1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2018-2023 Oracle. All Rights Reserved. 4 * Author: Darrick J. Wong <djwong@kernel.org> 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_trans_resv.h" 11 #include "xfs_mount.h" 12 #include "xfs_btree.h" 13 #include "xfs_log_format.h" 14 #include "xfs_trans.h" 15 #include "xfs_sb.h" 16 #include "xfs_inode.h" 17 #include "xfs_alloc.h" 18 #include "xfs_alloc_btree.h" 19 #include "xfs_ialloc.h" 20 #include "xfs_ialloc_btree.h" 21 #include "xfs_rmap.h" 22 #include "xfs_rmap_btree.h" 23 #include "xfs_refcount_btree.h" 24 #include "xfs_rtbitmap.h" 25 #include "xfs_extent_busy.h" 26 #include "xfs_ag.h" 27 #include "xfs_ag_resv.h" 28 #include "xfs_quota.h" 29 #include "xfs_qm.h" 30 #include "xfs_defer.h" 31 #include "xfs_errortag.h" 32 #include "xfs_error.h" 33 #include "xfs_reflink.h" 34 #include "xfs_health.h" 35 #include "xfs_buf_mem.h" 36 #include "xfs_da_format.h" 37 #include "xfs_da_btree.h" 38 #include "xfs_attr.h" 39 #include "xfs_dir2.h" 40 #include "xfs_rtrmap_btree.h" 41 #include "xfs_rtbitmap.h" 42 #include "xfs_rtgroup.h" 43 #include "xfs_rtalloc.h" 44 #include "xfs_metafile.h" 45 #include "xfs_rtrefcount_btree.h" 46 #include "scrub/scrub.h" 47 #include "scrub/common.h" 48 #include "scrub/trace.h" 49 #include "scrub/repair.h" 50 #include "scrub/bitmap.h" 51 #include "scrub/stats.h" 52 #include "scrub/xfile.h" 53 #include "scrub/attr_repair.h" 54 55 /* 56 * Attempt to repair some metadata, if the metadata is corrupt and userspace 57 * told us to fix it. This function returns -EAGAIN to mean "re-run scrub", 58 * and will set *fixed to true if it thinks it repaired anything. 59 */ 60 int 61 xrep_attempt( 62 struct xfs_scrub *sc, 63 struct xchk_stats_run *run) 64 { 65 u64 repair_start; 66 int error = 0; 67 68 trace_xrep_attempt(XFS_I(file_inode(sc->file)), sc->sm, error); 69 70 xchk_ag_btcur_free(&sc->sa); 71 xchk_rtgroup_btcur_free(&sc->sr); 72 73 /* Repair whatever's broken. */ 74 ASSERT(sc->ops->repair); 75 run->repair_attempted = true; 76 repair_start = xchk_stats_now(); 77 error = sc->ops->repair(sc); 78 trace_xrep_done(XFS_I(file_inode(sc->file)), sc->sm, error); 79 run->repair_ns += xchk_stats_elapsed_ns(repair_start); 80 switch (error) { 81 case 0: 82 /* 83 * Repair succeeded. Commit the fixes and perform a second 84 * scrub so that we can tell userspace if we fixed the problem. 85 */ 86 sc->sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT; 87 sc->flags |= XREP_ALREADY_FIXED; 88 run->repair_succeeded = true; 89 return -EAGAIN; 90 case -ECHRNG: 91 sc->flags |= XCHK_NEED_DRAIN; 92 run->retries++; 93 return -EAGAIN; 94 case -EDEADLOCK: 95 /* Tell the caller to try again having grabbed all the locks. */ 96 if (!(sc->flags & XCHK_TRY_HARDER)) { 97 sc->flags |= XCHK_TRY_HARDER; 98 run->retries++; 99 return -EAGAIN; 100 } 101 /* 102 * We tried harder but still couldn't grab all the resources 103 * we needed to fix it. The corruption has not been fixed, 104 * so exit to userspace with the scan's output flags unchanged. 105 */ 106 return 0; 107 default: 108 /* 109 * EAGAIN tells the caller to re-scrub, so we cannot return 110 * that here. 111 */ 112 ASSERT(error != -EAGAIN); 113 return error; 114 } 115 } 116 117 /* 118 * Complain about unfixable problems in the filesystem. We don't log 119 * corruptions when IFLAG_REPAIR wasn't set on the assumption that the driver 120 * program is xfs_scrub, which will call back with IFLAG_REPAIR set if the 121 * administrator isn't running xfs_scrub in no-repairs mode. 122 * 123 * Use this helper function because _ratelimited silently declares a static 124 * structure to track rate limiting information. 125 */ 126 void 127 xrep_failure( 128 struct xfs_mount *mp) 129 { 130 xfs_alert_ratelimited(mp, 131 "Corruption not fixed during online repair. Unmount and run xfs_repair."); 132 } 133 134 /* 135 * Repair probe -- userspace uses this to probe if we're willing to repair a 136 * given mountpoint. 137 */ 138 int 139 xrep_probe( 140 struct xfs_scrub *sc) 141 { 142 int error = 0; 143 144 if (xchk_should_terminate(sc, &error)) 145 return error; 146 147 return 0; 148 } 149 150 /* 151 * Roll a transaction, keeping the AG headers locked and reinitializing 152 * the btree cursors. 153 */ 154 int 155 xrep_roll_ag_trans( 156 struct xfs_scrub *sc) 157 { 158 int error; 159 160 /* 161 * Keep the AG header buffers locked while we roll the transaction. 162 * Ensure that both AG buffers are dirty and held when we roll the 163 * transaction so that they move forward in the log without losing the 164 * bli (and hence the bli type) when the transaction commits. 165 * 166 * Normal code would never hold clean buffers across a roll, but repair 167 * needs both buffers to maintain a total lock on the AG. 168 */ 169 if (sc->sa.agi_bp) { 170 xfs_ialloc_log_agi(sc->tp, sc->sa.agi_bp, XFS_AGI_MAGICNUM); 171 xfs_trans_bhold(sc->tp, sc->sa.agi_bp); 172 } 173 174 if (sc->sa.agf_bp) { 175 xfs_alloc_log_agf(sc->tp, sc->sa.agf_bp, XFS_AGF_MAGICNUM); 176 xfs_trans_bhold(sc->tp, sc->sa.agf_bp); 177 } 178 179 /* 180 * Roll the transaction. We still hold the AG header buffers locked 181 * regardless of whether or not that succeeds. On failure, the buffers 182 * will be released during teardown on our way out of the kernel. If 183 * successful, join the buffers to the new transaction and move on. 184 */ 185 error = xfs_trans_roll(&sc->tp); 186 if (error) 187 return error; 188 189 /* Join the AG headers to the new transaction. */ 190 if (sc->sa.agi_bp) 191 xfs_trans_bjoin(sc->tp, sc->sa.agi_bp); 192 if (sc->sa.agf_bp) 193 xfs_trans_bjoin(sc->tp, sc->sa.agf_bp); 194 195 return 0; 196 } 197 198 /* Roll the scrub transaction, holding the primary metadata locked. */ 199 int 200 xrep_roll_trans( 201 struct xfs_scrub *sc) 202 { 203 if (!sc->ip) 204 return xrep_roll_ag_trans(sc); 205 return xfs_trans_roll_inode(&sc->tp, sc->ip); 206 } 207 208 /* Finish all deferred work attached to the repair transaction. */ 209 int 210 xrep_defer_finish( 211 struct xfs_scrub *sc) 212 { 213 int error; 214 215 /* 216 * Keep the AG header buffers locked while we complete deferred work 217 * items. Ensure that both AG buffers are dirty and held when we roll 218 * the transaction so that they move forward in the log without losing 219 * the bli (and hence the bli type) when the transaction commits. 220 * 221 * Normal code would never hold clean buffers across a roll, but repair 222 * needs both buffers to maintain a total lock on the AG. 223 */ 224 if (sc->sa.agi_bp) { 225 xfs_ialloc_log_agi(sc->tp, sc->sa.agi_bp, XFS_AGI_MAGICNUM); 226 xfs_trans_bhold(sc->tp, sc->sa.agi_bp); 227 } 228 229 if (sc->sa.agf_bp) { 230 xfs_alloc_log_agf(sc->tp, sc->sa.agf_bp, XFS_AGF_MAGICNUM); 231 xfs_trans_bhold(sc->tp, sc->sa.agf_bp); 232 } 233 234 /* 235 * Finish all deferred work items. We still hold the AG header buffers 236 * locked regardless of whether or not that succeeds. On failure, the 237 * buffers will be released during teardown on our way out of the 238 * kernel. If successful, join the buffers to the new transaction 239 * and move on. 240 */ 241 error = xfs_defer_finish(&sc->tp); 242 if (error) 243 return error; 244 245 /* 246 * Release the hold that we set above because defer_finish won't do 247 * that for us. The defer roll code redirties held buffers after each 248 * roll, so the AG header buffers should be ready for logging. 249 */ 250 if (sc->sa.agi_bp) 251 xfs_trans_bhold_release(sc->tp, sc->sa.agi_bp); 252 if (sc->sa.agf_bp) 253 xfs_trans_bhold_release(sc->tp, sc->sa.agf_bp); 254 255 return 0; 256 } 257 258 /* 259 * Does the given AG have enough space to rebuild a btree? Neither AG 260 * reservation can be critical, and we must have enough space (factoring 261 * in AG reservations) to construct a whole btree. 262 */ 263 bool 264 xrep_ag_has_space( 265 struct xfs_perag *pag, 266 xfs_extlen_t nr_blocks, 267 enum xfs_ag_resv_type type) 268 { 269 return !xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) && 270 !xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA) && 271 pag->pagf_freeblks > xfs_ag_resv_needed(pag, type) + nr_blocks; 272 } 273 274 /* 275 * Figure out how many blocks to reserve for an AG repair. We calculate the 276 * worst case estimate for the number of blocks we'd need to rebuild one of 277 * any type of per-AG btree. 278 */ 279 xfs_extlen_t 280 xrep_calc_ag_resblks( 281 struct xfs_scrub *sc) 282 { 283 struct xfs_mount *mp = sc->mp; 284 struct xfs_scrub_metadata *sm = sc->sm; 285 struct xfs_perag *pag; 286 struct xfs_buf *bp; 287 xfs_agino_t icount = NULLAGINO; 288 xfs_extlen_t aglen = NULLAGBLOCK; 289 xfs_extlen_t usedlen; 290 xfs_extlen_t freelen; 291 xfs_extlen_t bnobt_sz; 292 xfs_extlen_t inobt_sz; 293 xfs_extlen_t rmapbt_sz; 294 xfs_extlen_t refcbt_sz; 295 int error; 296 297 if (!(sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR)) 298 return 0; 299 300 pag = xfs_perag_get(mp, sm->sm_agno); 301 if (xfs_perag_initialised_agi(pag)) { 302 /* Use in-core icount if possible. */ 303 icount = pag->pagi_count; 304 } else { 305 /* Try to get the actual counters from disk. */ 306 error = xfs_ialloc_read_agi(pag, NULL, 0, &bp); 307 if (!error) { 308 icount = pag->pagi_count; 309 xfs_buf_relse(bp); 310 } 311 } 312 313 /* Now grab the block counters from the AGF. */ 314 error = xfs_alloc_read_agf(pag, NULL, 0, &bp); 315 if (error) { 316 aglen = pag_group(pag)->xg_block_count; 317 freelen = aglen; 318 usedlen = aglen; 319 } else { 320 struct xfs_agf *agf = bp->b_addr; 321 322 aglen = be32_to_cpu(agf->agf_length); 323 freelen = be32_to_cpu(agf->agf_freeblks); 324 usedlen = aglen - freelen; 325 xfs_buf_relse(bp); 326 } 327 328 /* If the icount is impossible, make some worst-case assumptions. */ 329 if (icount == NULLAGINO || 330 !xfs_verify_agino(pag, icount)) { 331 icount = pag->agino_max - pag->agino_min + 1; 332 } 333 334 /* If the block counts are impossible, make worst-case assumptions. */ 335 if (aglen == NULLAGBLOCK || 336 aglen != pag_group(pag)->xg_block_count || 337 freelen >= aglen) { 338 aglen = pag_group(pag)->xg_block_count; 339 freelen = aglen; 340 usedlen = aglen; 341 } 342 343 trace_xrep_calc_ag_resblks(pag, icount, aglen, freelen, usedlen); 344 345 /* 346 * Figure out how many blocks we'd need worst case to rebuild 347 * each type of btree. Note that we can only rebuild the 348 * bnobt/cntbt or inobt/finobt as pairs. 349 */ 350 bnobt_sz = 2 * xfs_allocbt_calc_size(mp, freelen); 351 if (xfs_has_sparseinodes(mp)) 352 inobt_sz = xfs_iallocbt_calc_size(mp, icount / 353 XFS_INODES_PER_HOLEMASK_BIT); 354 else 355 inobt_sz = xfs_iallocbt_calc_size(mp, icount / 356 XFS_INODES_PER_CHUNK); 357 if (xfs_has_finobt(mp)) 358 inobt_sz *= 2; 359 if (xfs_has_reflink(mp)) 360 refcbt_sz = xfs_refcountbt_calc_size(mp, usedlen); 361 else 362 refcbt_sz = 0; 363 if (xfs_has_rmapbt(mp)) { 364 /* 365 * Guess how many blocks we need to rebuild the rmapbt. 366 * For non-reflink filesystems we can't have more records than 367 * used blocks. However, with reflink it's possible to have 368 * more than one rmap record per AG block. We don't know how 369 * many rmaps there could be in the AG, so we start off with 370 * what we hope is an generous over-estimation. 371 */ 372 if (xfs_has_reflink(mp)) 373 rmapbt_sz = xfs_rmapbt_calc_size(mp, 374 (unsigned long long)aglen * 2); 375 else 376 rmapbt_sz = xfs_rmapbt_calc_size(mp, usedlen); 377 } else { 378 rmapbt_sz = 0; 379 } 380 381 trace_xrep_calc_ag_resblks_btsize(pag, bnobt_sz, inobt_sz, rmapbt_sz, 382 refcbt_sz); 383 xfs_perag_put(pag); 384 385 return max(max(bnobt_sz, inobt_sz), max(rmapbt_sz, refcbt_sz)); 386 } 387 388 #ifdef CONFIG_XFS_RT 389 /* 390 * Figure out how many blocks to reserve for a rtgroup repair. We calculate 391 * the worst case estimate for the number of blocks we'd need to rebuild one of 392 * any type of per-rtgroup btree. 393 */ 394 xfs_extlen_t 395 xrep_calc_rtgroup_resblks( 396 struct xfs_scrub *sc) 397 { 398 struct xfs_mount *mp = sc->mp; 399 struct xfs_scrub_metadata *sm = sc->sm; 400 uint64_t usedlen; 401 xfs_extlen_t rmapbt_sz = 0; 402 403 if (!(sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR)) 404 return 0; 405 if (!xfs_has_rtgroups(mp)) { 406 ASSERT(0); 407 return -EFSCORRUPTED; 408 } 409 410 usedlen = xfs_rtbxlen_to_blen(mp, xfs_rtgroup_extents(mp, sm->sm_agno)); 411 ASSERT(usedlen <= XFS_MAX_RGBLOCKS); 412 413 if (xfs_has_rmapbt(mp)) 414 rmapbt_sz = xfs_rtrmapbt_calc_size(mp, usedlen); 415 416 trace_xrep_calc_rtgroup_resblks_btsize(mp, sm->sm_agno, usedlen, 417 rmapbt_sz); 418 419 return rmapbt_sz; 420 } 421 #endif /* CONFIG_XFS_RT */ 422 423 /* 424 * Reconstructing per-AG Btrees 425 * 426 * When a space btree is corrupt, we don't bother trying to fix it. Instead, 427 * we scan secondary space metadata to derive the records that should be in 428 * the damaged btree, initialize a fresh btree root, and insert the records. 429 * Note that for rebuilding the rmapbt we scan all the primary data to 430 * generate the new records. 431 * 432 * However, that leaves the matter of removing all the metadata describing the 433 * old broken structure. For primary metadata we use the rmap data to collect 434 * every extent with a matching rmap owner (bitmap); we then iterate all other 435 * metadata structures with the same rmap owner to collect the extents that 436 * cannot be removed (sublist). We then subtract sublist from bitmap to 437 * derive the blocks that were used by the old btree. These blocks can be 438 * reaped. 439 * 440 * For rmapbt reconstructions we must use different tactics for extent 441 * collection. First we iterate all primary metadata (this excludes the old 442 * rmapbt, obviously) to generate new rmap records. The gaps in the rmap 443 * records are collected as bitmap. The bnobt records are collected as 444 * sublist. As with the other btrees we subtract sublist from bitmap, and the 445 * result (since the rmapbt lives in the free space) are the blocks from the 446 * old rmapbt. 447 */ 448 449 /* Ensure the freelist is the correct size. */ 450 int 451 xrep_fix_freelist( 452 struct xfs_scrub *sc, 453 int alloc_flags) 454 { 455 struct xfs_alloc_arg args = {0}; 456 457 args.mp = sc->mp; 458 args.tp = sc->tp; 459 args.agno = pag_agno(sc->sa.pag); 460 args.alignment = 1; 461 args.pag = sc->sa.pag; 462 463 return xfs_alloc_fix_freelist(&args, alloc_flags); 464 } 465 466 /* 467 * Finding per-AG Btree Roots for AGF/AGI Reconstruction 468 * 469 * If the AGF or AGI become slightly corrupted, it may be necessary to rebuild 470 * the AG headers by using the rmap data to rummage through the AG looking for 471 * btree roots. This is not guaranteed to work if the AG is heavily damaged 472 * or the rmap data are corrupt. 473 * 474 * Callers of xrep_find_ag_btree_roots must lock the AGF and AGFL 475 * buffers if the AGF is being rebuilt; or the AGF and AGI buffers if the 476 * AGI is being rebuilt. It must maintain these locks until it's safe for 477 * other threads to change the btrees' shapes. The caller provides 478 * information about the btrees to look for by passing in an array of 479 * xrep_find_ag_btree with the (rmap owner, buf_ops, magic) fields set. 480 * The (root, height) fields will be set on return if anything is found. The 481 * last element of the array should have a NULL buf_ops to mark the end of the 482 * array. 483 * 484 * For every rmapbt record matching any of the rmap owners in btree_info, 485 * read each block referenced by the rmap record. If the block is a btree 486 * block from this filesystem matching any of the magic numbers and has a 487 * level higher than what we've already seen, remember the block and the 488 * height of the tree required to have such a block. When the call completes, 489 * we return the highest block we've found for each btree description; those 490 * should be the roots. 491 */ 492 493 struct xrep_findroot { 494 struct xfs_scrub *sc; 495 struct xfs_buf *agfl_bp; 496 struct xfs_agf *agf; 497 struct xrep_find_ag_btree *btree_info; 498 }; 499 500 /* See if our block is in the AGFL. */ 501 STATIC int 502 xrep_findroot_agfl_walk( 503 struct xfs_mount *mp, 504 xfs_agblock_t bno, 505 void *priv) 506 { 507 xfs_agblock_t *agbno = priv; 508 509 return (*agbno == bno) ? -ECANCELED : 0; 510 } 511 512 /* Does this block match the btree information passed in? */ 513 STATIC int 514 xrep_findroot_block( 515 struct xrep_findroot *ri, 516 struct xrep_find_ag_btree *fab, 517 uint64_t owner, 518 xfs_agblock_t agbno, 519 bool *done_with_block) 520 { 521 struct xfs_mount *mp = ri->sc->mp; 522 struct xfs_buf *bp; 523 struct xfs_btree_block *btblock; 524 xfs_daddr_t daddr; 525 int block_level; 526 int error = 0; 527 528 daddr = xfs_agbno_to_daddr(ri->sc->sa.pag, agbno); 529 530 /* 531 * Blocks in the AGFL have stale contents that might just happen to 532 * have a matching magic and uuid. We don't want to pull these blocks 533 * in as part of a tree root, so we have to filter out the AGFL stuff 534 * here. If the AGFL looks insane we'll just refuse to repair. 535 */ 536 if (owner == XFS_RMAP_OWN_AG) { 537 error = xfs_agfl_walk(mp, ri->agf, ri->agfl_bp, 538 xrep_findroot_agfl_walk, &agbno); 539 if (error == -ECANCELED) 540 return 0; 541 if (error) 542 return error; 543 } 544 545 /* 546 * Read the buffer into memory so that we can see if it's a match for 547 * our btree type. We have no clue if it is beforehand, and we want to 548 * avoid xfs_trans_read_buf's behavior of dumping the DONE state (which 549 * will cause needless disk reads in subsequent calls to this function) 550 * and logging metadata verifier failures. 551 * 552 * Therefore, pass in NULL buffer ops. If the buffer was already in 553 * memory from some other caller it will already have b_ops assigned. 554 * If it was in memory from a previous unsuccessful findroot_block 555 * call, the buffer won't have b_ops but it should be clean and ready 556 * for us to try to verify if the read call succeeds. The same applies 557 * if the buffer wasn't in memory at all. 558 * 559 * Note: If we never match a btree type with this buffer, it will be 560 * left in memory with NULL b_ops. This shouldn't be a problem unless 561 * the buffer gets written. 562 */ 563 error = xfs_trans_read_buf(mp, ri->sc->tp, mp->m_ddev_targp, daddr, 564 mp->m_bsize, 0, &bp, NULL); 565 if (error) 566 return error; 567 568 /* Ensure the block magic matches the btree type we're looking for. */ 569 btblock = XFS_BUF_TO_BLOCK(bp); 570 ASSERT(fab->buf_ops->magic[1] != 0); 571 if (btblock->bb_magic != fab->buf_ops->magic[1]) 572 goto out; 573 574 /* 575 * If the buffer already has ops applied and they're not the ones for 576 * this btree type, we know this block doesn't match the btree and we 577 * can bail out. 578 * 579 * If the buffer ops match ours, someone else has already validated 580 * the block for us, so we can move on to checking if this is a root 581 * block candidate. 582 * 583 * If the buffer does not have ops, nobody has successfully validated 584 * the contents and the buffer cannot be dirty. If the magic, uuid, 585 * and structure match this btree type then we'll move on to checking 586 * if it's a root block candidate. If there is no match, bail out. 587 */ 588 if (bp->b_ops) { 589 if (bp->b_ops != fab->buf_ops) 590 goto out; 591 } else { 592 ASSERT(!xfs_trans_buf_is_dirty(bp)); 593 if (!uuid_equal(&btblock->bb_u.s.bb_uuid, 594 &mp->m_sb.sb_meta_uuid)) 595 goto out; 596 /* 597 * Read verifiers can reference b_ops, so we set the pointer 598 * here. If the verifier fails we'll reset the buffer state 599 * to what it was before we touched the buffer. 600 */ 601 bp->b_ops = fab->buf_ops; 602 fab->buf_ops->verify_read(bp); 603 if (bp->b_error) { 604 bp->b_ops = NULL; 605 bp->b_error = 0; 606 goto out; 607 } 608 609 /* 610 * Some read verifiers will (re)set b_ops, so we must be 611 * careful not to change b_ops after running the verifier. 612 */ 613 } 614 615 /* 616 * This block passes the magic/uuid and verifier tests for this btree 617 * type. We don't need the caller to try the other tree types. 618 */ 619 *done_with_block = true; 620 621 /* 622 * Compare this btree block's level to the height of the current 623 * candidate root block. 624 * 625 * If the level matches the root we found previously, throw away both 626 * blocks because there can't be two candidate roots. 627 * 628 * If level is lower in the tree than the root we found previously, 629 * ignore this block. 630 */ 631 block_level = xfs_btree_get_level(btblock); 632 if (block_level + 1 == fab->height) { 633 fab->root = NULLAGBLOCK; 634 goto out; 635 } else if (block_level < fab->height) { 636 goto out; 637 } 638 639 /* 640 * This is the highest block in the tree that we've found so far. 641 * Update the btree height to reflect what we've learned from this 642 * block. 643 */ 644 fab->height = block_level + 1; 645 646 /* 647 * If this block doesn't have sibling pointers, then it's the new root 648 * block candidate. Otherwise, the root will be found farther up the 649 * tree. 650 */ 651 if (btblock->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK) && 652 btblock->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK)) 653 fab->root = agbno; 654 else 655 fab->root = NULLAGBLOCK; 656 657 trace_xrep_findroot_block(ri->sc->sa.pag, agbno, 658 be32_to_cpu(btblock->bb_magic), fab->height - 1); 659 out: 660 xfs_trans_brelse(ri->sc->tp, bp); 661 return error; 662 } 663 664 /* 665 * Do any of the blocks in this rmap record match one of the btrees we're 666 * looking for? 667 */ 668 STATIC int 669 xrep_findroot_rmap( 670 struct xfs_btree_cur *cur, 671 const struct xfs_rmap_irec *rec, 672 void *priv) 673 { 674 struct xrep_findroot *ri = priv; 675 struct xrep_find_ag_btree *fab; 676 xfs_agblock_t b; 677 bool done; 678 int error = 0; 679 680 /* Ignore anything that isn't AG metadata. */ 681 if (!XFS_RMAP_NON_INODE_OWNER(rec->rm_owner)) 682 return 0; 683 684 /* Otherwise scan each block + btree type. */ 685 for (b = 0; b < rec->rm_blockcount; b++) { 686 done = false; 687 for (fab = ri->btree_info; fab->buf_ops; fab++) { 688 if (rec->rm_owner != fab->rmap_owner) 689 continue; 690 error = xrep_findroot_block(ri, fab, 691 rec->rm_owner, rec->rm_startblock + b, 692 &done); 693 if (error) 694 return error; 695 if (done) 696 break; 697 } 698 } 699 700 return 0; 701 } 702 703 /* Find the roots of the per-AG btrees described in btree_info. */ 704 int 705 xrep_find_ag_btree_roots( 706 struct xfs_scrub *sc, 707 struct xfs_buf *agf_bp, 708 struct xrep_find_ag_btree *btree_info, 709 struct xfs_buf *agfl_bp) 710 { 711 struct xfs_mount *mp = sc->mp; 712 struct xrep_findroot ri; 713 struct xrep_find_ag_btree *fab; 714 struct xfs_btree_cur *cur; 715 int error; 716 717 ASSERT(xfs_buf_islocked(agf_bp)); 718 ASSERT(agfl_bp == NULL || xfs_buf_islocked(agfl_bp)); 719 720 ri.sc = sc; 721 ri.btree_info = btree_info; 722 ri.agf = agf_bp->b_addr; 723 ri.agfl_bp = agfl_bp; 724 for (fab = btree_info; fab->buf_ops; fab++) { 725 ASSERT(agfl_bp || fab->rmap_owner != XFS_RMAP_OWN_AG); 726 ASSERT(XFS_RMAP_NON_INODE_OWNER(fab->rmap_owner)); 727 fab->root = NULLAGBLOCK; 728 fab->height = 0; 729 } 730 731 cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.pag); 732 error = xfs_rmap_query_all(cur, xrep_findroot_rmap, &ri); 733 xfs_btree_del_cursor(cur, error); 734 735 return error; 736 } 737 738 #ifdef CONFIG_XFS_QUOTA 739 /* Update some quota flags in the superblock. */ 740 void 741 xrep_update_qflags( 742 struct xfs_scrub *sc, 743 unsigned int clear_flags, 744 unsigned int set_flags) 745 { 746 struct xfs_mount *mp = sc->mp; 747 struct xfs_buf *bp; 748 749 mutex_lock(&mp->m_quotainfo->qi_quotaofflock); 750 if ((mp->m_qflags & clear_flags) == 0 && 751 (mp->m_qflags & set_flags) == set_flags) 752 goto no_update; 753 754 mp->m_qflags &= ~clear_flags; 755 mp->m_qflags |= set_flags; 756 757 spin_lock(&mp->m_sb_lock); 758 mp->m_sb.sb_qflags &= ~clear_flags; 759 mp->m_sb.sb_qflags |= set_flags; 760 spin_unlock(&mp->m_sb_lock); 761 762 /* 763 * Update the quota flags in the ondisk superblock without touching 764 * the summary counters. We have not quiesced inode chunk allocation, 765 * so we cannot coordinate with updates to the icount and ifree percpu 766 * counters. 767 */ 768 bp = xfs_trans_getsb(sc->tp); 769 xfs_sb_to_disk(bp->b_addr, &mp->m_sb); 770 xfs_trans_buf_set_type(sc->tp, bp, XFS_BLFT_SB_BUF); 771 xfs_trans_log_buf(sc->tp, bp, 0, sizeof(struct xfs_dsb) - 1); 772 773 no_update: 774 mutex_unlock(&mp->m_quotainfo->qi_quotaofflock); 775 } 776 777 /* Force a quotacheck the next time we mount. */ 778 void 779 xrep_force_quotacheck( 780 struct xfs_scrub *sc, 781 xfs_dqtype_t type) 782 { 783 uint flag; 784 785 flag = xfs_quota_chkd_flag(type); 786 if (!(flag & sc->mp->m_qflags)) 787 return; 788 789 xrep_update_qflags(sc, flag, 0); 790 } 791 792 /* 793 * Attach dquots to this inode, or schedule quotacheck to fix them. 794 * 795 * This function ensures that the appropriate dquots are attached to an inode. 796 * We cannot allow the dquot code to allocate an on-disk dquot block here 797 * because we're already in transaction context. The on-disk dquot should 798 * already exist anyway. If the quota code signals corruption or missing quota 799 * information, schedule quotacheck, which will repair corruptions in the quota 800 * metadata. 801 */ 802 int 803 xrep_ino_dqattach( 804 struct xfs_scrub *sc) 805 { 806 int error; 807 808 ASSERT(sc->tp != NULL); 809 ASSERT(sc->ip != NULL); 810 811 error = xfs_qm_dqattach(sc->ip); 812 switch (error) { 813 case -EFSBADCRC: 814 case -EFSCORRUPTED: 815 case -ENOENT: 816 xfs_err_ratelimited(sc->mp, 817 "inode %llu repair encountered quota error %d, quotacheck forced.", 818 (unsigned long long)sc->ip->i_ino, error); 819 if (XFS_IS_UQUOTA_ON(sc->mp) && !sc->ip->i_udquot) 820 xrep_force_quotacheck(sc, XFS_DQTYPE_USER); 821 if (XFS_IS_GQUOTA_ON(sc->mp) && !sc->ip->i_gdquot) 822 xrep_force_quotacheck(sc, XFS_DQTYPE_GROUP); 823 if (XFS_IS_PQUOTA_ON(sc->mp) && !sc->ip->i_pdquot) 824 xrep_force_quotacheck(sc, XFS_DQTYPE_PROJ); 825 fallthrough; 826 case -ESRCH: 827 error = 0; 828 break; 829 default: 830 break; 831 } 832 833 return error; 834 } 835 #endif /* CONFIG_XFS_QUOTA */ 836 837 /* 838 * Ensure that the inode being repaired is ready to handle a certain number of 839 * extents, or return EFSCORRUPTED. Caller must hold the ILOCK of the inode 840 * being repaired and have joined it to the scrub transaction. 841 */ 842 int 843 xrep_ino_ensure_extent_count( 844 struct xfs_scrub *sc, 845 int whichfork, 846 xfs_extnum_t nextents) 847 { 848 xfs_extnum_t max_extents; 849 bool inode_has_nrext64; 850 851 inode_has_nrext64 = xfs_inode_has_large_extent_counts(sc->ip); 852 max_extents = xfs_iext_max_nextents(inode_has_nrext64, whichfork); 853 if (nextents <= max_extents) 854 return 0; 855 if (inode_has_nrext64) 856 return -EFSCORRUPTED; 857 if (!xfs_has_large_extent_counts(sc->mp)) 858 return -EFSCORRUPTED; 859 860 max_extents = xfs_iext_max_nextents(true, whichfork); 861 if (nextents > max_extents) 862 return -EFSCORRUPTED; 863 864 sc->ip->i_diflags2 |= XFS_DIFLAG2_NREXT64; 865 xfs_trans_log_inode(sc->tp, sc->ip, XFS_ILOG_CORE); 866 return 0; 867 } 868 869 /* 870 * Initialize all the btree cursors for an AG repair except for the btree that 871 * we're rebuilding. 872 */ 873 void 874 xrep_ag_btcur_init( 875 struct xfs_scrub *sc, 876 struct xchk_ag *sa) 877 { 878 struct xfs_mount *mp = sc->mp; 879 880 /* Set up a bnobt cursor for cross-referencing. */ 881 if (sc->sm->sm_type != XFS_SCRUB_TYPE_BNOBT && 882 sc->sm->sm_type != XFS_SCRUB_TYPE_CNTBT) { 883 sa->bno_cur = xfs_bnobt_init_cursor(mp, sc->tp, sa->agf_bp, 884 sc->sa.pag); 885 sa->cnt_cur = xfs_cntbt_init_cursor(mp, sc->tp, sa->agf_bp, 886 sc->sa.pag); 887 } 888 889 /* Set up a inobt cursor for cross-referencing. */ 890 if (sc->sm->sm_type != XFS_SCRUB_TYPE_INOBT && 891 sc->sm->sm_type != XFS_SCRUB_TYPE_FINOBT) { 892 sa->ino_cur = xfs_inobt_init_cursor(sc->sa.pag, sc->tp, 893 sa->agi_bp); 894 if (xfs_has_finobt(mp)) 895 sa->fino_cur = xfs_finobt_init_cursor(sc->sa.pag, 896 sc->tp, sa->agi_bp); 897 } 898 899 /* Set up a rmapbt cursor for cross-referencing. */ 900 if (sc->sm->sm_type != XFS_SCRUB_TYPE_RMAPBT && 901 xfs_has_rmapbt(mp)) 902 sa->rmap_cur = xfs_rmapbt_init_cursor(mp, sc->tp, sa->agf_bp, 903 sc->sa.pag); 904 905 /* Set up a refcountbt cursor for cross-referencing. */ 906 if (sc->sm->sm_type != XFS_SCRUB_TYPE_REFCNTBT && 907 xfs_has_reflink(mp)) 908 sa->refc_cur = xfs_refcountbt_init_cursor(mp, sc->tp, 909 sa->agf_bp, sc->sa.pag); 910 } 911 912 /* 913 * Reinitialize the in-core AG state after a repair by rereading the AGF 914 * buffer. We had better get the same AGF buffer as the one that's attached 915 * to the scrub context. 916 */ 917 int 918 xrep_reinit_pagf( 919 struct xfs_scrub *sc) 920 { 921 struct xfs_perag *pag = sc->sa.pag; 922 struct xfs_buf *bp; 923 int error; 924 925 ASSERT(pag); 926 ASSERT(xfs_perag_initialised_agf(pag)); 927 928 clear_bit(XFS_AGSTATE_AGF_INIT, &pag->pag_opstate); 929 error = xfs_alloc_read_agf(pag, sc->tp, 0, &bp); 930 if (error) 931 return error; 932 933 if (bp != sc->sa.agf_bp) { 934 ASSERT(bp == sc->sa.agf_bp); 935 return -EFSCORRUPTED; 936 } 937 938 return 0; 939 } 940 941 /* 942 * Reinitialize the in-core AG state after a repair by rereading the AGI 943 * buffer. We had better get the same AGI buffer as the one that's attached 944 * to the scrub context. 945 */ 946 int 947 xrep_reinit_pagi( 948 struct xfs_scrub *sc) 949 { 950 struct xfs_perag *pag = sc->sa.pag; 951 struct xfs_buf *bp; 952 int error; 953 954 ASSERT(pag); 955 ASSERT(xfs_perag_initialised_agi(pag)); 956 957 clear_bit(XFS_AGSTATE_AGI_INIT, &pag->pag_opstate); 958 error = xfs_ialloc_read_agi(pag, sc->tp, 0, &bp); 959 if (error) 960 return error; 961 962 if (bp != sc->sa.agi_bp) { 963 ASSERT(bp == sc->sa.agi_bp); 964 return -EFSCORRUPTED; 965 } 966 967 return 0; 968 } 969 970 /* 971 * Given an active reference to a perag structure, load AG headers and cursors. 972 * This should only be called to scan an AG while repairing file-based metadata. 973 */ 974 int 975 xrep_ag_init( 976 struct xfs_scrub *sc, 977 struct xfs_perag *pag, 978 struct xchk_ag *sa) 979 { 980 int error; 981 982 ASSERT(!sa->pag); 983 984 error = xfs_ialloc_read_agi(pag, sc->tp, 0, &sa->agi_bp); 985 if (error) 986 return error; 987 988 error = xfs_alloc_read_agf(pag, sc->tp, 0, &sa->agf_bp); 989 if (error) 990 return error; 991 992 /* Grab our own passive reference from the caller's ref. */ 993 sa->pag = xfs_perag_hold(pag); 994 xrep_ag_btcur_init(sc, sa); 995 return 0; 996 } 997 998 #ifdef CONFIG_XFS_RT 999 /* Initialize all the btree cursors for a RT repair. */ 1000 void 1001 xrep_rtgroup_btcur_init( 1002 struct xfs_scrub *sc, 1003 struct xchk_rt *sr) 1004 { 1005 struct xfs_mount *mp = sc->mp; 1006 1007 ASSERT(sr->rtg != NULL); 1008 1009 if (sc->sm->sm_type != XFS_SCRUB_TYPE_RTRMAPBT && 1010 (sr->rtlock_flags & XFS_RTGLOCK_RMAP) && 1011 xfs_has_rtrmapbt(mp)) 1012 sr->rmap_cur = xfs_rtrmapbt_init_cursor(sc->tp, sr->rtg); 1013 1014 if (sc->sm->sm_type != XFS_SCRUB_TYPE_RTREFCBT && 1015 (sr->rtlock_flags & XFS_RTGLOCK_REFCOUNT) && 1016 xfs_has_rtreflink(mp)) 1017 sr->refc_cur = xfs_rtrefcountbt_init_cursor(sc->tp, sr->rtg); 1018 } 1019 1020 /* 1021 * Given a reference to a rtgroup structure, lock rtgroup btree inodes and 1022 * create btree cursors. Must only be called to repair a regular rt file. 1023 */ 1024 int 1025 xrep_rtgroup_init( 1026 struct xfs_scrub *sc, 1027 struct xfs_rtgroup *rtg, 1028 struct xchk_rt *sr, 1029 unsigned int rtglock_flags) 1030 { 1031 ASSERT(sr->rtg == NULL); 1032 1033 xfs_rtgroup_lock(rtg, rtglock_flags); 1034 sr->rtlock_flags = rtglock_flags; 1035 1036 /* Grab our own passive reference from the caller's ref. */ 1037 sr->rtg = xfs_rtgroup_hold(rtg); 1038 xrep_rtgroup_btcur_init(sc, sr); 1039 return 0; 1040 } 1041 1042 /* Ensure that all rt blocks in the given range are not marked free. */ 1043 int 1044 xrep_require_rtext_inuse( 1045 struct xfs_scrub *sc, 1046 xfs_rgblock_t rgbno, 1047 xfs_filblks_t len) 1048 { 1049 struct xfs_mount *mp = sc->mp; 1050 xfs_rtxnum_t startrtx; 1051 xfs_rtxnum_t endrtx; 1052 bool is_free = false; 1053 int error; 1054 1055 startrtx = xfs_rgbno_to_rtx(mp, rgbno); 1056 endrtx = xfs_rgbno_to_rtx(mp, rgbno + len - 1); 1057 1058 error = xfs_rtalloc_extent_is_free(sc->sr.rtg, sc->tp, startrtx, 1059 endrtx - startrtx + 1, &is_free); 1060 if (error) 1061 return error; 1062 if (is_free) 1063 return -EFSCORRUPTED; 1064 1065 return 0; 1066 } 1067 #endif /* CONFIG_XFS_RT */ 1068 1069 /* Reinitialize the per-AG block reservation for the AG we just fixed. */ 1070 int 1071 xrep_reset_perag_resv( 1072 struct xfs_scrub *sc) 1073 { 1074 int error; 1075 1076 if (!(sc->flags & XREP_RESET_PERAG_RESV)) 1077 return 0; 1078 1079 ASSERT(sc->sa.pag != NULL); 1080 ASSERT(sc->ops->type == ST_PERAG); 1081 ASSERT(sc->tp); 1082 1083 sc->flags &= ~XREP_RESET_PERAG_RESV; 1084 xfs_ag_resv_free(sc->sa.pag); 1085 error = xfs_ag_resv_init(sc->sa.pag, sc->tp); 1086 if (error == -ENOSPC) { 1087 xfs_err(sc->mp, 1088 "Insufficient free space to reset per-AG reservation for AG %u after repair.", 1089 pag_agno(sc->sa.pag)); 1090 error = 0; 1091 } 1092 1093 return error; 1094 } 1095 1096 /* Decide if we are going to call the repair function for a scrub type. */ 1097 bool 1098 xrep_will_attempt( 1099 struct xfs_scrub *sc) 1100 { 1101 /* Userspace asked us to rebuild the structure regardless. */ 1102 if (sc->sm->sm_flags & XFS_SCRUB_IFLAG_FORCE_REBUILD) 1103 return true; 1104 1105 /* Let debug users force us into the repair routines. */ 1106 if (XFS_TEST_ERROR(false, sc->mp, XFS_ERRTAG_FORCE_SCRUB_REPAIR)) 1107 return true; 1108 1109 /* Metadata is corrupt or failed cross-referencing. */ 1110 if (xchk_needs_repair(sc->sm)) 1111 return true; 1112 1113 return false; 1114 } 1115 1116 /* Try to fix some part of a metadata inode by calling another scrubber. */ 1117 STATIC int 1118 xrep_metadata_inode_subtype( 1119 struct xfs_scrub *sc, 1120 unsigned int scrub_type) 1121 { 1122 struct xfs_scrub_subord *sub; 1123 int error; 1124 1125 /* 1126 * Let's see if the inode needs repair. Use a subordinate scrub context 1127 * to call the scrub and repair functions so that we can hang on to the 1128 * resources that we already acquired instead of using the standard 1129 * setup/teardown routines. 1130 */ 1131 sub = xchk_scrub_create_subord(sc, scrub_type); 1132 error = sub->sc.ops->scrub(&sub->sc); 1133 if (error) 1134 goto out; 1135 if (!xrep_will_attempt(&sub->sc)) 1136 goto out; 1137 1138 /* 1139 * Repair some part of the inode. This will potentially join the inode 1140 * to the transaction. 1141 */ 1142 error = sub->sc.ops->repair(&sub->sc); 1143 if (error) 1144 goto out; 1145 1146 /* 1147 * Finish all deferred intent items and then roll the transaction so 1148 * that the inode will not be joined to the transaction when we exit 1149 * the function. 1150 */ 1151 error = xfs_defer_finish(&sub->sc.tp); 1152 if (error) 1153 goto out; 1154 error = xfs_trans_roll(&sub->sc.tp); 1155 if (error) 1156 goto out; 1157 1158 /* 1159 * Clear the corruption flags and re-check the metadata that we just 1160 * repaired. 1161 */ 1162 sub->sc.sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT; 1163 error = sub->sc.ops->scrub(&sub->sc); 1164 if (error) 1165 goto out; 1166 1167 /* If corruption persists, the repair has failed. */ 1168 if (xchk_needs_repair(sub->sc.sm)) { 1169 error = -EFSCORRUPTED; 1170 goto out; 1171 } 1172 out: 1173 xchk_scrub_free_subord(sub); 1174 return error; 1175 } 1176 1177 /* 1178 * Repair the ondisk forks of a metadata inode. The caller must ensure that 1179 * sc->ip points to the metadata inode and the ILOCK is held on that inode. 1180 * The inode must not be joined to the transaction before the call, and will 1181 * not be afterwards. 1182 */ 1183 int 1184 xrep_metadata_inode_forks( 1185 struct xfs_scrub *sc) 1186 { 1187 bool dirty = false; 1188 int error; 1189 1190 /* Repair the inode record and the data fork. */ 1191 error = xrep_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_INODE); 1192 if (error) 1193 return error; 1194 1195 error = xrep_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_BMBTD); 1196 if (error) 1197 return error; 1198 1199 /* 1200 * Metadata files can only have extended attributes on metadir 1201 * filesystems, either for parent pointers or for actual xattr data. 1202 * For a non-metadir filesystem, make sure the attr fork looks ok 1203 * before we delete it. 1204 */ 1205 if (xfs_inode_hasattr(sc->ip)) { 1206 error = xrep_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_BMBTA); 1207 if (error) 1208 return error; 1209 } 1210 1211 /* Clear the reflink flag since metadata never shares. */ 1212 if (xfs_is_reflink_inode(sc->ip)) { 1213 dirty = true; 1214 xfs_trans_ijoin(sc->tp, sc->ip, 0); 1215 error = xfs_reflink_clear_inode_flag(sc->ip, &sc->tp); 1216 if (error) 1217 return error; 1218 } 1219 1220 /* 1221 * Metadata files on non-metadir filesystems cannot have attr forks, 1222 * so clear them now. 1223 */ 1224 if (xfs_inode_hasattr(sc->ip) && !xfs_has_metadir(sc->mp)) { 1225 if (!dirty) { 1226 dirty = true; 1227 xfs_trans_ijoin(sc->tp, sc->ip, 0); 1228 } 1229 error = xrep_xattr_reset_fork(sc); 1230 if (error) 1231 return error; 1232 } 1233 1234 /* 1235 * If we modified the inode, roll the transaction but don't rejoin the 1236 * inode to the new transaction because xrep_bmap_data can do that. 1237 */ 1238 if (dirty) { 1239 error = xfs_trans_roll(&sc->tp); 1240 if (error) 1241 return error; 1242 dirty = false; 1243 } 1244 1245 return 0; 1246 } 1247 1248 /* 1249 * Set up an in-memory buffer cache so that we can use the xfbtree. Allocating 1250 * a shmem file might take loks, so we cannot be in transaction context. Park 1251 * our resources in the scrub context and let the teardown function take care 1252 * of them at the right time. 1253 */ 1254 int 1255 xrep_setup_xfbtree( 1256 struct xfs_scrub *sc, 1257 const char *descr) 1258 { 1259 ASSERT(sc->tp == NULL); 1260 1261 return xmbuf_alloc(sc->mp, descr, &sc->xmbtp); 1262 } 1263 1264 /* 1265 * Create a dummy transaction for use in a live update hook function. This 1266 * function MUST NOT be called from regular repair code because the current 1267 * process' transaction is saved via the cookie. 1268 */ 1269 int 1270 xrep_trans_alloc_hook_dummy( 1271 struct xfs_mount *mp, 1272 void **cookiep, 1273 struct xfs_trans **tpp) 1274 { 1275 int error; 1276 1277 *cookiep = current->journal_info; 1278 current->journal_info = NULL; 1279 1280 error = xfs_trans_alloc_empty(mp, tpp); 1281 if (!error) 1282 return 0; 1283 1284 current->journal_info = *cookiep; 1285 *cookiep = NULL; 1286 return error; 1287 } 1288 1289 /* Cancel a dummy transaction used by a live update hook function. */ 1290 void 1291 xrep_trans_cancel_hook_dummy( 1292 void **cookiep, 1293 struct xfs_trans *tp) 1294 { 1295 xfs_trans_cancel(tp); 1296 current->journal_info = *cookiep; 1297 *cookiep = NULL; 1298 } 1299 1300 /* 1301 * See if this buffer can pass the given ->verify_struct() function. 1302 * 1303 * If the buffer already has ops attached and they're not the ones that were 1304 * passed in, we reject the buffer. Otherwise, we perform the structure test 1305 * (note that we do not check CRCs) and return the outcome of the test. The 1306 * buffer ops and error state are left unchanged. 1307 */ 1308 bool 1309 xrep_buf_verify_struct( 1310 struct xfs_buf *bp, 1311 const struct xfs_buf_ops *ops) 1312 { 1313 const struct xfs_buf_ops *old_ops = bp->b_ops; 1314 xfs_failaddr_t fa; 1315 int old_error; 1316 1317 if (old_ops) { 1318 if (old_ops != ops) 1319 return false; 1320 } 1321 1322 old_error = bp->b_error; 1323 bp->b_ops = ops; 1324 fa = bp->b_ops->verify_struct(bp); 1325 bp->b_ops = old_ops; 1326 bp->b_error = old_error; 1327 1328 return fa == NULL; 1329 } 1330 1331 /* Check the sanity of a rmap record for a metadata btree inode. */ 1332 int 1333 xrep_check_ino_btree_mapping( 1334 struct xfs_scrub *sc, 1335 const struct xfs_rmap_irec *rec) 1336 { 1337 enum xbtree_recpacking outcome; 1338 int error; 1339 1340 /* 1341 * Metadata btree inodes never have extended attributes, and all blocks 1342 * should have the bmbt block flag set. 1343 */ 1344 if ((rec->rm_flags & XFS_RMAP_ATTR_FORK) || 1345 !(rec->rm_flags & XFS_RMAP_BMBT_BLOCK)) 1346 return -EFSCORRUPTED; 1347 1348 /* Make sure the block is within the AG. */ 1349 if (!xfs_verify_agbext(sc->sa.pag, rec->rm_startblock, 1350 rec->rm_blockcount)) 1351 return -EFSCORRUPTED; 1352 1353 /* Make sure this isn't free space. */ 1354 error = xfs_alloc_has_records(sc->sa.bno_cur, rec->rm_startblock, 1355 rec->rm_blockcount, &outcome); 1356 if (error) 1357 return error; 1358 if (outcome != XBTREE_RECPACKING_EMPTY) 1359 return -EFSCORRUPTED; 1360 1361 return 0; 1362 } 1363 1364 /* 1365 * Reset the block count of the inode being repaired, and adjust the dquot 1366 * block usage to match. The inode must not have an xattr fork. 1367 */ 1368 void 1369 xrep_inode_set_nblocks( 1370 struct xfs_scrub *sc, 1371 int64_t new_blocks) 1372 { 1373 int64_t delta = 1374 new_blocks - sc->ip->i_nblocks; 1375 1376 sc->ip->i_nblocks = new_blocks; 1377 1378 xfs_trans_log_inode(sc->tp, sc->ip, XFS_ILOG_CORE); 1379 if (delta != 0) 1380 xfs_trans_mod_dquot_byino(sc->tp, sc->ip, XFS_TRANS_DQ_BCOUNT, 1381 delta); 1382 } 1383 1384 /* Reset the block reservation for a metadata inode. */ 1385 int 1386 xrep_reset_metafile_resv( 1387 struct xfs_scrub *sc) 1388 { 1389 struct xfs_inode *ip = sc->ip; 1390 int64_t delta; 1391 int error; 1392 1393 delta = ip->i_nblocks + ip->i_delayed_blks - ip->i_meta_resv_asked; 1394 if (delta == 0) 1395 return 0; 1396 1397 /* 1398 * Too many blocks have been reserved, transfer some from the incore 1399 * reservation back to the filesystem. 1400 */ 1401 if (delta > 0) { 1402 int64_t give_back; 1403 1404 give_back = min_t(uint64_t, delta, ip->i_delayed_blks); 1405 if (give_back > 0) { 1406 xfs_mod_delalloc(ip, 0, -give_back); 1407 xfs_add_fdblocks(ip->i_mount, give_back); 1408 ip->i_delayed_blks -= give_back; 1409 } 1410 1411 return 0; 1412 } 1413 1414 /* 1415 * Not enough reservation; try to take some blocks from the filesystem 1416 * to the metadata inode. @delta is negative here, so invert the sign. 1417 */ 1418 delta = -delta; 1419 error = xfs_dec_fdblocks(sc->mp, delta, true); 1420 while (error == -ENOSPC) { 1421 delta--; 1422 if (delta == 0) { 1423 xfs_warn(sc->mp, 1424 "Insufficient free space to reset space reservation for inode 0x%llx after repair.", 1425 ip->i_ino); 1426 return 0; 1427 } 1428 error = xfs_dec_fdblocks(sc->mp, delta, true); 1429 } 1430 if (error) 1431 return error; 1432 1433 xfs_mod_delalloc(ip, 0, delta); 1434 ip->i_delayed_blks += delta; 1435 return 0; 1436 } 1437