 227 228 if (xchk_should_terminate(sc, &error)) 229 return error; 230 231 if (xchk_iscan_aborted(&rr->iscan)) 232 return -EFSCORRUPTED; 233 234 trace_xrep_rmap_found(sc->sa.pag, &rmap); 235 236 mutex_lock(&rr->lock); 237 mcur = xfs_rmapbt_mem_cursor(sc->sa.pag, sc->tp, &rr->rmap_btree); 238 error = xfs_rmap_map_raw(mcur, &rmap); 239 xfs_btree_del_cursor(mcur, error); 240 if (error) 241 goto out_cancel; 242 243 error = xfbtree_trans_commit(&rr->rmap_btree, sc->tp); 244 if (error) 245 goto out_abort; 246 247 mutex_unlock(&rr->lock); 248 return 0; 249 250 out_cancel: 251 xfbtree_trans_cancel(&rr->rmap_btree, sc->tp); 252 out_abort: 253 xchk_iscan_abort(&rr->iscan); 254 mutex_unlock(&rr->lock); 255 return error; 256 } 257 258 struct xrep_rmap_stash_run { 259 struct xrep_rmap *rr; 260 uint64_t owner; 261 unsigned int rmap_flags; 262 }; 263 264 static int 265 xrep_rmap_stash_run( 266 uint32_t start, 267 uint32_t len, 268 void *priv) 269 { 270 struct xrep_rmap_stash_run *rsr = priv; 271 struct xrep_rmap *rr = rsr->rr; 272 273 return xrep_rmap_stash(rr, start, len, rsr->owner, 0, rsr->rmap_flags); 274 } 275 276 /* 277 * Emit rmaps for every extent of bits set in the bitmap. Caller must ensure 278 * that the ranges are in units of FS blocks. 279 */ 280 STATIC int 281 xrep_rmap_stash_bitmap( 282 struct xrep_rmap *rr, 283 struct xagb_bitmap *bitmap, 284 const struct xfs_owner_info *oinfo) 285 { 286 struct xrep_rmap_stash_run rsr = { 287 .rr = rr, 288 .owner = oinfo->oi_owner, 289 .rmap_flags = 0, 290 }; 291 292 if (oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK) 293 rsr.rmap_flags |= XFS_RMAP_ATTR_FORK; 294 if (oinfo->oi_flags & XFS_OWNER_INFO_BMBT_BLOCK) 295 rsr.rmap_flags |= XFS_RMAP_BMBT_BLOCK; 296 297 return xagb_bitmap_walk(bitmap, xrep_rmap_stash_run, &rsr); 298 } 299 300 /* Section (I): Finding all file and bmbt extents. */ 301 302 /* Context for accumulating rmaps for an inode fork. */ 303 struct xrep_rmap_ifork { 304 /* 305 * Accumulate rmap data here to turn multiple adjacent bmaps into a 306 * single rmap. 307 */ 308 struct xfs_rmap_irec accum; 309 310 /* Bitmap of bmbt blocks in this AG. */ 311 struct xagb_bitmap bmbt_blocks; 312 313 struct xrep_rmap *rr; 314 315 /* Which inode fork? */ 316 int whichfork; 317 }; 318 319 /* Stash an rmap that we accumulated while walking an inode fork. */ 320 STATIC int 321 xrep_rmap_stash_accumulated( 322 struct xrep_rmap_ifork *rf) 323 { 324 if (rf->accum.rm_blockcount == 0) 325 return 0; 326 327 return xrep_rmap_stash(rf->rr, rf->accum.rm_startblock, 328 rf->accum.rm_blockcount, rf->accum.rm_owner, 329 rf->accum.rm_offset, rf->accum.rm_flags); 330 } 331 332 /* Accumulate a bmbt record. */ 333 STATIC int 334 xrep_rmap_visit_bmbt( 335 struct xfs_btree_cur *cur, 336 struct xfs_bmbt_irec *rec, 337 void *priv) 338 { 339 struct xrep_rmap_ifork *rf = priv; 340 struct xfs_mount *mp = rf->rr->sc->mp; 341 struct xfs_rmap_irec *accum = &rf->accum; 342 xfs_agblock_t agbno; 343 unsigned int rmap_flags = 0; 344 int error; 345 346 if (XFS_FSB_TO_AGNO(mp, rec->br_startblock) != 347 pag_agno(rf->rr->sc->sa.pag)) 348 return 0; 349 350 agbno = XFS_FSB_TO_AGBNO(mp, rec->br_startblock); 351 if (rf->whichfork == XFS_ATTR_FORK) 352 rmap_flags |= XFS_RMAP_ATTR_FORK; 353 if (rec->br_state == XFS_EXT_UNWRITTEN) 354 rmap_flags |= XFS_RMAP_UNWRITTEN; 355 356 /* If this bmap is adjacent to the previous one, just add it. */ 357 if (accum->rm_blockcount > 0 && 358 rec->br_startoff == accum->rm_offset + accum->rm_blockcount && 359 agbno == accum->rm_startblock + accum->rm_blockcount && 360 rmap_flags == accum->rm_flags) { 361 accum->rm_blockcount += rec->br_blockcount; 362 return 0; 363 } 364 365 /* Otherwise stash the old rmap and start accumulating a new one. */ 366 error = xrep_rmap_stash_accumulated(rf); 367 if (error) 368 return error; 369 370 accum->rm_startblock = agbno; 371 accum->rm_blockcount = rec->br_blockcount; 372 accum->rm_offset = rec->br_startoff; 373 accum->rm_flags = rmap_flags; 374 return 0; 375 } 376 377 /* Add a btree block to the bitmap. */ 378 STATIC int 379 xrep_rmap_visit_iroot_btree_block( 380 struct xfs_btree_cur *cur, 381 int level, 382 void *priv) 383 { 384 struct xrep_rmap_ifork *rf = priv; 385 struct xfs_buf *bp; 386 xfs_fsblock_t fsbno; 387 xfs_agblock_t agbno; 388 389 xfs_btree_get_block(cur, level, &bp); 390 if (!bp) 391 return 0; 392 393 fsbno = XFS_DADDR_TO_FSB(cur->bc_mp, xfs_buf_daddr(bp)); 394 if (XFS_FSB_TO_AGNO(cur->bc_mp, fsbno) != pag_agno(rf->rr->sc->sa.pag)) 395 return 0; 396 397 agbno = XFS_FSB_TO_AGBNO(cur->bc_mp, fsbno); 398 return xagb_bitmap_set(&rf->bmbt_blocks, agbno, 1); 399 } 400 401 /* 402 * Iterate a metadata btree rooted in an inode to collect rmap records for 403 * anything in this fork that matches the AG. 404 */ 405 STATIC int 406 xrep_rmap_scan_iroot_btree( 407 struct xrep_rmap_ifork *rf, 408 struct xfs_btree_cur *cur) 409 { 410 struct xfs_owner_info oinfo; 411 struct xrep_rmap *rr = rf->rr; 412 int error; 413 414 xagb_bitmap_init(&rf->bmbt_blocks); 415 416 /* Record all the blocks in the btree itself. */ 417 error = xfs_btree_visit_blocks(cur, xrep_rmap_visit_iroot_btree_block, 418 XFS_BTREE_VISIT_ALL, rf); 419 if (error) 420 goto out; 421 422 /* Emit rmaps for the btree blocks. */ 423 xfs_rmap_ino_bmbt_owner(&oinfo, rf->accum.rm_owner, rf->whichfork); 424 error = xrep_rmap_stash_bitmap(rr, &rf->bmbt_blocks, &oinfo); 425 if (error) 426 goto out; 427 428 /* Stash any remaining accumulated rmaps. */ 429 error = xrep_rmap_stash_accumulated(rf); 430 out: 431 xagb_bitmap_destroy(&rf->bmbt_blocks); 432 return error; 433 } 434 435 /* 436 * Iterate the block mapping btree to collect rmap records for anything in this 437 * fork that matches the AG. Sets @mappings_done to true if we've scanned the 438 * block mappings in this fork. 439 */ 440 STATIC int 441 xrep_rmap_scan_bmbt( 442 struct xrep_rmap_ifork *rf, 443 struct xfs_inode *ip, 444 bool *mappings_done) 445 { 446 struct xrep_rmap *rr = rf->rr; 447 struct xfs_btree_cur *cur; 448 struct xfs_ifork *ifp; 449 int error; 450 451 *mappings_done = false; 452 ifp = xfs_ifork_ptr(ip, rf->whichfork); 453 cur = xfs_bmbt_init_cursor(rr->sc->mp, rr->sc->tp, ip, rf->whichfork); 454 455 if (!xfs_ifork_is_realtime(ip, rf->whichfork) && 456 xfs_need_iread_extents(ifp)) { 457 /* 458 * If the incore extent cache isn't loaded, scan the bmbt for 459 * mapping records. This avoids loading the incore extent 460 * tree, which will increase memory pressure at a time when 461 * we're trying to run as quickly as we possibly can. Ignore 462 * realtime extents. 463 */ 464 error = xfs_bmap_query_all(cur, xrep_rmap_visit_bmbt, rf); 465 if (error) 466 goto out_cur; 467 468 *mappings_done = true; 469 } 470 471 /* Scan for the bmbt blocks, which always live on the data device. */ 472 error = xrep_rmap_scan_iroot_btree(rf, cur); 473 out_cur: 474 xfs_btree_del_cursor(cur, error); 475 return error; 476 } 477 478 /* 479 * Iterate the in-core extent cache to collect rmap records for anything in 480 * this fork that matches the AG. 481 */ 482 STATIC int 483 xrep_rmap_scan_iext( 484 struct xrep_rmap_ifork *rf, 485 struct xfs_ifork *ifp) 486 { 487 struct xfs_bmbt_irec rec; 488 struct xfs_iext_cursor icur; 489 int error; 490 491 for_each_xfs_iext(ifp, &icur, &rec) { 492 if (isnullstartblock(rec.br_startblock)) 493 continue; 494 error = xrep_rmap_visit_bmbt(NULL, &rec, rf); 495 if (error) 496 return error; 497 } 498 499 return xrep_rmap_stash_accumulated(rf); 500 } 501 502 /* Find all the extents from a given AG in an inode fork. */ 503 STATIC int 504 xrep_rmap_scan_ifork( 505 struct xrep_rmap *rr, 506 struct xfs_inode *ip, 507 int whichfork) 508 { 509 struct xrep_rmap_ifork rf = { 510 .accum = { .rm_owner = ip->i_ino, }, 511 .rr = rr, 512 .whichfork = whichfork, 513 }; 514 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork); 515 int error = 0; 516 517 if (!ifp) 518 return 0; 519 520 if (ifp->if_format == XFS_DINODE_FMT_BTREE) { 521 bool mappings_done; 522 523 /* 524 * Scan the bmap btree for data device mappings. This includes 525 * the btree blocks themselves, even if this is a realtime 526 * file. 527 */ 528 error = xrep_rmap_scan_bmbt(&rf, ip, &mappings_done); 529 if (error || mappings_done) 530 return error; 531 } else if (ifp->if_format != XFS_DINODE_FMT_EXTENTS) { 532 return 0; 533 } 534 535 /* Scan incore extent cache if this isn't a realtime file. */ 536 if (xfs_ifork_is_realtime(ip, whichfork)) 537 return 0; 538 539 return xrep_rmap_scan_iext(&rf, ifp); 540 } 541 542 /* 543 * Take ILOCK on a file that we want to scan. 544 * 545 * Select ILOCK_EXCL if the file has an unloaded data bmbt or has an unloaded 546 * attr bmbt. Otherwise, take ILOCK_SHARED. 547 */ 548 static inline unsigned int 549 xrep_rmap_scan_ilock( 550 struct xfs_inode *ip) 551 { 552 uint lock_mode = XFS_ILOCK_SHARED; 553 554 if (xfs_need_iread_extents(&ip->i_df)) { 555 lock_mode = XFS_ILOCK_EXCL; 556 goto lock; 557 } 558 559 if (xfs_inode_has_attr_fork(ip) && xfs_need_iread_extents(&ip->i_af)) 560 lock_mode = XFS_ILOCK_EXCL; 561 562 lock: 563 xfs_ilock(ip, lock_mode); 564 return lock_mode; 565 } 566 567 /* Record reverse mappings for a file. */ 568 STATIC int 569 xrep_rmap_scan_inode( 570 struct xrep_rmap *rr, 571 struct xfs_inode *ip) 572 { 573 unsigned int lock_mode = xrep_rmap_scan_ilock(ip); 574 int error; 575 576 /* Check the data fork. */ 577 error = xrep_rmap_scan_ifork(rr, ip, XFS_DATA_FORK); 578 if (error) 579 goto out_unlock; 580 581 /* Check the attr fork. */ 582 error = xrep_rmap_scan_ifork(rr, ip, XFS_ATTR_FORK); 583 if (error) 584 goto out_unlock; 585 586 /* COW fork extents are "owned" by the refcount btree. */ 587 588 xchk_iscan_mark_visited(&rr->iscan, ip); 589 out_unlock: 590 xfs_iunlock(ip, lock_mode); 591 return error; 592 } 593 594 /* Section (I): Find all AG metadata extents except for free space metadata. */ 595 596 struct xrep_rmap_inodes { 597 struct xrep_rmap *rr; 598 struct xagb_bitmap inobt_blocks; /* INOBIT */ 599 struct xagb_bitmap ichunk_blocks; /* ICHUNKBIT */ 600 }; 601 602 /* Record inode btree rmaps. */ 603 STATIC int 604 xrep_rmap_walk_inobt( 605 struct xfs_btree_cur *cur, 606 const union xfs_btree_rec *rec, 607 void *priv) 608 { 609 struct xfs_inobt_rec_incore irec; 610 struct xrep_rmap_inodes *ri = priv; 611 struct xfs_mount *mp = cur->bc_mp; 612 xfs_agblock_t agbno; 613 xfs_extlen_t aglen; 614 xfs_agino_t agino; 615 xfs_agino_t iperhole; 616 unsigned int i; 617 int error; 618 619 /* Record the inobt blocks. */ 620 error = xagb_bitmap_set_btcur_path(&ri->inobt_blocks, cur); 621 if (error) 622 return error; 623 624 xfs_inobt_btrec_to_irec(mp, rec, &irec); 625 if (xfs_inobt_check_irec(to_perag(cur->bc_group), &irec) != NULL) 626 return -EFSCORRUPTED; 627 628 agino = irec.ir_startino; 629 630 /* Record a non-sparse inode chunk. */ 631 if (!xfs_inobt_issparse(irec.ir_holemask)) { 632 agbno = XFS_AGINO_TO_AGBNO(mp, agino); 633 aglen = max_t(xfs_extlen_t, 1, 634 XFS_INODES_PER_CHUNK / mp->m_sb.sb_inopblock); 635 636 return xagb_bitmap_set(&ri->ichunk_blocks, agbno, aglen); 637 } 638 639 /* Iterate each chunk. */ 640 iperhole = max_t(xfs_agino_t, mp->m_sb.sb_inopblock, 641 XFS_INODES_PER_HOLEMASK_BIT); 642 aglen = iperhole / mp->m_sb.sb_inopblock; 643 for (i = 0, agino = irec.ir_startino; 644 i < XFS_INOBT_HOLEMASK_BITS; 645 i += iperhole / XFS_INODES_PER_HOLEMASK_BIT, agino += iperhole) { 646 /* Skip holes. */ 647 if (irec.ir_holemask & (1 << i)) 648 continue; 649 650 /* Record the inode chunk otherwise. */ 651 agbno = XFS_AGINO_TO_AGBNO(mp, agino); 652 error = xagb_bitmap_set(&ri->ichunk_blocks, agbno, aglen); 653 if (error) 654 return error; 655 } 656 657 return 0; 658 } 659 660 /* Collect rmaps for the blocks containing inode btrees and the inode chunks. */ 661 STATIC int 662 xrep_rmap_find_inode_rmaps( 663 struct xrep_rmap *rr) 664 { 665 struct xrep_rmap_inodes ri = { 666 .rr = rr, 667 }; 668 struct xfs_scrub *sc = rr->sc; 669 int error; 670 671 xagb_bitmap_init(&ri.inobt_blocks); 672 xagb_bitmap_init(&ri.ichunk_blocks); 673 674 /* 675 * Iterate every record in the inobt so we can capture all the inode 676 * chunks and the blocks in the inobt itself. 677 */ 678 error = xfs_btree_query_all(sc->sa.ino_cur, xrep_rmap_walk_inobt, &ri); 679 if (error) 680 goto out_bitmap; 681 682 /* 683 * Note that if there are zero records in the inobt then query_all does 684 * nothing and we have to account the empty inobt root manually. 685 */ 686 if (xagb_bitmap_empty(&ri.ichunk_blocks)) { 687 struct xfs_agi *agi = sc->sa.agi_bp->b_addr; 688 689 error = xagb_bitmap_set(&ri.inobt_blocks, 690 be32_to_cpu(agi->agi_root), 1); 691 if (error) 692 goto out_bitmap; 693 } 694 695 /* Scan the finobt too. */ 696 if (xfs_has_finobt(sc->mp)) { 697 error = xagb_bitmap_set_btblocks(&ri.inobt_blocks, 698 sc->sa.fino_cur); 699 if (error) 700 goto out_bitmap; 701 } 702 703 /* Generate rmaps for everything. */ 704 error = xrep_rmap_stash_bitmap(rr, &ri.inobt_blocks, 705 &XFS_RMAP_OINFO_INOBT); 706 if (error) 707 goto out_bitmap; 708 error = xrep_rmap_stash_bitmap(rr, &ri.ichunk_blocks, 709 &XFS_RMAP_OINFO_INODES); 710 711 out_bitmap: 712 xagb_bitmap_destroy(&ri.inobt_blocks); 713 xagb_bitmap_destroy(&ri.ichunk_blocks); 714 return error; 715 } 716 717 /* Record a CoW staging extent. */ 718 STATIC int 719 xrep_rmap_walk_cowblocks( 720 struct xfs_btree_cur *cur, 721 const struct xfs_refcount_irec *irec, 722 void *priv) 723 { 724 struct xagb_bitmap *bitmap = priv; 725 726 if (!xfs_refcount_check_domain(irec) || 727 irec->rc_domain != XFS_REFC_DOMAIN_COW) 728 return -EFSCORRUPTED; 729 730 return xagb_bitmap_set(bitmap, irec->rc_startblock, irec->rc_blockcount); 731 } 732 733 /* 734 * Collect rmaps for the blocks containing the refcount btree, and all CoW 735 * staging extents. 736 */ 737 STATIC int 738 xrep_rmap_find_refcount_rmaps( 739 struct xrep_rmap *rr) 740 { 741 struct xagb_bitmap refcountbt_blocks; /* REFCBIT */ 742 struct xagb_bitmap cow_blocks; /* COWBIT */ 743 struct xfs_refcount_irec low = { 744 .rc_startblock = 0, 745 .rc_domain = XFS_REFC_DOMAIN_COW, 746 }; 747 struct xfs_refcount_irec high = { 748 .rc_startblock = -1U, 749 .rc_domain = XFS_REFC_DOMAIN_COW, 750 }; 751 struct xfs_scrub *sc = rr->sc; 752 int error; 753 754 if (!xfs_has_reflink(sc->mp)) 755 return 0; 756 757 xagb_bitmap_init(&refcountbt_blocks); 758 xagb_bitmap_init(&cow_blocks); 759 760 /* refcountbt */ 761 error = xagb_bitmap_set_btblocks(&refcountbt_blocks, sc->sa.refc_cur); 762 if (error) 763 goto out_bitmap; 764 765 /* Collect rmaps for CoW staging extents. */ 766 error = xfs_refcount_query_range(sc->sa.refc_cur, &low, &high, 767 xrep_rmap_walk_cowblocks, &cow_blocks); 768 if (error) 769 goto out_bitmap; 770 771 /* Generate rmaps for everything. */ 772 error = xrep_rmap_stash_bitmap(rr, &cow_blocks, &XFS_RMAP_OINFO_COW); 773 if (error) 774 goto out_bitmap; 775 error = xrep_rmap_stash_bitmap(rr, &refcountbt_blocks, 776 &XFS_RMAP_OINFO_REFC); 777 778 out_bitmap: 779 xagb_bitmap_destroy(&cow_blocks); 780 xagb_bitmap_destroy(&refcountbt_blocks); 781 return error; 782 } 783 784 /* Generate rmaps for the AG headers (AGI/AGF/AGFL) */ 785 STATIC int 786 xrep_rmap_find_agheader_rmaps( 787 struct xrep_rmap *rr) 788 { 789 struct xfs_scrub *sc = rr->sc; 790 791 /* Create a record for the AG sb->agfl. */ 792 return xrep_rmap_stash(rr, XFS_SB_BLOCK(sc->mp), 793 XFS_AGFL_BLOCK(sc->mp) - XFS_SB_BLOCK(sc->mp) + 1, 794 XFS_RMAP_OWN_FS, 0, 0); 795 } 796 797 /* Generate rmaps for the log, if it's in this AG. */ 798 STATIC int 799 xrep_rmap_find_log_rmaps( 800 struct xrep_rmap *rr) 801 { 802 struct xfs_scrub *sc = rr->sc; 803 804 if (!xfs_ag_contains_log(sc->mp, pag_agno(sc->sa.pag))) 805 return 0; 806 807 return xrep_rmap_stash(rr, 808 XFS_FSB_TO_AGBNO(sc->mp, sc->mp->m_sb.sb_logstart), 809 sc->mp->m_sb.sb_logblocks, XFS_RMAP_OWN_LOG, 0, 0); 810 } 811 812 /* Check and count all the records that we gathered. */ 813 STATIC int 814 xrep_rmap_check_record( 815 struct xfs_btree_cur *cur, 816 const struct xfs_rmap_irec *rec, 817 void *priv) 818 { 819 struct xrep_rmap *rr = priv; 820 int error; 821 822 error = xrep_rmap_check_mapping(rr->sc, rec); 823 if (error) 824 return error; 825 826 rr->nr_records++; 827 return 0; 828 } 829 830 /* 831 * Generate all the reverse-mappings for this AG, a list of the old rmapbt 832 * blocks, and the new btreeblks count. Figure out if we have enough free 833 * space to reconstruct the inode btrees. The caller must clean up the lists 834 * if anything goes wrong. This implements section (I) above. 835 */ 836 STATIC int 837 xrep_rmap_find_rmaps( 838 struct xrep_rmap *rr) 839 { 840 struct xfs_scrub *sc = rr->sc; 841 struct xchk_ag *sa = &sc->sa; 842 struct xfs_inode *ip; 843 struct xfs_btree_cur *mcur; 844 int error; 845 846 /* Find all the per-AG metadata. */ 847 xrep_ag_btcur_init(sc, &sc->sa); 848 849 error = xrep_rmap_find_inode_rmaps(rr); 850 if (error) 851 goto end_agscan; 852 853 error = xrep_rmap_find_refcount_rmaps(rr); 854 if (error) 855 goto end_agscan; 856 857 error = xrep_rmap_find_agheader_rmaps(rr); 858 if (error) 859 goto end_agscan; 860 861 error = xrep_rmap_find_log_rmaps(rr); 862 end_agscan: 863 xchk_ag_btcur_free(&sc->sa); 864 if (error) 865 return error; 866 867 /* 868 * Set up for a potentially lengthy filesystem scan by reducing our 869 * transaction resource usage for the duration. Specifically: 870 * 871 * Unlock the AG header buffers and cancel the transaction to release 872 * the log grant space while we scan the filesystem. 873 * 874 * Create a new empty transaction to eliminate the possibility of the 875 * inode scan deadlocking on cyclical metadata. 876 * 877 * We pass the empty transaction to the file scanning function to avoid 878 * repeatedly cycling empty transactions. This can be done even though 879 * we take the IOLOCK to quiesce the file because empty transactions 880 * do not take sb_internal. 881 */ 882 sa->agf_bp = NULL; 883 sa->agi_bp = NULL; 884 xchk_trans_cancel(sc); 885 error = xchk_trans_alloc_empty(sc); 886 if (error) 887 return error; 888 889 /* Iterate all AGs for inodes rmaps. */ 890 while ((error = xchk_iscan_iter(&rr->iscan, &ip)) == 1) { 891 error = xrep_rmap_scan_inode(rr, ip); 892 xchk_irele(sc, ip); 893 if (error) 894 break; 895 896 if (xchk_should_terminate(sc, &error)) 897 break; 898 } 899 xchk_iscan_iter_finish(&rr->iscan); 900 if (error) 901 return error; 902 903 /* 904 * Switch out for a real transaction and lock the AG headers in 905 * preparation for building a new tree. 906 */ 907 xchk_trans_cancel(sc); 908 error = xchk_setup_fs(sc); 909 if (error) 910 return error; 911 error = xchk_perag_drain_and_lock(sc); 912 if (error) 913 return error; 914 915 /* 916 * If a hook failed to update the in-memory btree, we lack the data to 917 * continue the repair. 918 */ 919 if (xchk_iscan_aborted(&rr->iscan)) 920 return -EFSCORRUPTED; 921 922 /* 923 * Now that we have everything locked again, we need to count the 924 * number of rmap records stashed in the btree. This should reflect 925 * all actively-owned space in the filesystem. At the same time, check 926 * all our records before we start building a new btree, which requires 927 * a bnobt cursor. 928 */ 929 mcur = xfs_rmapbt_mem_cursor(rr->sc->sa.pag, NULL, &rr->rmap_btree); 930 sc->sa.bno_cur = xfs_bnobt_init_cursor(sc->mp, sc->tp, sc->sa.agf_bp, 931 sc->sa.pag); 932 933 rr->nr_records = 0; 934 error = xfs_rmap_query_all(mcur, xrep_rmap_check_record, rr); 935 936 xfs_btree_del_cursor(sc->sa.bno_cur, error); 937 sc->sa.bno_cur = NULL; 938 xfs_btree_del_cursor(mcur, error); 939 940 return error; 941 } 942 943 /* Section (II): Reserving space for new rmapbt and setting free space bitmap */ 944 945 struct xrep_rmap_agfl { 946 struct xagb_bitmap *bitmap; 947 xfs_agnumber_t agno; 948 }; 949 950 /* Add an AGFL block to the rmap list. */ 951 STATIC int 952 xrep_rmap_walk_agfl( 953 struct xfs_mount *mp, 954 xfs_agblock_t agbno, 955 void *priv) 956 { 957 struct xrep_rmap_agfl *ra = priv; 958 959 return xagb_bitmap_set(ra->bitmap, agbno, 1); 960 } 961 962 /* 963 * Run one round of reserving space for the new rmapbt and recomputing the 964 * number of blocks needed to store the previously observed rmapbt records and 965 * the ones we'll create for the free space metadata. When we don't need more 966 * blocks, return a bitmap of OWN_AG extents in @freesp_blocks and set @done to 967 * true. 968 */ 969 STATIC int 970 xrep_rmap_try_reserve( 971 struct xrep_rmap *rr, 972 struct xfs_btree_cur *rmap_cur, 973 struct xagb_bitmap *freesp_blocks, 974 uint64_t *blocks_reserved, 975 bool *done) 976 { 977 struct xrep_rmap_agfl ra = { 978 .bitmap = freesp_blocks, 979 .agno = pag_agno(rr->sc->sa.pag), 980 }; 981 struct xfs_scrub *sc = rr->sc; 982 struct xrep_newbt_resv *resv, *n; 983 struct xfs_agf *agf = sc->sa.agf_bp->b_addr; 984 struct xfs_buf *agfl_bp; 985 uint64_t nr_blocks; /* RMB */ 986 uint64_t freesp_records; 987 int error; 988 989 /* 990 * We're going to recompute new_btree.bload.nr_blocks at the end of 991 * this function to reflect however many btree blocks we need to store 992 * all the rmap records (including the ones that reflect the changes we 993 * made to support the new rmapbt blocks), so we save the old value 994 * here so we can decide if we've reserved enough blocks. 995 */ 996 nr_blocks = rr->new_btree.bload.nr_blocks; 997 998 /* 999 * Make sure we've reserved enough space for the new btree. This can 1000 * change the shape of the free space btrees, which can cause secondary 1001 * interactions with the rmap records because all three space btrees 1002 * have the same rmap owner. We'll account for all that below. 1003 */ 1004 error = xrep_newbt_alloc_blocks(&rr->new_btree, 1005 nr_blocks - *blocks_reserved); 1006 if (error) 1007 return error; 1008 1009 *blocks_reserved = rr->new_btree.bload.nr_blocks; 1010 1011 /* Clear everything in the bitmap. */ 1012 xagb_bitmap_destroy(freesp_blocks); 1013 1014 /* Set all the bnobt blocks in the bitmap. */ 1015 sc->sa.bno_cur = xfs_bnobt_init_cursor(sc->mp, sc->tp, sc->sa.agf_bp, 1016 sc->sa.pag); 1017 error = xagb_bitmap_set_btblocks(freesp_blocks, sc->sa.bno_cur); 1018 xfs_btree_del_cursor(sc->sa.bno_cur, error); 1019 sc->sa.bno_cur = NULL; 1020 if (error) 1021 return error; 1022 1023 /* Set all the cntbt blocks in the bitmap. */ 1024 sc->sa.cnt_cur = xfs_cntbt_init_cursor(sc->mp, sc->tp, sc->sa.agf_bp, 1025 sc->sa.pag); 1026 error = xagb_bitmap_set_btblocks(freesp_blocks, sc->sa.cnt_cur); 1027 xfs_btree_del_cursor(sc->sa.cnt_cur, error); 1028 sc->sa.cnt_cur = NULL; 1029 if (error) 1030 return error; 1031 1032 /* Record our new btreeblks value. */ 1033 rr->freesp_btblocks = xagb_bitmap_hweight(freesp_blocks) - 2; 1034 1035 /* Set all the new rmapbt blocks in the bitmap. */ 1036 list_for_each_entry_safe(resv, n, &rr->new_btree.resv_list, list) { 1037 error = xagb_bitmap_set(freesp_blocks, resv->agbno, resv->len); 1038 if (error) 1039 return error; 1040 } 1041 1042 /* Set all the AGFL blocks in the bitmap. */ 1043 error = xfs_alloc_read_agfl(sc->sa.pag, sc->tp, &agfl_bp); 1044 if (error) 1045 return error; 1046 1047 error = xfs_agfl_walk(sc->mp, agf, agfl_bp, xrep_rmap_walk_agfl, &ra); 1048 if (error) 1049 return error; 1050 1051 /* Count the extents in the bitmap. */ 1052 freesp_records = xagb_bitmap_count_set_regions(freesp_blocks); 1053 1054 /* Compute how many blocks we'll need for all the rmaps. */ 1055 error = xfs_btree_bload_compute_geometry(rmap_cur, 1056 &rr->new_btree.bload, rr->nr_records + freesp_records); 1057 if (error) 1058 return error; 1059 1060 /* We're done when we don't need more blocks. */ 1061 *done = nr_blocks >= rr->new_btree.bload.nr_blocks; 1062 return 0; 1063 } 1064 1065 /* 1066 * Iteratively reserve space for rmap btree while recording OWN_AG rmaps for 1067 * the free space metadata. This implements section (II) above. 1068 */ 1069 STATIC int 1070 xrep_rmap_reserve_space( 1071 struct xrep_rmap *rr, 1072 struct xfs_btree_cur *rmap_cur) 1073 { 1074 struct xagb_bitmap freesp_blocks; /* AGBIT */ 1075 uint64_t blocks_reserved = 0; 1076 bool done = false; 1077 int error; 1078 1079 /* Compute how many blocks we'll need for the rmaps collected so far. */ 1080 error = xfs_btree_bload_compute_geometry(rmap_cur, 1081 &rr->new_btree.bload, rr->nr_records); 1082 if (error) 1083 return error; 1084 1085 /* Last chance to abort before we start committing fixes. */ 1086 if (xchk_should_terminate(rr->sc, &error)) 1087 return error; 1088 1089 xagb_bitmap_init(&freesp_blocks); 1090 1091 /* 1092 * Iteratively reserve space for the new rmapbt and recompute the 1093 * number of blocks needed to store the previously observed rmapbt 1094 * records and the ones we'll create for the free space metadata. 1095 * Finish when we don't need more blocks. 1096 */ 1097 do { 1098 error = xrep_rmap_try_reserve(rr, rmap_cur, &freesp_blocks, 1099 &blocks_reserved, &done); 1100 if (error) 1101 goto out_bitmap; 1102 } while (!done); 1103 1104 /* Emit rmaps for everything in the free space bitmap. */ 1105 xrep_ag_btcur_init(rr->sc, &rr->sc->sa); 1106 error = xrep_rmap_stash_bitmap(rr, &freesp_blocks, &XFS_RMAP_OINFO_AG); 1107 xchk_ag_btcur_free(&rr->sc->sa); 1108 1109 out_bitmap: 1110 xagb_bitmap_destroy(&freesp_blocks); 1111 return error; 1112 } 1113 1114 /* Section (III): Building the new rmap btree. */ 1115 1116 /* Update the AGF counters. */ 1117 STATIC int 1118 xrep_rmap_reset_counters( 1119 struct xrep_rmap *rr) 1120 { 1121 struct xfs_scrub *sc = rr->sc; 1122 struct xfs_perag *pag = sc->sa.pag; 1123 struct xfs_agf *agf = sc->sa.agf_bp->b_addr; 1124 xfs_agblock_t rmap_btblocks; 1125 1126 /* 1127 * The AGF header contains extra information related to the reverse 1128 * mapping btree, so we must update those fields here. 1129 */ 1130 rmap_btblocks = rr->new_btree.afake.af_blocks - 1; 1131 agf->agf_btreeblks = cpu_to_be32(rr->freesp_btblocks + rmap_btblocks); 1132 xfs_alloc_log_agf(sc->tp, sc->sa.agf_bp, XFS_AGF_BTREEBLKS); 1133 1134 /* 1135 * After we commit the new btree to disk, it is possible that the 1136 * process to reap the old btree blocks will race with the AIL trying 1137 * to checkpoint the old btree blocks into the filesystem. If the new 1138 * tree is shorter than the old one, the rmapbt write verifier will 1139 * fail and the AIL will shut down the filesystem. 1140 * 1141 * To avoid this, save the old incore btree height values as the alt 1142 * height values before re-initializing the perag info from the updated 1143 * AGF to capture all the new values. 1144 */ 1145 pag->pagf_repair_rmap_level = pag->pagf_rmap_level; 1146 1147 /* Reinitialize with the values we just logged. */ 1148 return xrep_reinit_pagf(sc); 1149 } 1150 1151 /* Retrieve rmapbt data for bulk load. */ 1152 STATIC int 1153 xrep_rmap_get_records( 1154 struct xfs_btree_cur *cur, 1155 unsigned int idx, 1156 struct xfs_btree_block *block, 1157 unsigned int nr_wanted, 1158 void *priv) 1159 { 1160 struct xrep_rmap *rr = priv; 1161 union xfs_btree_rec *block_rec; 1162 unsigned int loaded; 1163 int error; 1164 1165 for (loaded = 0; loaded < nr_wanted; loaded++, idx++) { 1166 int stat = 0; 1167 1168 error = xfs_btree_increment(rr->mcur, 0, &stat); 1169 if (error) 1170 return error; 1171 if (!stat) 1172 return -EFSCORRUPTED; 1173 1174 error = xfs_rmap_get_rec(rr->mcur, &cur->bc_rec.r, &stat); 1175 if (error) 1176 return error; 1177 if (!stat) 1178 return -EFSCORRUPTED; 1179 1180 block_rec = xfs_btree_rec_addr(cur, idx, block); 1181 cur->bc_ops->init_rec_from_cur(cur, block_rec); 1182 } 1183 1184 return loaded; 1185 } 1186 1187 /* Feed one of the new btree blocks to the bulk loader. */ 1188 STATIC int 1189 xrep_rmap_claim_block( 1190 struct xfs_btree_cur *cur, 1191 union xfs_btree_ptr *ptr, 1192 void *priv) 1193 { 1194 struct xrep_rmap *rr = priv; 1195 1196 return xrep_newbt_claim_block(cur, &rr->new_btree, ptr); 1197 } 1198 1199 /* Custom allocation function for new rmap btrees. */ 1200 STATIC int 1201 xrep_rmap_alloc_vextent( 1202 struct xfs_scrub *sc, 1203 struct xfs_alloc_arg *args, 1204 xfs_fsblock_t alloc_hint) 1205 { 1206 int error; 1207 1208 /* 1209 * We don't want an rmap update on the allocation, since we iteratively 1210 * compute the OWN_AG records /after/ allocating blocks for the records 1211 * that we already know we need to store. Therefore, fix the freelist 1212 * with the NORMAP flag set so that we don't also try to create an rmap 1213 * for new AGFL blocks. 1214 */ 1215 error = xrep_fix_freelist(sc, XFS_ALLOC_FLAG_NORMAP); 1216 if (error) 1217 return error; 1218 1219 /* 1220 * If xrep_fix_freelist fixed the freelist by moving blocks from the 1221 * free space btrees or by removing blocks from the AGFL and queueing 1222 * an EFI to free the block, the transaction will be dirty. This 1223 * second case is of interest to us. 1224 * 1225 * Later on, we will need to compare gaps in the new recordset against 1226 * the block usage of all OWN_AG owners in order to free the old 1227 * btree's blocks, which means that we can't have EFIs for former AGFL 1228 * blocks attached to the repair transaction when we commit the new 1229 * btree. 1230 * 1231 * xrep_newbt_alloc_blocks guarantees this for us by calling 1232 * xrep_defer_finish to commit anything that fix_freelist may have 1233 * added to the transaction. 1234 */ 1235 return xfs_alloc_vextent_near_bno(args, alloc_hint); 1236 } 1237 1238 1239 /* Count the records in this btree. */ 1240 STATIC int 1241 xrep_rmap_count_records( 1242 struct xfs_btree_cur *cur, 1243 unsigned long long *nr) 1244 { 1245 int running = 1; 1246 int error; 1247 1248 *nr = 0; 1249 1250 error = xfs_btree_goto_left_edge(cur); 1251 if (error) 1252 return error; 1253 1254 while (running && !(error = xfs_btree_increment(cur, 0, &running))) { 1255 if (running) 1256 (*nr)++; 1257 } 1258 1259 return error; 1260 } 1261 /* 1262 * Use the collected rmap information to stage a new rmap btree. If this is 1263 * successful we'll return with the new btree root information logged to the 1264 * repair transaction but not yet committed. This implements section (III) 1265 * above. 1266 */ 1267 STATIC int 1268 xrep_rmap_build_new_tree( 1269 struct xrep_rmap *rr) 1270 { 1271 struct xfs_scrub *sc = rr->sc; 1272 struct xfs_perag *pag = sc->sa.pag; 1273 struct xfs_agf *agf = sc->sa.agf_bp->b_addr; 1274 struct xfs_btree_cur *rmap_cur; 1275 int error; 1276 1277 /* 1278 * Preserve the old rmapbt block count so that we can adjust the 1279 * per-AG rmapbt reservation after we commit the new btree root and 1280 * want to dispose of the old btree blocks. 1281 */ 1282 rr->old_rmapbt_fsbcount = be32_to_cpu(agf->agf_rmap_blocks); 1283 1284 /* 1285 * Prepare to construct the new btree by reserving disk space for the 1286 * new btree and setting up all the accounting information we'll need 1287 * to root the new btree while it's under construction and before we 1288 * attach it to the AG header. The new blocks are accounted to the 1289 * rmapbt per-AG reservation, which we will adjust further after 1290 * committing the new btree. 1291 */ 1292 xrep_newbt_init_ag(&rr->new_btree, sc, &XFS_RMAP_OINFO_SKIP_UPDATE, 1293 xfs_agbno_to_fsb(pag, XFS_RMAP_BLOCK(sc->mp)), 1294 XFS_AG_RESV_RMAPBT); 1295 rr->new_btree.bload.get_records = xrep_rmap_get_records; 1296 rr->new_btree.bload.claim_block = xrep_rmap_claim_block; 1297 rr->new_btree.alloc_vextent = xrep_rmap_alloc_vextent; 1298 rmap_cur = xfs_rmapbt_init_cursor(sc->mp, NULL, NULL, pag); 1299 xfs_btree_stage_afakeroot(rmap_cur, &rr->new_btree.afake); 1300 1301 /* 1302 * Initialize @rr->new_btree, reserve space for the new rmapbt, 1303 * and compute OWN_AG rmaps. 1304 */ 1305 error = xrep_rmap_reserve_space(rr, rmap_cur); 1306 if (error) 1307 goto err_cur; 1308 1309 /* 1310 * Count the rmapbt records again, because the space reservation 1311 * for the rmapbt itself probably added more records to the btree. 1312 */ 1313 rr->mcur = xfs_rmapbt_mem_cursor(rr->sc->sa.pag, NULL, 1314 &rr->rmap_btree); 1315 1316 error = xrep_rmap_count_records(rr->mcur, &rr->nr_records); 1317 if (error) 1318 goto err_mcur; 1319 1320 /* 1321 * Due to btree slack factors, it's possible for a new btree to be one 1322 * level taller than the old btree. Update the incore btree height so 1323 * that we don't trip the verifiers when writing the new btree blocks 1324 * to disk. 1325 */ 1326 pag->pagf_repair_rmap_level = rr->new_btree.bload.btree_height; 1327 1328 /* 1329 * Move the cursor to the left edge of the tree so that the first 1330 * increment in ->get_records positions us at the first record. 1331 */ 1332 error = xfs_btree_goto_left_edge(rr->mcur); 1333 if (error) 1334 goto err_level; 1335 1336 /* Add all observed rmap records. */ 1337 error = xfs_btree_bload(rmap_cur, &rr->new_btree.bload, rr); 1338 if (error) 1339 goto err_level; 1340 1341 /* 1342 * Install the new btree in the AG header. After this point the old 1343 * btree is no longer accessible and the new tree is live. 1344 */ 1345 xfs_rmapbt_commit_staged_btree(rmap_cur, sc->tp, sc->sa.agf_bp); 1346 xfs_btree_del_cursor(rmap_cur, 0); 1347 xfs_btree_del_cursor(rr->mcur, 0); 1348 rr->mcur = NULL; 1349 1350 /* 1351 * Now that we've written the new btree to disk, we don't need to keep 1352 * updating the in-memory btree. Abort the scan to stop live updates. 1353 */ 1354 xchk_iscan_abort(&rr->iscan); 1355 1356 /* 1357 * The newly committed rmap recordset includes mappings for the blocks 1358 * that we reserved to build the new btree. If there is excess space 1359 * reservation to be freed, the corresponding rmap records must also be 1360 * removed. 1361 */ 1362 rr->new_btree.oinfo = XFS_RMAP_OINFO_AG; 1363 1364 /* Reset the AGF counters now that we've changed the btree shape. */ 1365 error = xrep_rmap_reset_counters(rr); 1366 if (error) 1367 goto err_newbt; 1368 1369 /* Dispose of any unused blocks and the accounting information. */ 1370 error = xrep_newbt_commit(&rr->new_btree); 1371 if (error) 1372 return error; 1373 1374 return xrep_roll_ag_trans(sc); 1375 1376 err_level: 1377 pag->pagf_repair_rmap_level = 0; 1378 err_mcur: 1379 xfs_btree_del_cursor(rr->mcur, error); 1380 err_cur: 1381 xfs_btree_del_cursor(rmap_cur, error); 1382 err_newbt: 1383 xrep_newbt_cancel(&rr->new_btree); 1384 return error; 1385 } 1386 1387 /* Section (IV): Reaping the old btree. */ 1388 1389 struct xrep_rmap_find_gaps { 1390 struct xagb_bitmap rmap_gaps; 1391 xfs_agblock_t next_agbno; 1392 }; 1393 1394 /* Subtract each free extent in the bnobt from the rmap gaps. */ 1395 STATIC int 1396 xrep_rmap_find_freesp( 1397 struct xfs_btree_cur *cur, 1398 const struct xfs_alloc_rec_incore *rec, 1399 void *priv) 1400 { 1401 struct xrep_rmap_find_gaps *rfg = priv; 1402 1403 return xagb_bitmap_clear(&rfg->rmap_gaps, rec->ar_startblock, 1404 rec->ar_blockcount); 1405 } 1406 1407 /* Record the free space we find, as part of cleaning out the btree. */ 1408 STATIC int 1409 xrep_rmap_find_gaps( 1410 struct xfs_btree_cur *cur, 1411 const struct xfs_rmap_irec *rec, 1412 void *priv) 1413 { 1414 struct xrep_rmap_find_gaps *rfg = priv; 1415 int error; 1416 1417 if (rec->rm_startblock > rfg->next_agbno) { 1418 error = xagb_bitmap_set(&rfg->rmap_gaps, rfg->next_agbno, 1419 rec->rm_startblock - rfg->next_agbno); 1420 if (error) 1421 return error; 1422 } 1423 1424 rfg->next_agbno = max_t(xfs_agblock_t, rfg->next_agbno, 1425 rec->rm_startblock + rec->rm_blockcount); 1426 return 0; 1427 } 1428 1429 /* 1430 * Reap the old rmapbt blocks. Now that the rmapbt is fully rebuilt, we make 1431 * a list of gaps in the rmap records and a list of the extents mentioned in 1432 * the bnobt. Any block that's in the new rmapbt gap list but not mentioned 1433 * in the bnobt is a block from the old rmapbt and can be removed. 1434 */ 1435 STATIC int 1436 xrep_rmap_remove_old_tree( 1437 struct xrep_rmap *rr) 1438 { 1439 struct xrep_rmap_find_gaps rfg = { 1440 .next_agbno = 0, 1441 }; 1442 struct xfs_scrub *sc = rr->sc; 1443 struct xfs_agf *agf = sc->sa.agf_bp->b_addr; 1444 struct xfs_perag *pag = sc->sa.pag; 1445 struct xfs_btree_cur *mcur; 1446 xfs_agblock_t agend; 1447 int error; 1448 1449 xagb_bitmap_init(&rfg.rmap_gaps); 1450 1451 /* Compute free space from the new rmapbt. */ 1452 mcur = xfs_rmapbt_mem_cursor(rr->sc->sa.pag, NULL, &rr->rmap_btree); 1453 1454 error = xfs_rmap_query_all(mcur, xrep_rmap_find_gaps, &rfg); 1455 xfs_btree_del_cursor(mcur, error); 1456 if (error) 1457 goto out_bitmap; 1458 1459 /* Insert a record for space between the last rmap and EOAG. */ 1460 agend = be32_to_cpu(agf->agf_length); 1461 if (rfg.next_agbno < agend) { 1462 error = xagb_bitmap_set(&rfg.rmap_gaps, rfg.next_agbno, 1463 agend - rfg.next_agbno); 1464 if (error) 1465 goto out_bitmap; 1466 } 1467 1468 /* Compute free space from the existing bnobt. */ 1469 sc->sa.bno_cur = xfs_bnobt_init_cursor(sc->mp, sc->tp, sc->sa.agf_bp, 1470 sc->sa.pag); 1471 error = xfs_alloc_query_all(sc->sa.bno_cur, xrep_rmap_find_freesp, 1472 &rfg); 1473 xfs_btree_del_cursor(sc->sa.bno_cur, error); 1474 sc->sa.bno_cur = NULL; 1475 if (error) 1476 goto out_bitmap; 1477 1478 /* 1479 * Free the "free" blocks that the new rmapbt knows about but the bnobt 1480 * doesn't--these are the old rmapbt blocks. Credit the old rmapbt 1481 * block usage count back to the per-AG rmapbt reservation (and not 1482 * fdblocks, since the rmap btree lives in free space) to keep the 1483 * reservation and free space accounting correct. 1484 */ 1485 error = xrep_reap_agblocks(sc, &rfg.rmap_gaps, 1486 &XFS_RMAP_OINFO_ANY_OWNER, XFS_AG_RESV_RMAPBT); 1487 if (error) 1488 goto out_bitmap; 1489 1490 /* 1491 * Now that we've zapped all the old rmapbt blocks we can turn off 1492 * the alternate height mechanism and reset the per-AG space 1493 * reservation. 1494 */ 1495 pag->pagf_repair_rmap_level = 0; 1496 sc->flags |= XREP_RESET_PERAG_RESV; 1497 out_bitmap: 1498 xagb_bitmap_destroy(&rfg.rmap_gaps); 1499 return error; 1500 } 1501 1502 static inline bool 1503 xrep_rmapbt_want_live_update( 1504 struct xchk_iscan *iscan, 1505 const struct xfs_owner_info *oi) 1506 { 1507 if (xchk_iscan_aborted(iscan)) 1508 return false; 1509 1510 /* 1511 * Before unlocking the AG header to perform the inode scan, we 1512 * recorded reverse mappings for all AG metadata except for the OWN_AG 1513 * metadata. IOWs, the in-memory btree knows about the AG headers, the 1514 * two inode btrees, the CoW staging extents, and the refcount btrees. 1515 * For these types of metadata, we need to record the live updates in 1516 * the in-memory rmap btree. 1517 * 1518 * However, we do not scan the free space btrees or the AGFL until we 1519 * have re-locked the AGF and are ready to reserve space for the new 1520 * rmap btree, so we do not want live updates for OWN_AG metadata. 1521 */ 1522 if (XFS_RMAP_NON_INODE_OWNER(oi->oi_owner)) 1523 return oi->oi_owner != XFS_RMAP_OWN_AG; 1524 1525 /* Ignore updates to files that the scanner hasn't visited yet. */ 1526 return xchk_iscan_want_live_update(iscan, oi->oi_owner); 1527 } 1528 1529 /* 1530 * Apply a rmapbt update from the regular filesystem into our shadow btree. 1531 * We're running from the thread that owns the AGF buffer and is generating 1532 * the update, so we must be careful about which parts of the struct xrep_rmap 1533 * that we change. 1534 */ 1535 static int 1536 xrep_rmapbt_live_update( 1537 struct notifier_block *nb, 1538 unsigned long action, 1539 void *data) 1540 { 1541 struct xfs_rmap_update_params *p = data; 1542 struct xrep_rmap *rr; 1543 struct xfs_mount *mp; 1544 struct xfs_btree_cur *mcur; 1545 struct xfs_trans *tp; 1546 void *txcookie; 1547 int error; 1548 1549 rr = container_of(nb, struct xrep_rmap, rhook.rmap_hook.nb); 1550 mp = rr->sc->mp; 1551 1552 if (!xrep_rmapbt_want_live_update(&rr->iscan, &p->oinfo)) 1553 goto out_unlock; 1554 1555 trace_xrep_rmap_live_update(rr->sc->sa.pag, action, p); 1556 1557 error = xrep_trans_alloc_hook_dummy(mp, &txcookie, &tp); 1558 if (error) 1559 goto out_abort; 1560 1561 mutex_lock(&rr->lock); 1562 mcur = xfs_rmapbt_mem_cursor(rr->sc->sa.pag, tp, &rr->rmap_btree); 1563 error = __xfs_rmap_finish_intent(mcur, action, p->startblock, 1564 p->blockcount, &p->oinfo, p->unwritten); 1565 xfs_btree_del_cursor(mcur, error); 1566 if (error) 1567 goto out_cancel; 1568 1569 error = xfbtree_trans_commit(&rr->rmap_btree, tp); 1570 if (error) 1571 goto out_cancel; 1572 1573 xrep_trans_cancel_hook_dummy(&txcookie, tp); 1574 mutex_unlock(&rr->lock); 1575 return NOTIFY_DONE; 1576 1577 out_cancel: 1578 xfbtree_trans_cancel(&rr->rmap_btree, tp); 1579 xrep_trans_cancel_hook_dummy(&txcookie, tp); 1580 out_abort: 1581 mutex_unlock(&rr->lock); 1582 xchk_iscan_abort(&rr->iscan); 1583 out_unlock: 1584 return NOTIFY_DONE; 1585 } 1586 1587 /* Set up the filesystem scan components. */ 1588 STATIC int 1589 xrep_rmap_setup_scan( 1590 struct xrep_rmap *rr) 1591 { 1592 struct xfs_scrub *sc = rr->sc; 1593 int error; 1594 1595 mutex_init(&rr->lock); 1596 1597 /* Set up in-memory rmap btree */ 1598 error = xfs_rmapbt_mem_init(sc->mp, &rr->rmap_btree, sc->xmbtp, 1599 pag_agno(sc->sa.pag)); 1600 if (error) 1601 goto out_mutex; 1602 1603 /* Retry iget every tenth of a second for up to 30 seconds. */ 1604 xchk_iscan_start(sc, 30000, 100, &rr->iscan); 1605 1606 /* 1607 * Hook into live rmap operations so that we can update our in-memory 1608 * btree to reflect live changes on the filesystem. Since we drop the 1609 * AGF buffer to scan all the inodes, we need this piece to avoid 1610 * installing a stale btree. 1611 */ 1612 ASSERT(sc->flags & XCHK_FSGATES_RMAP); 1613 xfs_rmap_hook_setup(&rr->rhook, xrep_rmapbt_live_update); 1614 error = xfs_rmap_hook_add(pag_group(sc->sa.pag), &rr->rhook); 1615 if (error) 1616 goto out_iscan; 1617 return 0; 1618 1619 out_iscan: 1620 xchk_iscan_teardown(&rr->iscan); 1621 xfbtree_destroy(&rr->rmap_btree); 1622 out_mutex: 1623 mutex_destroy(&rr->lock); 1624 return error; 1625 } 1626 1627 /* Tear down scan components. */ 1628 STATIC void 1629 xrep_rmap_teardown( 1630 struct xrep_rmap *rr) 1631 { 1632 struct xfs_scrub *sc = rr->sc; 1633 1634 xchk_iscan_abort(&rr->iscan); 1635 xfs_rmap_hook_del(pag_group(sc->sa.pag), &rr->rhook); 1636 xchk_iscan_teardown(&rr->iscan); 1637 xfbtree_destroy(&rr->rmap_btree); 1638 mutex_destroy(&rr->lock); 1639 } 1640 1641 /* Repair the rmap btree for some AG. */ 1642 int 1643 xrep_rmapbt( 1644 struct xfs_scrub *sc) 1645 { 1646 struct xrep_rmap *rr = sc->buf; 1647 int error; 1648 1649 error = xrep_rmap_setup_scan(rr); 1650 if (error) 1651 return error; 1652 1653 /* 1654 * Collect rmaps for everything in this AG that isn't space metadata. 1655 * These rmaps won't change even as we try to allocate blocks. 1656 */ 1657 error = xrep_rmap_find_rmaps(rr); 1658 if (error) 1659 goto out_records; 1660 1661 /* Rebuild the rmap information. */ 1662 error = xrep_rmap_build_new_tree(rr); 1663 if (error) 1664 goto out_records; 1665 1666 /* Kill the old tree. */ 1667 error = xrep_rmap_remove_old_tree(rr); 1668 if (error) 1669 goto out_records; 1670 1671 out_records: 1672 xrep_rmap_teardown(rr); 1673 return error; 1674 } 1675