xref: /linux/fs/xfs/scrub/repair.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2018-2023 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <djwong@kernel.org>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_mount.h"
12 #include "xfs_btree.h"
13 #include "xfs_log_format.h"
14 #include "xfs_trans.h"
15 #include "xfs_sb.h"
16 #include "xfs_inode.h"
17 #include "xfs_alloc.h"
18 #include "xfs_alloc_btree.h"
19 #include "xfs_ialloc.h"
20 #include "xfs_ialloc_btree.h"
21 #include "xfs_rmap.h"
22 #include "xfs_rmap_btree.h"
23 #include "xfs_refcount_btree.h"
24 #include "xfs_extent_busy.h"
25 #include "xfs_ag.h"
26 #include "xfs_ag_resv.h"
27 #include "xfs_quota.h"
28 #include "xfs_qm.h"
29 #include "xfs_defer.h"
30 #include "xfs_errortag.h"
31 #include "xfs_error.h"
32 #include "xfs_reflink.h"
33 #include "xfs_health.h"
34 #include "xfs_buf_mem.h"
35 #include "scrub/scrub.h"
36 #include "scrub/common.h"
37 #include "scrub/trace.h"
38 #include "scrub/repair.h"
39 #include "scrub/bitmap.h"
40 #include "scrub/stats.h"
41 #include "scrub/xfile.h"
42 
43 /*
44  * Attempt to repair some metadata, if the metadata is corrupt and userspace
45  * told us to fix it.  This function returns -EAGAIN to mean "re-run scrub",
46  * and will set *fixed to true if it thinks it repaired anything.
47  */
48 int
49 xrep_attempt(
50 	struct xfs_scrub	*sc,
51 	struct xchk_stats_run	*run)
52 {
53 	u64			repair_start;
54 	int			error = 0;
55 
56 	trace_xrep_attempt(XFS_I(file_inode(sc->file)), sc->sm, error);
57 
58 	xchk_ag_btcur_free(&sc->sa);
59 
60 	/* Repair whatever's broken. */
61 	ASSERT(sc->ops->repair);
62 	run->repair_attempted = true;
63 	repair_start = xchk_stats_now();
64 	error = sc->ops->repair(sc);
65 	trace_xrep_done(XFS_I(file_inode(sc->file)), sc->sm, error);
66 	run->repair_ns += xchk_stats_elapsed_ns(repair_start);
67 	switch (error) {
68 	case 0:
69 		/*
70 		 * Repair succeeded.  Commit the fixes and perform a second
71 		 * scrub so that we can tell userspace if we fixed the problem.
72 		 */
73 		sc->sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
74 		sc->flags |= XREP_ALREADY_FIXED;
75 		run->repair_succeeded = true;
76 		return -EAGAIN;
77 	case -ECHRNG:
78 		sc->flags |= XCHK_NEED_DRAIN;
79 		run->retries++;
80 		return -EAGAIN;
81 	case -EDEADLOCK:
82 		/* Tell the caller to try again having grabbed all the locks. */
83 		if (!(sc->flags & XCHK_TRY_HARDER)) {
84 			sc->flags |= XCHK_TRY_HARDER;
85 			run->retries++;
86 			return -EAGAIN;
87 		}
88 		/*
89 		 * We tried harder but still couldn't grab all the resources
90 		 * we needed to fix it.  The corruption has not been fixed,
91 		 * so exit to userspace with the scan's output flags unchanged.
92 		 */
93 		return 0;
94 	default:
95 		/*
96 		 * EAGAIN tells the caller to re-scrub, so we cannot return
97 		 * that here.
98 		 */
99 		ASSERT(error != -EAGAIN);
100 		return error;
101 	}
102 }
103 
104 /*
105  * Complain about unfixable problems in the filesystem.  We don't log
106  * corruptions when IFLAG_REPAIR wasn't set on the assumption that the driver
107  * program is xfs_scrub, which will call back with IFLAG_REPAIR set if the
108  * administrator isn't running xfs_scrub in no-repairs mode.
109  *
110  * Use this helper function because _ratelimited silently declares a static
111  * structure to track rate limiting information.
112  */
113 void
114 xrep_failure(
115 	struct xfs_mount	*mp)
116 {
117 	xfs_alert_ratelimited(mp,
118 "Corruption not fixed during online repair.  Unmount and run xfs_repair.");
119 }
120 
121 /*
122  * Repair probe -- userspace uses this to probe if we're willing to repair a
123  * given mountpoint.
124  */
125 int
126 xrep_probe(
127 	struct xfs_scrub	*sc)
128 {
129 	int			error = 0;
130 
131 	if (xchk_should_terminate(sc, &error))
132 		return error;
133 
134 	return 0;
135 }
136 
137 /*
138  * Roll a transaction, keeping the AG headers locked and reinitializing
139  * the btree cursors.
140  */
141 int
142 xrep_roll_ag_trans(
143 	struct xfs_scrub	*sc)
144 {
145 	int			error;
146 
147 	/*
148 	 * Keep the AG header buffers locked while we roll the transaction.
149 	 * Ensure that both AG buffers are dirty and held when we roll the
150 	 * transaction so that they move forward in the log without losing the
151 	 * bli (and hence the bli type) when the transaction commits.
152 	 *
153 	 * Normal code would never hold clean buffers across a roll, but repair
154 	 * needs both buffers to maintain a total lock on the AG.
155 	 */
156 	if (sc->sa.agi_bp) {
157 		xfs_ialloc_log_agi(sc->tp, sc->sa.agi_bp, XFS_AGI_MAGICNUM);
158 		xfs_trans_bhold(sc->tp, sc->sa.agi_bp);
159 	}
160 
161 	if (sc->sa.agf_bp) {
162 		xfs_alloc_log_agf(sc->tp, sc->sa.agf_bp, XFS_AGF_MAGICNUM);
163 		xfs_trans_bhold(sc->tp, sc->sa.agf_bp);
164 	}
165 
166 	/*
167 	 * Roll the transaction.  We still hold the AG header buffers locked
168 	 * regardless of whether or not that succeeds.  On failure, the buffers
169 	 * will be released during teardown on our way out of the kernel.  If
170 	 * successful, join the buffers to the new transaction and move on.
171 	 */
172 	error = xfs_trans_roll(&sc->tp);
173 	if (error)
174 		return error;
175 
176 	/* Join the AG headers to the new transaction. */
177 	if (sc->sa.agi_bp)
178 		xfs_trans_bjoin(sc->tp, sc->sa.agi_bp);
179 	if (sc->sa.agf_bp)
180 		xfs_trans_bjoin(sc->tp, sc->sa.agf_bp);
181 
182 	return 0;
183 }
184 
185 /* Roll the scrub transaction, holding the primary metadata locked. */
186 int
187 xrep_roll_trans(
188 	struct xfs_scrub	*sc)
189 {
190 	if (!sc->ip)
191 		return xrep_roll_ag_trans(sc);
192 	return xfs_trans_roll_inode(&sc->tp, sc->ip);
193 }
194 
195 /* Finish all deferred work attached to the repair transaction. */
196 int
197 xrep_defer_finish(
198 	struct xfs_scrub	*sc)
199 {
200 	int			error;
201 
202 	/*
203 	 * Keep the AG header buffers locked while we complete deferred work
204 	 * items.  Ensure that both AG buffers are dirty and held when we roll
205 	 * the transaction so that they move forward in the log without losing
206 	 * the bli (and hence the bli type) when the transaction commits.
207 	 *
208 	 * Normal code would never hold clean buffers across a roll, but repair
209 	 * needs both buffers to maintain a total lock on the AG.
210 	 */
211 	if (sc->sa.agi_bp) {
212 		xfs_ialloc_log_agi(sc->tp, sc->sa.agi_bp, XFS_AGI_MAGICNUM);
213 		xfs_trans_bhold(sc->tp, sc->sa.agi_bp);
214 	}
215 
216 	if (sc->sa.agf_bp) {
217 		xfs_alloc_log_agf(sc->tp, sc->sa.agf_bp, XFS_AGF_MAGICNUM);
218 		xfs_trans_bhold(sc->tp, sc->sa.agf_bp);
219 	}
220 
221 	/*
222 	 * Finish all deferred work items.  We still hold the AG header buffers
223 	 * locked regardless of whether or not that succeeds.  On failure, the
224 	 * buffers will be released during teardown on our way out of the
225 	 * kernel.  If successful, join the buffers to the new transaction
226 	 * and move on.
227 	 */
228 	error = xfs_defer_finish(&sc->tp);
229 	if (error)
230 		return error;
231 
232 	/*
233 	 * Release the hold that we set above because defer_finish won't do
234 	 * that for us.  The defer roll code redirties held buffers after each
235 	 * roll, so the AG header buffers should be ready for logging.
236 	 */
237 	if (sc->sa.agi_bp)
238 		xfs_trans_bhold_release(sc->tp, sc->sa.agi_bp);
239 	if (sc->sa.agf_bp)
240 		xfs_trans_bhold_release(sc->tp, sc->sa.agf_bp);
241 
242 	return 0;
243 }
244 
245 /*
246  * Does the given AG have enough space to rebuild a btree?  Neither AG
247  * reservation can be critical, and we must have enough space (factoring
248  * in AG reservations) to construct a whole btree.
249  */
250 bool
251 xrep_ag_has_space(
252 	struct xfs_perag	*pag,
253 	xfs_extlen_t		nr_blocks,
254 	enum xfs_ag_resv_type	type)
255 {
256 	return  !xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) &&
257 		!xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA) &&
258 		pag->pagf_freeblks > xfs_ag_resv_needed(pag, type) + nr_blocks;
259 }
260 
261 /*
262  * Figure out how many blocks to reserve for an AG repair.  We calculate the
263  * worst case estimate for the number of blocks we'd need to rebuild one of
264  * any type of per-AG btree.
265  */
266 xfs_extlen_t
267 xrep_calc_ag_resblks(
268 	struct xfs_scrub		*sc)
269 {
270 	struct xfs_mount		*mp = sc->mp;
271 	struct xfs_scrub_metadata	*sm = sc->sm;
272 	struct xfs_perag		*pag;
273 	struct xfs_buf			*bp;
274 	xfs_agino_t			icount = NULLAGINO;
275 	xfs_extlen_t			aglen = NULLAGBLOCK;
276 	xfs_extlen_t			usedlen;
277 	xfs_extlen_t			freelen;
278 	xfs_extlen_t			bnobt_sz;
279 	xfs_extlen_t			inobt_sz;
280 	xfs_extlen_t			rmapbt_sz;
281 	xfs_extlen_t			refcbt_sz;
282 	int				error;
283 
284 	if (!(sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR))
285 		return 0;
286 
287 	pag = xfs_perag_get(mp, sm->sm_agno);
288 	if (xfs_perag_initialised_agi(pag)) {
289 		/* Use in-core icount if possible. */
290 		icount = pag->pagi_count;
291 	} else {
292 		/* Try to get the actual counters from disk. */
293 		error = xfs_ialloc_read_agi(pag, NULL, &bp);
294 		if (!error) {
295 			icount = pag->pagi_count;
296 			xfs_buf_relse(bp);
297 		}
298 	}
299 
300 	/* Now grab the block counters from the AGF. */
301 	error = xfs_alloc_read_agf(pag, NULL, 0, &bp);
302 	if (error) {
303 		aglen = pag->block_count;
304 		freelen = aglen;
305 		usedlen = aglen;
306 	} else {
307 		struct xfs_agf	*agf = bp->b_addr;
308 
309 		aglen = be32_to_cpu(agf->agf_length);
310 		freelen = be32_to_cpu(agf->agf_freeblks);
311 		usedlen = aglen - freelen;
312 		xfs_buf_relse(bp);
313 	}
314 
315 	/* If the icount is impossible, make some worst-case assumptions. */
316 	if (icount == NULLAGINO ||
317 	    !xfs_verify_agino(pag, icount)) {
318 		icount = pag->agino_max - pag->agino_min + 1;
319 	}
320 
321 	/* If the block counts are impossible, make worst-case assumptions. */
322 	if (aglen == NULLAGBLOCK ||
323 	    aglen != pag->block_count ||
324 	    freelen >= aglen) {
325 		aglen = pag->block_count;
326 		freelen = aglen;
327 		usedlen = aglen;
328 	}
329 	xfs_perag_put(pag);
330 
331 	trace_xrep_calc_ag_resblks(mp, sm->sm_agno, icount, aglen,
332 			freelen, usedlen);
333 
334 	/*
335 	 * Figure out how many blocks we'd need worst case to rebuild
336 	 * each type of btree.  Note that we can only rebuild the
337 	 * bnobt/cntbt or inobt/finobt as pairs.
338 	 */
339 	bnobt_sz = 2 * xfs_allocbt_calc_size(mp, freelen);
340 	if (xfs_has_sparseinodes(mp))
341 		inobt_sz = xfs_iallocbt_calc_size(mp, icount /
342 				XFS_INODES_PER_HOLEMASK_BIT);
343 	else
344 		inobt_sz = xfs_iallocbt_calc_size(mp, icount /
345 				XFS_INODES_PER_CHUNK);
346 	if (xfs_has_finobt(mp))
347 		inobt_sz *= 2;
348 	if (xfs_has_reflink(mp))
349 		refcbt_sz = xfs_refcountbt_calc_size(mp, usedlen);
350 	else
351 		refcbt_sz = 0;
352 	if (xfs_has_rmapbt(mp)) {
353 		/*
354 		 * Guess how many blocks we need to rebuild the rmapbt.
355 		 * For non-reflink filesystems we can't have more records than
356 		 * used blocks.  However, with reflink it's possible to have
357 		 * more than one rmap record per AG block.  We don't know how
358 		 * many rmaps there could be in the AG, so we start off with
359 		 * what we hope is an generous over-estimation.
360 		 */
361 		if (xfs_has_reflink(mp))
362 			rmapbt_sz = xfs_rmapbt_calc_size(mp,
363 					(unsigned long long)aglen * 2);
364 		else
365 			rmapbt_sz = xfs_rmapbt_calc_size(mp, usedlen);
366 	} else {
367 		rmapbt_sz = 0;
368 	}
369 
370 	trace_xrep_calc_ag_resblks_btsize(mp, sm->sm_agno, bnobt_sz,
371 			inobt_sz, rmapbt_sz, refcbt_sz);
372 
373 	return max(max(bnobt_sz, inobt_sz), max(rmapbt_sz, refcbt_sz));
374 }
375 
376 /*
377  * Reconstructing per-AG Btrees
378  *
379  * When a space btree is corrupt, we don't bother trying to fix it.  Instead,
380  * we scan secondary space metadata to derive the records that should be in
381  * the damaged btree, initialize a fresh btree root, and insert the records.
382  * Note that for rebuilding the rmapbt we scan all the primary data to
383  * generate the new records.
384  *
385  * However, that leaves the matter of removing all the metadata describing the
386  * old broken structure.  For primary metadata we use the rmap data to collect
387  * every extent with a matching rmap owner (bitmap); we then iterate all other
388  * metadata structures with the same rmap owner to collect the extents that
389  * cannot be removed (sublist).  We then subtract sublist from bitmap to
390  * derive the blocks that were used by the old btree.  These blocks can be
391  * reaped.
392  *
393  * For rmapbt reconstructions we must use different tactics for extent
394  * collection.  First we iterate all primary metadata (this excludes the old
395  * rmapbt, obviously) to generate new rmap records.  The gaps in the rmap
396  * records are collected as bitmap.  The bnobt records are collected as
397  * sublist.  As with the other btrees we subtract sublist from bitmap, and the
398  * result (since the rmapbt lives in the free space) are the blocks from the
399  * old rmapbt.
400  */
401 
402 /* Ensure the freelist is the correct size. */
403 int
404 xrep_fix_freelist(
405 	struct xfs_scrub	*sc,
406 	int			alloc_flags)
407 {
408 	struct xfs_alloc_arg	args = {0};
409 
410 	args.mp = sc->mp;
411 	args.tp = sc->tp;
412 	args.agno = sc->sa.pag->pag_agno;
413 	args.alignment = 1;
414 	args.pag = sc->sa.pag;
415 
416 	return xfs_alloc_fix_freelist(&args, alloc_flags);
417 }
418 
419 /*
420  * Finding per-AG Btree Roots for AGF/AGI Reconstruction
421  *
422  * If the AGF or AGI become slightly corrupted, it may be necessary to rebuild
423  * the AG headers by using the rmap data to rummage through the AG looking for
424  * btree roots.  This is not guaranteed to work if the AG is heavily damaged
425  * or the rmap data are corrupt.
426  *
427  * Callers of xrep_find_ag_btree_roots must lock the AGF and AGFL
428  * buffers if the AGF is being rebuilt; or the AGF and AGI buffers if the
429  * AGI is being rebuilt.  It must maintain these locks until it's safe for
430  * other threads to change the btrees' shapes.  The caller provides
431  * information about the btrees to look for by passing in an array of
432  * xrep_find_ag_btree with the (rmap owner, buf_ops, magic) fields set.
433  * The (root, height) fields will be set on return if anything is found.  The
434  * last element of the array should have a NULL buf_ops to mark the end of the
435  * array.
436  *
437  * For every rmapbt record matching any of the rmap owners in btree_info,
438  * read each block referenced by the rmap record.  If the block is a btree
439  * block from this filesystem matching any of the magic numbers and has a
440  * level higher than what we've already seen, remember the block and the
441  * height of the tree required to have such a block.  When the call completes,
442  * we return the highest block we've found for each btree description; those
443  * should be the roots.
444  */
445 
446 struct xrep_findroot {
447 	struct xfs_scrub		*sc;
448 	struct xfs_buf			*agfl_bp;
449 	struct xfs_agf			*agf;
450 	struct xrep_find_ag_btree	*btree_info;
451 };
452 
453 /* See if our block is in the AGFL. */
454 STATIC int
455 xrep_findroot_agfl_walk(
456 	struct xfs_mount	*mp,
457 	xfs_agblock_t		bno,
458 	void			*priv)
459 {
460 	xfs_agblock_t		*agbno = priv;
461 
462 	return (*agbno == bno) ? -ECANCELED : 0;
463 }
464 
465 /* Does this block match the btree information passed in? */
466 STATIC int
467 xrep_findroot_block(
468 	struct xrep_findroot		*ri,
469 	struct xrep_find_ag_btree	*fab,
470 	uint64_t			owner,
471 	xfs_agblock_t			agbno,
472 	bool				*done_with_block)
473 {
474 	struct xfs_mount		*mp = ri->sc->mp;
475 	struct xfs_buf			*bp;
476 	struct xfs_btree_block		*btblock;
477 	xfs_daddr_t			daddr;
478 	int				block_level;
479 	int				error = 0;
480 
481 	daddr = XFS_AGB_TO_DADDR(mp, ri->sc->sa.pag->pag_agno, agbno);
482 
483 	/*
484 	 * Blocks in the AGFL have stale contents that might just happen to
485 	 * have a matching magic and uuid.  We don't want to pull these blocks
486 	 * in as part of a tree root, so we have to filter out the AGFL stuff
487 	 * here.  If the AGFL looks insane we'll just refuse to repair.
488 	 */
489 	if (owner == XFS_RMAP_OWN_AG) {
490 		error = xfs_agfl_walk(mp, ri->agf, ri->agfl_bp,
491 				xrep_findroot_agfl_walk, &agbno);
492 		if (error == -ECANCELED)
493 			return 0;
494 		if (error)
495 			return error;
496 	}
497 
498 	/*
499 	 * Read the buffer into memory so that we can see if it's a match for
500 	 * our btree type.  We have no clue if it is beforehand, and we want to
501 	 * avoid xfs_trans_read_buf's behavior of dumping the DONE state (which
502 	 * will cause needless disk reads in subsequent calls to this function)
503 	 * and logging metadata verifier failures.
504 	 *
505 	 * Therefore, pass in NULL buffer ops.  If the buffer was already in
506 	 * memory from some other caller it will already have b_ops assigned.
507 	 * If it was in memory from a previous unsuccessful findroot_block
508 	 * call, the buffer won't have b_ops but it should be clean and ready
509 	 * for us to try to verify if the read call succeeds.  The same applies
510 	 * if the buffer wasn't in memory at all.
511 	 *
512 	 * Note: If we never match a btree type with this buffer, it will be
513 	 * left in memory with NULL b_ops.  This shouldn't be a problem unless
514 	 * the buffer gets written.
515 	 */
516 	error = xfs_trans_read_buf(mp, ri->sc->tp, mp->m_ddev_targp, daddr,
517 			mp->m_bsize, 0, &bp, NULL);
518 	if (error)
519 		return error;
520 
521 	/* Ensure the block magic matches the btree type we're looking for. */
522 	btblock = XFS_BUF_TO_BLOCK(bp);
523 	ASSERT(fab->buf_ops->magic[1] != 0);
524 	if (btblock->bb_magic != fab->buf_ops->magic[1])
525 		goto out;
526 
527 	/*
528 	 * If the buffer already has ops applied and they're not the ones for
529 	 * this btree type, we know this block doesn't match the btree and we
530 	 * can bail out.
531 	 *
532 	 * If the buffer ops match ours, someone else has already validated
533 	 * the block for us, so we can move on to checking if this is a root
534 	 * block candidate.
535 	 *
536 	 * If the buffer does not have ops, nobody has successfully validated
537 	 * the contents and the buffer cannot be dirty.  If the magic, uuid,
538 	 * and structure match this btree type then we'll move on to checking
539 	 * if it's a root block candidate.  If there is no match, bail out.
540 	 */
541 	if (bp->b_ops) {
542 		if (bp->b_ops != fab->buf_ops)
543 			goto out;
544 	} else {
545 		ASSERT(!xfs_trans_buf_is_dirty(bp));
546 		if (!uuid_equal(&btblock->bb_u.s.bb_uuid,
547 				&mp->m_sb.sb_meta_uuid))
548 			goto out;
549 		/*
550 		 * Read verifiers can reference b_ops, so we set the pointer
551 		 * here.  If the verifier fails we'll reset the buffer state
552 		 * to what it was before we touched the buffer.
553 		 */
554 		bp->b_ops = fab->buf_ops;
555 		fab->buf_ops->verify_read(bp);
556 		if (bp->b_error) {
557 			bp->b_ops = NULL;
558 			bp->b_error = 0;
559 			goto out;
560 		}
561 
562 		/*
563 		 * Some read verifiers will (re)set b_ops, so we must be
564 		 * careful not to change b_ops after running the verifier.
565 		 */
566 	}
567 
568 	/*
569 	 * This block passes the magic/uuid and verifier tests for this btree
570 	 * type.  We don't need the caller to try the other tree types.
571 	 */
572 	*done_with_block = true;
573 
574 	/*
575 	 * Compare this btree block's level to the height of the current
576 	 * candidate root block.
577 	 *
578 	 * If the level matches the root we found previously, throw away both
579 	 * blocks because there can't be two candidate roots.
580 	 *
581 	 * If level is lower in the tree than the root we found previously,
582 	 * ignore this block.
583 	 */
584 	block_level = xfs_btree_get_level(btblock);
585 	if (block_level + 1 == fab->height) {
586 		fab->root = NULLAGBLOCK;
587 		goto out;
588 	} else if (block_level < fab->height) {
589 		goto out;
590 	}
591 
592 	/*
593 	 * This is the highest block in the tree that we've found so far.
594 	 * Update the btree height to reflect what we've learned from this
595 	 * block.
596 	 */
597 	fab->height = block_level + 1;
598 
599 	/*
600 	 * If this block doesn't have sibling pointers, then it's the new root
601 	 * block candidate.  Otherwise, the root will be found farther up the
602 	 * tree.
603 	 */
604 	if (btblock->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK) &&
605 	    btblock->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
606 		fab->root = agbno;
607 	else
608 		fab->root = NULLAGBLOCK;
609 
610 	trace_xrep_findroot_block(mp, ri->sc->sa.pag->pag_agno, agbno,
611 			be32_to_cpu(btblock->bb_magic), fab->height - 1);
612 out:
613 	xfs_trans_brelse(ri->sc->tp, bp);
614 	return error;
615 }
616 
617 /*
618  * Do any of the blocks in this rmap record match one of the btrees we're
619  * looking for?
620  */
621 STATIC int
622 xrep_findroot_rmap(
623 	struct xfs_btree_cur		*cur,
624 	const struct xfs_rmap_irec	*rec,
625 	void				*priv)
626 {
627 	struct xrep_findroot		*ri = priv;
628 	struct xrep_find_ag_btree	*fab;
629 	xfs_agblock_t			b;
630 	bool				done;
631 	int				error = 0;
632 
633 	/* Ignore anything that isn't AG metadata. */
634 	if (!XFS_RMAP_NON_INODE_OWNER(rec->rm_owner))
635 		return 0;
636 
637 	/* Otherwise scan each block + btree type. */
638 	for (b = 0; b < rec->rm_blockcount; b++) {
639 		done = false;
640 		for (fab = ri->btree_info; fab->buf_ops; fab++) {
641 			if (rec->rm_owner != fab->rmap_owner)
642 				continue;
643 			error = xrep_findroot_block(ri, fab,
644 					rec->rm_owner, rec->rm_startblock + b,
645 					&done);
646 			if (error)
647 				return error;
648 			if (done)
649 				break;
650 		}
651 	}
652 
653 	return 0;
654 }
655 
656 /* Find the roots of the per-AG btrees described in btree_info. */
657 int
658 xrep_find_ag_btree_roots(
659 	struct xfs_scrub		*sc,
660 	struct xfs_buf			*agf_bp,
661 	struct xrep_find_ag_btree	*btree_info,
662 	struct xfs_buf			*agfl_bp)
663 {
664 	struct xfs_mount		*mp = sc->mp;
665 	struct xrep_findroot		ri;
666 	struct xrep_find_ag_btree	*fab;
667 	struct xfs_btree_cur		*cur;
668 	int				error;
669 
670 	ASSERT(xfs_buf_islocked(agf_bp));
671 	ASSERT(agfl_bp == NULL || xfs_buf_islocked(agfl_bp));
672 
673 	ri.sc = sc;
674 	ri.btree_info = btree_info;
675 	ri.agf = agf_bp->b_addr;
676 	ri.agfl_bp = agfl_bp;
677 	for (fab = btree_info; fab->buf_ops; fab++) {
678 		ASSERT(agfl_bp || fab->rmap_owner != XFS_RMAP_OWN_AG);
679 		ASSERT(XFS_RMAP_NON_INODE_OWNER(fab->rmap_owner));
680 		fab->root = NULLAGBLOCK;
681 		fab->height = 0;
682 	}
683 
684 	cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.pag);
685 	error = xfs_rmap_query_all(cur, xrep_findroot_rmap, &ri);
686 	xfs_btree_del_cursor(cur, error);
687 
688 	return error;
689 }
690 
691 #ifdef CONFIG_XFS_QUOTA
692 /* Update some quota flags in the superblock. */
693 void
694 xrep_update_qflags(
695 	struct xfs_scrub	*sc,
696 	unsigned int		clear_flags,
697 	unsigned int		set_flags)
698 {
699 	struct xfs_mount	*mp = sc->mp;
700 	struct xfs_buf		*bp;
701 
702 	mutex_lock(&mp->m_quotainfo->qi_quotaofflock);
703 	if ((mp->m_qflags & clear_flags) == 0 &&
704 	    (mp->m_qflags & set_flags) == set_flags)
705 		goto no_update;
706 
707 	mp->m_qflags &= ~clear_flags;
708 	mp->m_qflags |= set_flags;
709 
710 	spin_lock(&mp->m_sb_lock);
711 	mp->m_sb.sb_qflags &= ~clear_flags;
712 	mp->m_sb.sb_qflags |= set_flags;
713 	spin_unlock(&mp->m_sb_lock);
714 
715 	/*
716 	 * Update the quota flags in the ondisk superblock without touching
717 	 * the summary counters.  We have not quiesced inode chunk allocation,
718 	 * so we cannot coordinate with updates to the icount and ifree percpu
719 	 * counters.
720 	 */
721 	bp = xfs_trans_getsb(sc->tp);
722 	xfs_sb_to_disk(bp->b_addr, &mp->m_sb);
723 	xfs_trans_buf_set_type(sc->tp, bp, XFS_BLFT_SB_BUF);
724 	xfs_trans_log_buf(sc->tp, bp, 0, sizeof(struct xfs_dsb) - 1);
725 
726 no_update:
727 	mutex_unlock(&sc->mp->m_quotainfo->qi_quotaofflock);
728 }
729 
730 /* Force a quotacheck the next time we mount. */
731 void
732 xrep_force_quotacheck(
733 	struct xfs_scrub	*sc,
734 	xfs_dqtype_t		type)
735 {
736 	uint			flag;
737 
738 	flag = xfs_quota_chkd_flag(type);
739 	if (!(flag & sc->mp->m_qflags))
740 		return;
741 
742 	xrep_update_qflags(sc, flag, 0);
743 }
744 
745 /*
746  * Attach dquots to this inode, or schedule quotacheck to fix them.
747  *
748  * This function ensures that the appropriate dquots are attached to an inode.
749  * We cannot allow the dquot code to allocate an on-disk dquot block here
750  * because we're already in transaction context.  The on-disk dquot should
751  * already exist anyway.  If the quota code signals corruption or missing quota
752  * information, schedule quotacheck, which will repair corruptions in the quota
753  * metadata.
754  */
755 int
756 xrep_ino_dqattach(
757 	struct xfs_scrub	*sc)
758 {
759 	int			error;
760 
761 	ASSERT(sc->tp != NULL);
762 	ASSERT(sc->ip != NULL);
763 
764 	error = xfs_qm_dqattach(sc->ip);
765 	switch (error) {
766 	case -EFSBADCRC:
767 	case -EFSCORRUPTED:
768 	case -ENOENT:
769 		xfs_err_ratelimited(sc->mp,
770 "inode %llu repair encountered quota error %d, quotacheck forced.",
771 				(unsigned long long)sc->ip->i_ino, error);
772 		if (XFS_IS_UQUOTA_ON(sc->mp) && !sc->ip->i_udquot)
773 			xrep_force_quotacheck(sc, XFS_DQTYPE_USER);
774 		if (XFS_IS_GQUOTA_ON(sc->mp) && !sc->ip->i_gdquot)
775 			xrep_force_quotacheck(sc, XFS_DQTYPE_GROUP);
776 		if (XFS_IS_PQUOTA_ON(sc->mp) && !sc->ip->i_pdquot)
777 			xrep_force_quotacheck(sc, XFS_DQTYPE_PROJ);
778 		fallthrough;
779 	case -ESRCH:
780 		error = 0;
781 		break;
782 	default:
783 		break;
784 	}
785 
786 	return error;
787 }
788 #endif /* CONFIG_XFS_QUOTA */
789 
790 /*
791  * Ensure that the inode being repaired is ready to handle a certain number of
792  * extents, or return EFSCORRUPTED.  Caller must hold the ILOCK of the inode
793  * being repaired and have joined it to the scrub transaction.
794  */
795 int
796 xrep_ino_ensure_extent_count(
797 	struct xfs_scrub	*sc,
798 	int			whichfork,
799 	xfs_extnum_t		nextents)
800 {
801 	xfs_extnum_t		max_extents;
802 	bool			inode_has_nrext64;
803 
804 	inode_has_nrext64 = xfs_inode_has_large_extent_counts(sc->ip);
805 	max_extents = xfs_iext_max_nextents(inode_has_nrext64, whichfork);
806 	if (nextents <= max_extents)
807 		return 0;
808 	if (inode_has_nrext64)
809 		return -EFSCORRUPTED;
810 	if (!xfs_has_large_extent_counts(sc->mp))
811 		return -EFSCORRUPTED;
812 
813 	max_extents = xfs_iext_max_nextents(true, whichfork);
814 	if (nextents > max_extents)
815 		return -EFSCORRUPTED;
816 
817 	sc->ip->i_diflags2 |= XFS_DIFLAG2_NREXT64;
818 	xfs_trans_log_inode(sc->tp, sc->ip, XFS_ILOG_CORE);
819 	return 0;
820 }
821 
822 /*
823  * Initialize all the btree cursors for an AG repair except for the btree that
824  * we're rebuilding.
825  */
826 void
827 xrep_ag_btcur_init(
828 	struct xfs_scrub	*sc,
829 	struct xchk_ag		*sa)
830 {
831 	struct xfs_mount	*mp = sc->mp;
832 
833 	/* Set up a bnobt cursor for cross-referencing. */
834 	if (sc->sm->sm_type != XFS_SCRUB_TYPE_BNOBT &&
835 	    sc->sm->sm_type != XFS_SCRUB_TYPE_CNTBT) {
836 		sa->bno_cur = xfs_bnobt_init_cursor(mp, sc->tp, sa->agf_bp,
837 				sc->sa.pag);
838 		sa->cnt_cur = xfs_cntbt_init_cursor(mp, sc->tp, sa->agf_bp,
839 				sc->sa.pag);
840 	}
841 
842 	/* Set up a inobt cursor for cross-referencing. */
843 	if (sc->sm->sm_type != XFS_SCRUB_TYPE_INOBT &&
844 	    sc->sm->sm_type != XFS_SCRUB_TYPE_FINOBT) {
845 		sa->ino_cur = xfs_inobt_init_cursor(sc->sa.pag, sc->tp,
846 				sa->agi_bp);
847 		if (xfs_has_finobt(mp))
848 			sa->fino_cur = xfs_finobt_init_cursor(sc->sa.pag,
849 					sc->tp, sa->agi_bp);
850 	}
851 
852 	/* Set up a rmapbt cursor for cross-referencing. */
853 	if (sc->sm->sm_type != XFS_SCRUB_TYPE_RMAPBT &&
854 	    xfs_has_rmapbt(mp))
855 		sa->rmap_cur = xfs_rmapbt_init_cursor(mp, sc->tp, sa->agf_bp,
856 				sc->sa.pag);
857 
858 	/* Set up a refcountbt cursor for cross-referencing. */
859 	if (sc->sm->sm_type != XFS_SCRUB_TYPE_REFCNTBT &&
860 	    xfs_has_reflink(mp))
861 		sa->refc_cur = xfs_refcountbt_init_cursor(mp, sc->tp,
862 				sa->agf_bp, sc->sa.pag);
863 }
864 
865 /*
866  * Reinitialize the in-core AG state after a repair by rereading the AGF
867  * buffer.  We had better get the same AGF buffer as the one that's attached
868  * to the scrub context.
869  */
870 int
871 xrep_reinit_pagf(
872 	struct xfs_scrub	*sc)
873 {
874 	struct xfs_perag	*pag = sc->sa.pag;
875 	struct xfs_buf		*bp;
876 	int			error;
877 
878 	ASSERT(pag);
879 	ASSERT(xfs_perag_initialised_agf(pag));
880 
881 	clear_bit(XFS_AGSTATE_AGF_INIT, &pag->pag_opstate);
882 	error = xfs_alloc_read_agf(pag, sc->tp, 0, &bp);
883 	if (error)
884 		return error;
885 
886 	if (bp != sc->sa.agf_bp) {
887 		ASSERT(bp == sc->sa.agf_bp);
888 		return -EFSCORRUPTED;
889 	}
890 
891 	return 0;
892 }
893 
894 /*
895  * Reinitialize the in-core AG state after a repair by rereading the AGI
896  * buffer.  We had better get the same AGI buffer as the one that's attached
897  * to the scrub context.
898  */
899 int
900 xrep_reinit_pagi(
901 	struct xfs_scrub	*sc)
902 {
903 	struct xfs_perag	*pag = sc->sa.pag;
904 	struct xfs_buf		*bp;
905 	int			error;
906 
907 	ASSERT(pag);
908 	ASSERT(xfs_perag_initialised_agi(pag));
909 
910 	clear_bit(XFS_AGSTATE_AGI_INIT, &pag->pag_opstate);
911 	error = xfs_ialloc_read_agi(pag, sc->tp, &bp);
912 	if (error)
913 		return error;
914 
915 	if (bp != sc->sa.agi_bp) {
916 		ASSERT(bp == sc->sa.agi_bp);
917 		return -EFSCORRUPTED;
918 	}
919 
920 	return 0;
921 }
922 
923 /*
924  * Given an active reference to a perag structure, load AG headers and cursors.
925  * This should only be called to scan an AG while repairing file-based metadata.
926  */
927 int
928 xrep_ag_init(
929 	struct xfs_scrub	*sc,
930 	struct xfs_perag	*pag,
931 	struct xchk_ag		*sa)
932 {
933 	int			error;
934 
935 	ASSERT(!sa->pag);
936 
937 	error = xfs_ialloc_read_agi(pag, sc->tp, &sa->agi_bp);
938 	if (error)
939 		return error;
940 
941 	error = xfs_alloc_read_agf(pag, sc->tp, 0, &sa->agf_bp);
942 	if (error)
943 		return error;
944 
945 	/* Grab our own passive reference from the caller's ref. */
946 	sa->pag = xfs_perag_hold(pag);
947 	xrep_ag_btcur_init(sc, sa);
948 	return 0;
949 }
950 
951 /* Reinitialize the per-AG block reservation for the AG we just fixed. */
952 int
953 xrep_reset_perag_resv(
954 	struct xfs_scrub	*sc)
955 {
956 	int			error;
957 
958 	if (!(sc->flags & XREP_RESET_PERAG_RESV))
959 		return 0;
960 
961 	ASSERT(sc->sa.pag != NULL);
962 	ASSERT(sc->ops->type == ST_PERAG);
963 	ASSERT(sc->tp);
964 
965 	sc->flags &= ~XREP_RESET_PERAG_RESV;
966 	error = xfs_ag_resv_free(sc->sa.pag);
967 	if (error)
968 		goto out;
969 	error = xfs_ag_resv_init(sc->sa.pag, sc->tp);
970 	if (error == -ENOSPC) {
971 		xfs_err(sc->mp,
972 "Insufficient free space to reset per-AG reservation for AG %u after repair.",
973 				sc->sa.pag->pag_agno);
974 		error = 0;
975 	}
976 
977 out:
978 	return error;
979 }
980 
981 /* Decide if we are going to call the repair function for a scrub type. */
982 bool
983 xrep_will_attempt(
984 	struct xfs_scrub	*sc)
985 {
986 	/* Userspace asked us to rebuild the structure regardless. */
987 	if (sc->sm->sm_flags & XFS_SCRUB_IFLAG_FORCE_REBUILD)
988 		return true;
989 
990 	/* Let debug users force us into the repair routines. */
991 	if (XFS_TEST_ERROR(false, sc->mp, XFS_ERRTAG_FORCE_SCRUB_REPAIR))
992 		return true;
993 
994 	/* Metadata is corrupt or failed cross-referencing. */
995 	if (xchk_needs_repair(sc->sm))
996 		return true;
997 
998 	return false;
999 }
1000 
1001 /* Try to fix some part of a metadata inode by calling another scrubber. */
1002 STATIC int
1003 xrep_metadata_inode_subtype(
1004 	struct xfs_scrub	*sc,
1005 	unsigned int		scrub_type)
1006 {
1007 	__u32			smtype = sc->sm->sm_type;
1008 	__u32			smflags = sc->sm->sm_flags;
1009 	unsigned int		sick_mask = sc->sick_mask;
1010 	int			error;
1011 
1012 	/*
1013 	 * Let's see if the inode needs repair.  We're going to open-code calls
1014 	 * to the scrub and repair functions so that we can hang on to the
1015 	 * resources that we already acquired instead of using the standard
1016 	 * setup/teardown routines.
1017 	 */
1018 	sc->sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
1019 	sc->sm->sm_type = scrub_type;
1020 
1021 	switch (scrub_type) {
1022 	case XFS_SCRUB_TYPE_INODE:
1023 		error = xchk_inode(sc);
1024 		break;
1025 	case XFS_SCRUB_TYPE_BMBTD:
1026 		error = xchk_bmap_data(sc);
1027 		break;
1028 	case XFS_SCRUB_TYPE_BMBTA:
1029 		error = xchk_bmap_attr(sc);
1030 		break;
1031 	default:
1032 		ASSERT(0);
1033 		error = -EFSCORRUPTED;
1034 	}
1035 	if (error)
1036 		goto out;
1037 
1038 	if (!xrep_will_attempt(sc))
1039 		goto out;
1040 
1041 	/*
1042 	 * Repair some part of the inode.  This will potentially join the inode
1043 	 * to the transaction.
1044 	 */
1045 	switch (scrub_type) {
1046 	case XFS_SCRUB_TYPE_INODE:
1047 		error = xrep_inode(sc);
1048 		break;
1049 	case XFS_SCRUB_TYPE_BMBTD:
1050 		error = xrep_bmap(sc, XFS_DATA_FORK, false);
1051 		break;
1052 	case XFS_SCRUB_TYPE_BMBTA:
1053 		error = xrep_bmap(sc, XFS_ATTR_FORK, false);
1054 		break;
1055 	}
1056 	if (error)
1057 		goto out;
1058 
1059 	/*
1060 	 * Finish all deferred intent items and then roll the transaction so
1061 	 * that the inode will not be joined to the transaction when we exit
1062 	 * the function.
1063 	 */
1064 	error = xfs_defer_finish(&sc->tp);
1065 	if (error)
1066 		goto out;
1067 	error = xfs_trans_roll(&sc->tp);
1068 	if (error)
1069 		goto out;
1070 
1071 	/*
1072 	 * Clear the corruption flags and re-check the metadata that we just
1073 	 * repaired.
1074 	 */
1075 	sc->sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
1076 
1077 	switch (scrub_type) {
1078 	case XFS_SCRUB_TYPE_INODE:
1079 		error = xchk_inode(sc);
1080 		break;
1081 	case XFS_SCRUB_TYPE_BMBTD:
1082 		error = xchk_bmap_data(sc);
1083 		break;
1084 	case XFS_SCRUB_TYPE_BMBTA:
1085 		error = xchk_bmap_attr(sc);
1086 		break;
1087 	}
1088 	if (error)
1089 		goto out;
1090 
1091 	/* If corruption persists, the repair has failed. */
1092 	if (xchk_needs_repair(sc->sm)) {
1093 		error = -EFSCORRUPTED;
1094 		goto out;
1095 	}
1096 out:
1097 	sc->sick_mask = sick_mask;
1098 	sc->sm->sm_type = smtype;
1099 	sc->sm->sm_flags = smflags;
1100 	return error;
1101 }
1102 
1103 /*
1104  * Repair the ondisk forks of a metadata inode.  The caller must ensure that
1105  * sc->ip points to the metadata inode and the ILOCK is held on that inode.
1106  * The inode must not be joined to the transaction before the call, and will
1107  * not be afterwards.
1108  */
1109 int
1110 xrep_metadata_inode_forks(
1111 	struct xfs_scrub	*sc)
1112 {
1113 	bool			dirty = false;
1114 	int			error;
1115 
1116 	/* Repair the inode record and the data fork. */
1117 	error = xrep_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_INODE);
1118 	if (error)
1119 		return error;
1120 
1121 	error = xrep_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_BMBTD);
1122 	if (error)
1123 		return error;
1124 
1125 	/* Make sure the attr fork looks ok before we delete it. */
1126 	error = xrep_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_BMBTA);
1127 	if (error)
1128 		return error;
1129 
1130 	/* Clear the reflink flag since metadata never shares. */
1131 	if (xfs_is_reflink_inode(sc->ip)) {
1132 		dirty = true;
1133 		xfs_trans_ijoin(sc->tp, sc->ip, 0);
1134 		error = xfs_reflink_clear_inode_flag(sc->ip, &sc->tp);
1135 		if (error)
1136 			return error;
1137 	}
1138 
1139 	/*
1140 	 * If we modified the inode, roll the transaction but don't rejoin the
1141 	 * inode to the new transaction because xrep_bmap_data can do that.
1142 	 */
1143 	if (dirty) {
1144 		error = xfs_trans_roll(&sc->tp);
1145 		if (error)
1146 			return error;
1147 		dirty = false;
1148 	}
1149 
1150 	return 0;
1151 }
1152 
1153 /*
1154  * Set up an in-memory buffer cache so that we can use the xfbtree.  Allocating
1155  * a shmem file might take loks, so we cannot be in transaction context.  Park
1156  * our resources in the scrub context and let the teardown function take care
1157  * of them at the right time.
1158  */
1159 int
1160 xrep_setup_xfbtree(
1161 	struct xfs_scrub	*sc,
1162 	const char		*descr)
1163 {
1164 	ASSERT(sc->tp == NULL);
1165 
1166 	return xmbuf_alloc(sc->mp, descr, &sc->xmbtp);
1167 }
1168 
1169 /*
1170  * Create a dummy transaction for use in a live update hook function.  This
1171  * function MUST NOT be called from regular repair code because the current
1172  * process' transaction is saved via the cookie.
1173  */
1174 int
1175 xrep_trans_alloc_hook_dummy(
1176 	struct xfs_mount	*mp,
1177 	void			**cookiep,
1178 	struct xfs_trans	**tpp)
1179 {
1180 	int			error;
1181 
1182 	*cookiep = current->journal_info;
1183 	current->journal_info = NULL;
1184 
1185 	error = xfs_trans_alloc_empty(mp, tpp);
1186 	if (!error)
1187 		return 0;
1188 
1189 	current->journal_info = *cookiep;
1190 	*cookiep = NULL;
1191 	return error;
1192 }
1193 
1194 /* Cancel a dummy transaction used by a live update hook function. */
1195 void
1196 xrep_trans_cancel_hook_dummy(
1197 	void			**cookiep,
1198 	struct xfs_trans	*tp)
1199 {
1200 	xfs_trans_cancel(tp);
1201 	current->journal_info = *cookiep;
1202 	*cookiep = NULL;
1203 }
1204