1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2018-2023 Oracle. All Rights Reserved. 4 * Author: Darrick J. Wong <djwong@kernel.org> 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_trans_resv.h" 11 #include "xfs_mount.h" 12 #include "xfs_btree.h" 13 #include "xfs_log_format.h" 14 #include "xfs_trans.h" 15 #include "xfs_sb.h" 16 #include "xfs_inode.h" 17 #include "xfs_alloc.h" 18 #include "xfs_alloc_btree.h" 19 #include "xfs_ialloc.h" 20 #include "xfs_ialloc_btree.h" 21 #include "xfs_rmap.h" 22 #include "xfs_rmap_btree.h" 23 #include "xfs_refcount_btree.h" 24 #include "xfs_extent_busy.h" 25 #include "xfs_ag.h" 26 #include "xfs_ag_resv.h" 27 #include "xfs_quota.h" 28 #include "xfs_qm.h" 29 #include "xfs_defer.h" 30 #include "scrub/scrub.h" 31 #include "scrub/common.h" 32 #include "scrub/trace.h" 33 #include "scrub/repair.h" 34 #include "scrub/bitmap.h" 35 #include "scrub/stats.h" 36 37 /* 38 * Attempt to repair some metadata, if the metadata is corrupt and userspace 39 * told us to fix it. This function returns -EAGAIN to mean "re-run scrub", 40 * and will set *fixed to true if it thinks it repaired anything. 41 */ 42 int 43 xrep_attempt( 44 struct xfs_scrub *sc, 45 struct xchk_stats_run *run) 46 { 47 u64 repair_start; 48 int error = 0; 49 50 trace_xrep_attempt(XFS_I(file_inode(sc->file)), sc->sm, error); 51 52 xchk_ag_btcur_free(&sc->sa); 53 54 /* Repair whatever's broken. */ 55 ASSERT(sc->ops->repair); 56 run->repair_attempted = true; 57 repair_start = xchk_stats_now(); 58 error = sc->ops->repair(sc); 59 trace_xrep_done(XFS_I(file_inode(sc->file)), sc->sm, error); 60 run->repair_ns += xchk_stats_elapsed_ns(repair_start); 61 switch (error) { 62 case 0: 63 /* 64 * Repair succeeded. Commit the fixes and perform a second 65 * scrub so that we can tell userspace if we fixed the problem. 66 */ 67 sc->sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT; 68 sc->flags |= XREP_ALREADY_FIXED; 69 run->repair_succeeded = true; 70 return -EAGAIN; 71 case -ECHRNG: 72 sc->flags |= XCHK_NEED_DRAIN; 73 run->retries++; 74 return -EAGAIN; 75 case -EDEADLOCK: 76 /* Tell the caller to try again having grabbed all the locks. */ 77 if (!(sc->flags & XCHK_TRY_HARDER)) { 78 sc->flags |= XCHK_TRY_HARDER; 79 run->retries++; 80 return -EAGAIN; 81 } 82 /* 83 * We tried harder but still couldn't grab all the resources 84 * we needed to fix it. The corruption has not been fixed, 85 * so exit to userspace with the scan's output flags unchanged. 86 */ 87 return 0; 88 default: 89 /* 90 * EAGAIN tells the caller to re-scrub, so we cannot return 91 * that here. 92 */ 93 ASSERT(error != -EAGAIN); 94 return error; 95 } 96 } 97 98 /* 99 * Complain about unfixable problems in the filesystem. We don't log 100 * corruptions when IFLAG_REPAIR wasn't set on the assumption that the driver 101 * program is xfs_scrub, which will call back with IFLAG_REPAIR set if the 102 * administrator isn't running xfs_scrub in no-repairs mode. 103 * 104 * Use this helper function because _ratelimited silently declares a static 105 * structure to track rate limiting information. 106 */ 107 void 108 xrep_failure( 109 struct xfs_mount *mp) 110 { 111 xfs_alert_ratelimited(mp, 112 "Corruption not fixed during online repair. Unmount and run xfs_repair."); 113 } 114 115 /* 116 * Repair probe -- userspace uses this to probe if we're willing to repair a 117 * given mountpoint. 118 */ 119 int 120 xrep_probe( 121 struct xfs_scrub *sc) 122 { 123 int error = 0; 124 125 if (xchk_should_terminate(sc, &error)) 126 return error; 127 128 return 0; 129 } 130 131 /* 132 * Roll a transaction, keeping the AG headers locked and reinitializing 133 * the btree cursors. 134 */ 135 int 136 xrep_roll_ag_trans( 137 struct xfs_scrub *sc) 138 { 139 int error; 140 141 /* 142 * Keep the AG header buffers locked while we roll the transaction. 143 * Ensure that both AG buffers are dirty and held when we roll the 144 * transaction so that they move forward in the log without losing the 145 * bli (and hence the bli type) when the transaction commits. 146 * 147 * Normal code would never hold clean buffers across a roll, but repair 148 * needs both buffers to maintain a total lock on the AG. 149 */ 150 if (sc->sa.agi_bp) { 151 xfs_ialloc_log_agi(sc->tp, sc->sa.agi_bp, XFS_AGI_MAGICNUM); 152 xfs_trans_bhold(sc->tp, sc->sa.agi_bp); 153 } 154 155 if (sc->sa.agf_bp) { 156 xfs_alloc_log_agf(sc->tp, sc->sa.agf_bp, XFS_AGF_MAGICNUM); 157 xfs_trans_bhold(sc->tp, sc->sa.agf_bp); 158 } 159 160 /* 161 * Roll the transaction. We still hold the AG header buffers locked 162 * regardless of whether or not that succeeds. On failure, the buffers 163 * will be released during teardown on our way out of the kernel. If 164 * successful, join the buffers to the new transaction and move on. 165 */ 166 error = xfs_trans_roll(&sc->tp); 167 if (error) 168 return error; 169 170 /* Join the AG headers to the new transaction. */ 171 if (sc->sa.agi_bp) 172 xfs_trans_bjoin(sc->tp, sc->sa.agi_bp); 173 if (sc->sa.agf_bp) 174 xfs_trans_bjoin(sc->tp, sc->sa.agf_bp); 175 176 return 0; 177 } 178 179 /* Finish all deferred work attached to the repair transaction. */ 180 int 181 xrep_defer_finish( 182 struct xfs_scrub *sc) 183 { 184 int error; 185 186 /* 187 * Keep the AG header buffers locked while we complete deferred work 188 * items. Ensure that both AG buffers are dirty and held when we roll 189 * the transaction so that they move forward in the log without losing 190 * the bli (and hence the bli type) when the transaction commits. 191 * 192 * Normal code would never hold clean buffers across a roll, but repair 193 * needs both buffers to maintain a total lock on the AG. 194 */ 195 if (sc->sa.agi_bp) { 196 xfs_ialloc_log_agi(sc->tp, sc->sa.agi_bp, XFS_AGI_MAGICNUM); 197 xfs_trans_bhold(sc->tp, sc->sa.agi_bp); 198 } 199 200 if (sc->sa.agf_bp) { 201 xfs_alloc_log_agf(sc->tp, sc->sa.agf_bp, XFS_AGF_MAGICNUM); 202 xfs_trans_bhold(sc->tp, sc->sa.agf_bp); 203 } 204 205 /* 206 * Finish all deferred work items. We still hold the AG header buffers 207 * locked regardless of whether or not that succeeds. On failure, the 208 * buffers will be released during teardown on our way out of the 209 * kernel. If successful, join the buffers to the new transaction 210 * and move on. 211 */ 212 error = xfs_defer_finish(&sc->tp); 213 if (error) 214 return error; 215 216 /* 217 * Release the hold that we set above because defer_finish won't do 218 * that for us. The defer roll code redirties held buffers after each 219 * roll, so the AG header buffers should be ready for logging. 220 */ 221 if (sc->sa.agi_bp) 222 xfs_trans_bhold_release(sc->tp, sc->sa.agi_bp); 223 if (sc->sa.agf_bp) 224 xfs_trans_bhold_release(sc->tp, sc->sa.agf_bp); 225 226 return 0; 227 } 228 229 /* 230 * Does the given AG have enough space to rebuild a btree? Neither AG 231 * reservation can be critical, and we must have enough space (factoring 232 * in AG reservations) to construct a whole btree. 233 */ 234 bool 235 xrep_ag_has_space( 236 struct xfs_perag *pag, 237 xfs_extlen_t nr_blocks, 238 enum xfs_ag_resv_type type) 239 { 240 return !xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) && 241 !xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA) && 242 pag->pagf_freeblks > xfs_ag_resv_needed(pag, type) + nr_blocks; 243 } 244 245 /* 246 * Figure out how many blocks to reserve for an AG repair. We calculate the 247 * worst case estimate for the number of blocks we'd need to rebuild one of 248 * any type of per-AG btree. 249 */ 250 xfs_extlen_t 251 xrep_calc_ag_resblks( 252 struct xfs_scrub *sc) 253 { 254 struct xfs_mount *mp = sc->mp; 255 struct xfs_scrub_metadata *sm = sc->sm; 256 struct xfs_perag *pag; 257 struct xfs_buf *bp; 258 xfs_agino_t icount = NULLAGINO; 259 xfs_extlen_t aglen = NULLAGBLOCK; 260 xfs_extlen_t usedlen; 261 xfs_extlen_t freelen; 262 xfs_extlen_t bnobt_sz; 263 xfs_extlen_t inobt_sz; 264 xfs_extlen_t rmapbt_sz; 265 xfs_extlen_t refcbt_sz; 266 int error; 267 268 if (!(sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR)) 269 return 0; 270 271 pag = xfs_perag_get(mp, sm->sm_agno); 272 if (xfs_perag_initialised_agi(pag)) { 273 /* Use in-core icount if possible. */ 274 icount = pag->pagi_count; 275 } else { 276 /* Try to get the actual counters from disk. */ 277 error = xfs_ialloc_read_agi(pag, NULL, &bp); 278 if (!error) { 279 icount = pag->pagi_count; 280 xfs_buf_relse(bp); 281 } 282 } 283 284 /* Now grab the block counters from the AGF. */ 285 error = xfs_alloc_read_agf(pag, NULL, 0, &bp); 286 if (error) { 287 aglen = pag->block_count; 288 freelen = aglen; 289 usedlen = aglen; 290 } else { 291 struct xfs_agf *agf = bp->b_addr; 292 293 aglen = be32_to_cpu(agf->agf_length); 294 freelen = be32_to_cpu(agf->agf_freeblks); 295 usedlen = aglen - freelen; 296 xfs_buf_relse(bp); 297 } 298 299 /* If the icount is impossible, make some worst-case assumptions. */ 300 if (icount == NULLAGINO || 301 !xfs_verify_agino(pag, icount)) { 302 icount = pag->agino_max - pag->agino_min + 1; 303 } 304 305 /* If the block counts are impossible, make worst-case assumptions. */ 306 if (aglen == NULLAGBLOCK || 307 aglen != pag->block_count || 308 freelen >= aglen) { 309 aglen = pag->block_count; 310 freelen = aglen; 311 usedlen = aglen; 312 } 313 xfs_perag_put(pag); 314 315 trace_xrep_calc_ag_resblks(mp, sm->sm_agno, icount, aglen, 316 freelen, usedlen); 317 318 /* 319 * Figure out how many blocks we'd need worst case to rebuild 320 * each type of btree. Note that we can only rebuild the 321 * bnobt/cntbt or inobt/finobt as pairs. 322 */ 323 bnobt_sz = 2 * xfs_allocbt_calc_size(mp, freelen); 324 if (xfs_has_sparseinodes(mp)) 325 inobt_sz = xfs_iallocbt_calc_size(mp, icount / 326 XFS_INODES_PER_HOLEMASK_BIT); 327 else 328 inobt_sz = xfs_iallocbt_calc_size(mp, icount / 329 XFS_INODES_PER_CHUNK); 330 if (xfs_has_finobt(mp)) 331 inobt_sz *= 2; 332 if (xfs_has_reflink(mp)) 333 refcbt_sz = xfs_refcountbt_calc_size(mp, usedlen); 334 else 335 refcbt_sz = 0; 336 if (xfs_has_rmapbt(mp)) { 337 /* 338 * Guess how many blocks we need to rebuild the rmapbt. 339 * For non-reflink filesystems we can't have more records than 340 * used blocks. However, with reflink it's possible to have 341 * more than one rmap record per AG block. We don't know how 342 * many rmaps there could be in the AG, so we start off with 343 * what we hope is an generous over-estimation. 344 */ 345 if (xfs_has_reflink(mp)) 346 rmapbt_sz = xfs_rmapbt_calc_size(mp, 347 (unsigned long long)aglen * 2); 348 else 349 rmapbt_sz = xfs_rmapbt_calc_size(mp, usedlen); 350 } else { 351 rmapbt_sz = 0; 352 } 353 354 trace_xrep_calc_ag_resblks_btsize(mp, sm->sm_agno, bnobt_sz, 355 inobt_sz, rmapbt_sz, refcbt_sz); 356 357 return max(max(bnobt_sz, inobt_sz), max(rmapbt_sz, refcbt_sz)); 358 } 359 360 /* 361 * Reconstructing per-AG Btrees 362 * 363 * When a space btree is corrupt, we don't bother trying to fix it. Instead, 364 * we scan secondary space metadata to derive the records that should be in 365 * the damaged btree, initialize a fresh btree root, and insert the records. 366 * Note that for rebuilding the rmapbt we scan all the primary data to 367 * generate the new records. 368 * 369 * However, that leaves the matter of removing all the metadata describing the 370 * old broken structure. For primary metadata we use the rmap data to collect 371 * every extent with a matching rmap owner (bitmap); we then iterate all other 372 * metadata structures with the same rmap owner to collect the extents that 373 * cannot be removed (sublist). We then subtract sublist from bitmap to 374 * derive the blocks that were used by the old btree. These blocks can be 375 * reaped. 376 * 377 * For rmapbt reconstructions we must use different tactics for extent 378 * collection. First we iterate all primary metadata (this excludes the old 379 * rmapbt, obviously) to generate new rmap records. The gaps in the rmap 380 * records are collected as bitmap. The bnobt records are collected as 381 * sublist. As with the other btrees we subtract sublist from bitmap, and the 382 * result (since the rmapbt lives in the free space) are the blocks from the 383 * old rmapbt. 384 */ 385 386 /* Ensure the freelist is the correct size. */ 387 int 388 xrep_fix_freelist( 389 struct xfs_scrub *sc, 390 bool can_shrink) 391 { 392 struct xfs_alloc_arg args = {0}; 393 394 args.mp = sc->mp; 395 args.tp = sc->tp; 396 args.agno = sc->sa.pag->pag_agno; 397 args.alignment = 1; 398 args.pag = sc->sa.pag; 399 400 return xfs_alloc_fix_freelist(&args, 401 can_shrink ? 0 : XFS_ALLOC_FLAG_NOSHRINK); 402 } 403 404 /* 405 * Finding per-AG Btree Roots for AGF/AGI Reconstruction 406 * 407 * If the AGF or AGI become slightly corrupted, it may be necessary to rebuild 408 * the AG headers by using the rmap data to rummage through the AG looking for 409 * btree roots. This is not guaranteed to work if the AG is heavily damaged 410 * or the rmap data are corrupt. 411 * 412 * Callers of xrep_find_ag_btree_roots must lock the AGF and AGFL 413 * buffers if the AGF is being rebuilt; or the AGF and AGI buffers if the 414 * AGI is being rebuilt. It must maintain these locks until it's safe for 415 * other threads to change the btrees' shapes. The caller provides 416 * information about the btrees to look for by passing in an array of 417 * xrep_find_ag_btree with the (rmap owner, buf_ops, magic) fields set. 418 * The (root, height) fields will be set on return if anything is found. The 419 * last element of the array should have a NULL buf_ops to mark the end of the 420 * array. 421 * 422 * For every rmapbt record matching any of the rmap owners in btree_info, 423 * read each block referenced by the rmap record. If the block is a btree 424 * block from this filesystem matching any of the magic numbers and has a 425 * level higher than what we've already seen, remember the block and the 426 * height of the tree required to have such a block. When the call completes, 427 * we return the highest block we've found for each btree description; those 428 * should be the roots. 429 */ 430 431 struct xrep_findroot { 432 struct xfs_scrub *sc; 433 struct xfs_buf *agfl_bp; 434 struct xfs_agf *agf; 435 struct xrep_find_ag_btree *btree_info; 436 }; 437 438 /* See if our block is in the AGFL. */ 439 STATIC int 440 xrep_findroot_agfl_walk( 441 struct xfs_mount *mp, 442 xfs_agblock_t bno, 443 void *priv) 444 { 445 xfs_agblock_t *agbno = priv; 446 447 return (*agbno == bno) ? -ECANCELED : 0; 448 } 449 450 /* Does this block match the btree information passed in? */ 451 STATIC int 452 xrep_findroot_block( 453 struct xrep_findroot *ri, 454 struct xrep_find_ag_btree *fab, 455 uint64_t owner, 456 xfs_agblock_t agbno, 457 bool *done_with_block) 458 { 459 struct xfs_mount *mp = ri->sc->mp; 460 struct xfs_buf *bp; 461 struct xfs_btree_block *btblock; 462 xfs_daddr_t daddr; 463 int block_level; 464 int error = 0; 465 466 daddr = XFS_AGB_TO_DADDR(mp, ri->sc->sa.pag->pag_agno, agbno); 467 468 /* 469 * Blocks in the AGFL have stale contents that might just happen to 470 * have a matching magic and uuid. We don't want to pull these blocks 471 * in as part of a tree root, so we have to filter out the AGFL stuff 472 * here. If the AGFL looks insane we'll just refuse to repair. 473 */ 474 if (owner == XFS_RMAP_OWN_AG) { 475 error = xfs_agfl_walk(mp, ri->agf, ri->agfl_bp, 476 xrep_findroot_agfl_walk, &agbno); 477 if (error == -ECANCELED) 478 return 0; 479 if (error) 480 return error; 481 } 482 483 /* 484 * Read the buffer into memory so that we can see if it's a match for 485 * our btree type. We have no clue if it is beforehand, and we want to 486 * avoid xfs_trans_read_buf's behavior of dumping the DONE state (which 487 * will cause needless disk reads in subsequent calls to this function) 488 * and logging metadata verifier failures. 489 * 490 * Therefore, pass in NULL buffer ops. If the buffer was already in 491 * memory from some other caller it will already have b_ops assigned. 492 * If it was in memory from a previous unsuccessful findroot_block 493 * call, the buffer won't have b_ops but it should be clean and ready 494 * for us to try to verify if the read call succeeds. The same applies 495 * if the buffer wasn't in memory at all. 496 * 497 * Note: If we never match a btree type with this buffer, it will be 498 * left in memory with NULL b_ops. This shouldn't be a problem unless 499 * the buffer gets written. 500 */ 501 error = xfs_trans_read_buf(mp, ri->sc->tp, mp->m_ddev_targp, daddr, 502 mp->m_bsize, 0, &bp, NULL); 503 if (error) 504 return error; 505 506 /* Ensure the block magic matches the btree type we're looking for. */ 507 btblock = XFS_BUF_TO_BLOCK(bp); 508 ASSERT(fab->buf_ops->magic[1] != 0); 509 if (btblock->bb_magic != fab->buf_ops->magic[1]) 510 goto out; 511 512 /* 513 * If the buffer already has ops applied and they're not the ones for 514 * this btree type, we know this block doesn't match the btree and we 515 * can bail out. 516 * 517 * If the buffer ops match ours, someone else has already validated 518 * the block for us, so we can move on to checking if this is a root 519 * block candidate. 520 * 521 * If the buffer does not have ops, nobody has successfully validated 522 * the contents and the buffer cannot be dirty. If the magic, uuid, 523 * and structure match this btree type then we'll move on to checking 524 * if it's a root block candidate. If there is no match, bail out. 525 */ 526 if (bp->b_ops) { 527 if (bp->b_ops != fab->buf_ops) 528 goto out; 529 } else { 530 ASSERT(!xfs_trans_buf_is_dirty(bp)); 531 if (!uuid_equal(&btblock->bb_u.s.bb_uuid, 532 &mp->m_sb.sb_meta_uuid)) 533 goto out; 534 /* 535 * Read verifiers can reference b_ops, so we set the pointer 536 * here. If the verifier fails we'll reset the buffer state 537 * to what it was before we touched the buffer. 538 */ 539 bp->b_ops = fab->buf_ops; 540 fab->buf_ops->verify_read(bp); 541 if (bp->b_error) { 542 bp->b_ops = NULL; 543 bp->b_error = 0; 544 goto out; 545 } 546 547 /* 548 * Some read verifiers will (re)set b_ops, so we must be 549 * careful not to change b_ops after running the verifier. 550 */ 551 } 552 553 /* 554 * This block passes the magic/uuid and verifier tests for this btree 555 * type. We don't need the caller to try the other tree types. 556 */ 557 *done_with_block = true; 558 559 /* 560 * Compare this btree block's level to the height of the current 561 * candidate root block. 562 * 563 * If the level matches the root we found previously, throw away both 564 * blocks because there can't be two candidate roots. 565 * 566 * If level is lower in the tree than the root we found previously, 567 * ignore this block. 568 */ 569 block_level = xfs_btree_get_level(btblock); 570 if (block_level + 1 == fab->height) { 571 fab->root = NULLAGBLOCK; 572 goto out; 573 } else if (block_level < fab->height) { 574 goto out; 575 } 576 577 /* 578 * This is the highest block in the tree that we've found so far. 579 * Update the btree height to reflect what we've learned from this 580 * block. 581 */ 582 fab->height = block_level + 1; 583 584 /* 585 * If this block doesn't have sibling pointers, then it's the new root 586 * block candidate. Otherwise, the root will be found farther up the 587 * tree. 588 */ 589 if (btblock->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK) && 590 btblock->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK)) 591 fab->root = agbno; 592 else 593 fab->root = NULLAGBLOCK; 594 595 trace_xrep_findroot_block(mp, ri->sc->sa.pag->pag_agno, agbno, 596 be32_to_cpu(btblock->bb_magic), fab->height - 1); 597 out: 598 xfs_trans_brelse(ri->sc->tp, bp); 599 return error; 600 } 601 602 /* 603 * Do any of the blocks in this rmap record match one of the btrees we're 604 * looking for? 605 */ 606 STATIC int 607 xrep_findroot_rmap( 608 struct xfs_btree_cur *cur, 609 const struct xfs_rmap_irec *rec, 610 void *priv) 611 { 612 struct xrep_findroot *ri = priv; 613 struct xrep_find_ag_btree *fab; 614 xfs_agblock_t b; 615 bool done; 616 int error = 0; 617 618 /* Ignore anything that isn't AG metadata. */ 619 if (!XFS_RMAP_NON_INODE_OWNER(rec->rm_owner)) 620 return 0; 621 622 /* Otherwise scan each block + btree type. */ 623 for (b = 0; b < rec->rm_blockcount; b++) { 624 done = false; 625 for (fab = ri->btree_info; fab->buf_ops; fab++) { 626 if (rec->rm_owner != fab->rmap_owner) 627 continue; 628 error = xrep_findroot_block(ri, fab, 629 rec->rm_owner, rec->rm_startblock + b, 630 &done); 631 if (error) 632 return error; 633 if (done) 634 break; 635 } 636 } 637 638 return 0; 639 } 640 641 /* Find the roots of the per-AG btrees described in btree_info. */ 642 int 643 xrep_find_ag_btree_roots( 644 struct xfs_scrub *sc, 645 struct xfs_buf *agf_bp, 646 struct xrep_find_ag_btree *btree_info, 647 struct xfs_buf *agfl_bp) 648 { 649 struct xfs_mount *mp = sc->mp; 650 struct xrep_findroot ri; 651 struct xrep_find_ag_btree *fab; 652 struct xfs_btree_cur *cur; 653 int error; 654 655 ASSERT(xfs_buf_islocked(agf_bp)); 656 ASSERT(agfl_bp == NULL || xfs_buf_islocked(agfl_bp)); 657 658 ri.sc = sc; 659 ri.btree_info = btree_info; 660 ri.agf = agf_bp->b_addr; 661 ri.agfl_bp = agfl_bp; 662 for (fab = btree_info; fab->buf_ops; fab++) { 663 ASSERT(agfl_bp || fab->rmap_owner != XFS_RMAP_OWN_AG); 664 ASSERT(XFS_RMAP_NON_INODE_OWNER(fab->rmap_owner)); 665 fab->root = NULLAGBLOCK; 666 fab->height = 0; 667 } 668 669 cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.pag); 670 error = xfs_rmap_query_all(cur, xrep_findroot_rmap, &ri); 671 xfs_btree_del_cursor(cur, error); 672 673 return error; 674 } 675 676 /* Force a quotacheck the next time we mount. */ 677 void 678 xrep_force_quotacheck( 679 struct xfs_scrub *sc, 680 xfs_dqtype_t type) 681 { 682 uint flag; 683 684 flag = xfs_quota_chkd_flag(type); 685 if (!(flag & sc->mp->m_qflags)) 686 return; 687 688 mutex_lock(&sc->mp->m_quotainfo->qi_quotaofflock); 689 sc->mp->m_qflags &= ~flag; 690 spin_lock(&sc->mp->m_sb_lock); 691 sc->mp->m_sb.sb_qflags &= ~flag; 692 spin_unlock(&sc->mp->m_sb_lock); 693 xfs_log_sb(sc->tp); 694 mutex_unlock(&sc->mp->m_quotainfo->qi_quotaofflock); 695 } 696 697 /* 698 * Attach dquots to this inode, or schedule quotacheck to fix them. 699 * 700 * This function ensures that the appropriate dquots are attached to an inode. 701 * We cannot allow the dquot code to allocate an on-disk dquot block here 702 * because we're already in transaction context with the inode locked. The 703 * on-disk dquot should already exist anyway. If the quota code signals 704 * corruption or missing quota information, schedule quotacheck, which will 705 * repair corruptions in the quota metadata. 706 */ 707 int 708 xrep_ino_dqattach( 709 struct xfs_scrub *sc) 710 { 711 int error; 712 713 error = xfs_qm_dqattach_locked(sc->ip, false); 714 switch (error) { 715 case -EFSBADCRC: 716 case -EFSCORRUPTED: 717 case -ENOENT: 718 xfs_err_ratelimited(sc->mp, 719 "inode %llu repair encountered quota error %d, quotacheck forced.", 720 (unsigned long long)sc->ip->i_ino, error); 721 if (XFS_IS_UQUOTA_ON(sc->mp) && !sc->ip->i_udquot) 722 xrep_force_quotacheck(sc, XFS_DQTYPE_USER); 723 if (XFS_IS_GQUOTA_ON(sc->mp) && !sc->ip->i_gdquot) 724 xrep_force_quotacheck(sc, XFS_DQTYPE_GROUP); 725 if (XFS_IS_PQUOTA_ON(sc->mp) && !sc->ip->i_pdquot) 726 xrep_force_quotacheck(sc, XFS_DQTYPE_PROJ); 727 fallthrough; 728 case -ESRCH: 729 error = 0; 730 break; 731 default: 732 break; 733 } 734 735 return error; 736 } 737