xref: /linux/fs/xfs/scrub/repair.c (revision df561f6688fef775baa341a0f5d960becd248b11)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2018 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_mount.h"
12 #include "xfs_btree.h"
13 #include "xfs_log_format.h"
14 #include "xfs_trans.h"
15 #include "xfs_sb.h"
16 #include "xfs_inode.h"
17 #include "xfs_alloc.h"
18 #include "xfs_alloc_btree.h"
19 #include "xfs_ialloc.h"
20 #include "xfs_ialloc_btree.h"
21 #include "xfs_rmap.h"
22 #include "xfs_rmap_btree.h"
23 #include "xfs_refcount_btree.h"
24 #include "xfs_extent_busy.h"
25 #include "xfs_ag_resv.h"
26 #include "xfs_quota.h"
27 #include "scrub/scrub.h"
28 #include "scrub/common.h"
29 #include "scrub/trace.h"
30 #include "scrub/repair.h"
31 #include "scrub/bitmap.h"
32 
33 /*
34  * Attempt to repair some metadata, if the metadata is corrupt and userspace
35  * told us to fix it.  This function returns -EAGAIN to mean "re-run scrub",
36  * and will set *fixed to true if it thinks it repaired anything.
37  */
38 int
39 xrep_attempt(
40 	struct xfs_inode	*ip,
41 	struct xfs_scrub	*sc)
42 {
43 	int			error = 0;
44 
45 	trace_xrep_attempt(ip, sc->sm, error);
46 
47 	xchk_ag_btcur_free(&sc->sa);
48 
49 	/* Repair whatever's broken. */
50 	ASSERT(sc->ops->repair);
51 	error = sc->ops->repair(sc);
52 	trace_xrep_done(ip, sc->sm, error);
53 	switch (error) {
54 	case 0:
55 		/*
56 		 * Repair succeeded.  Commit the fixes and perform a second
57 		 * scrub so that we can tell userspace if we fixed the problem.
58 		 */
59 		sc->sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
60 		sc->flags |= XREP_ALREADY_FIXED;
61 		return -EAGAIN;
62 	case -EDEADLOCK:
63 	case -EAGAIN:
64 		/* Tell the caller to try again having grabbed all the locks. */
65 		if (!(sc->flags & XCHK_TRY_HARDER)) {
66 			sc->flags |= XCHK_TRY_HARDER;
67 			return -EAGAIN;
68 		}
69 		/*
70 		 * We tried harder but still couldn't grab all the resources
71 		 * we needed to fix it.  The corruption has not been fixed,
72 		 * so report back to userspace.
73 		 */
74 		return -EFSCORRUPTED;
75 	default:
76 		return error;
77 	}
78 }
79 
80 /*
81  * Complain about unfixable problems in the filesystem.  We don't log
82  * corruptions when IFLAG_REPAIR wasn't set on the assumption that the driver
83  * program is xfs_scrub, which will call back with IFLAG_REPAIR set if the
84  * administrator isn't running xfs_scrub in no-repairs mode.
85  *
86  * Use this helper function because _ratelimited silently declares a static
87  * structure to track rate limiting information.
88  */
89 void
90 xrep_failure(
91 	struct xfs_mount	*mp)
92 {
93 	xfs_alert_ratelimited(mp,
94 "Corruption not fixed during online repair.  Unmount and run xfs_repair.");
95 }
96 
97 /*
98  * Repair probe -- userspace uses this to probe if we're willing to repair a
99  * given mountpoint.
100  */
101 int
102 xrep_probe(
103 	struct xfs_scrub	*sc)
104 {
105 	int			error = 0;
106 
107 	if (xchk_should_terminate(sc, &error))
108 		return error;
109 
110 	return 0;
111 }
112 
113 /*
114  * Roll a transaction, keeping the AG headers locked and reinitializing
115  * the btree cursors.
116  */
117 int
118 xrep_roll_ag_trans(
119 	struct xfs_scrub	*sc)
120 {
121 	int			error;
122 
123 	/* Keep the AG header buffers locked so we can keep going. */
124 	if (sc->sa.agi_bp)
125 		xfs_trans_bhold(sc->tp, sc->sa.agi_bp);
126 	if (sc->sa.agf_bp)
127 		xfs_trans_bhold(sc->tp, sc->sa.agf_bp);
128 	if (sc->sa.agfl_bp)
129 		xfs_trans_bhold(sc->tp, sc->sa.agfl_bp);
130 
131 	/*
132 	 * Roll the transaction.  We still own the buffer and the buffer lock
133 	 * regardless of whether or not the roll succeeds.  If the roll fails,
134 	 * the buffers will be released during teardown on our way out of the
135 	 * kernel.  If it succeeds, we join them to the new transaction and
136 	 * move on.
137 	 */
138 	error = xfs_trans_roll(&sc->tp);
139 	if (error)
140 		return error;
141 
142 	/* Join AG headers to the new transaction. */
143 	if (sc->sa.agi_bp)
144 		xfs_trans_bjoin(sc->tp, sc->sa.agi_bp);
145 	if (sc->sa.agf_bp)
146 		xfs_trans_bjoin(sc->tp, sc->sa.agf_bp);
147 	if (sc->sa.agfl_bp)
148 		xfs_trans_bjoin(sc->tp, sc->sa.agfl_bp);
149 
150 	return 0;
151 }
152 
153 /*
154  * Does the given AG have enough space to rebuild a btree?  Neither AG
155  * reservation can be critical, and we must have enough space (factoring
156  * in AG reservations) to construct a whole btree.
157  */
158 bool
159 xrep_ag_has_space(
160 	struct xfs_perag	*pag,
161 	xfs_extlen_t		nr_blocks,
162 	enum xfs_ag_resv_type	type)
163 {
164 	return  !xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) &&
165 		!xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA) &&
166 		pag->pagf_freeblks > xfs_ag_resv_needed(pag, type) + nr_blocks;
167 }
168 
169 /*
170  * Figure out how many blocks to reserve for an AG repair.  We calculate the
171  * worst case estimate for the number of blocks we'd need to rebuild one of
172  * any type of per-AG btree.
173  */
174 xfs_extlen_t
175 xrep_calc_ag_resblks(
176 	struct xfs_scrub		*sc)
177 {
178 	struct xfs_mount		*mp = sc->mp;
179 	struct xfs_scrub_metadata	*sm = sc->sm;
180 	struct xfs_perag		*pag;
181 	struct xfs_buf			*bp;
182 	xfs_agino_t			icount = NULLAGINO;
183 	xfs_extlen_t			aglen = NULLAGBLOCK;
184 	xfs_extlen_t			usedlen;
185 	xfs_extlen_t			freelen;
186 	xfs_extlen_t			bnobt_sz;
187 	xfs_extlen_t			inobt_sz;
188 	xfs_extlen_t			rmapbt_sz;
189 	xfs_extlen_t			refcbt_sz;
190 	int				error;
191 
192 	if (!(sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR))
193 		return 0;
194 
195 	pag = xfs_perag_get(mp, sm->sm_agno);
196 	if (pag->pagi_init) {
197 		/* Use in-core icount if possible. */
198 		icount = pag->pagi_count;
199 	} else {
200 		/* Try to get the actual counters from disk. */
201 		error = xfs_ialloc_read_agi(mp, NULL, sm->sm_agno, &bp);
202 		if (!error) {
203 			icount = pag->pagi_count;
204 			xfs_buf_relse(bp);
205 		}
206 	}
207 
208 	/* Now grab the block counters from the AGF. */
209 	error = xfs_alloc_read_agf(mp, NULL, sm->sm_agno, 0, &bp);
210 	if (!error) {
211 		struct xfs_agf	*agf = bp->b_addr;
212 
213 		aglen = be32_to_cpu(agf->agf_length);
214 		freelen = be32_to_cpu(agf->agf_freeblks);
215 		usedlen = aglen - freelen;
216 		xfs_buf_relse(bp);
217 	}
218 	xfs_perag_put(pag);
219 
220 	/* If the icount is impossible, make some worst-case assumptions. */
221 	if (icount == NULLAGINO ||
222 	    !xfs_verify_agino(mp, sm->sm_agno, icount)) {
223 		xfs_agino_t	first, last;
224 
225 		xfs_agino_range(mp, sm->sm_agno, &first, &last);
226 		icount = last - first + 1;
227 	}
228 
229 	/* If the block counts are impossible, make worst-case assumptions. */
230 	if (aglen == NULLAGBLOCK ||
231 	    aglen != xfs_ag_block_count(mp, sm->sm_agno) ||
232 	    freelen >= aglen) {
233 		aglen = xfs_ag_block_count(mp, sm->sm_agno);
234 		freelen = aglen;
235 		usedlen = aglen;
236 	}
237 
238 	trace_xrep_calc_ag_resblks(mp, sm->sm_agno, icount, aglen,
239 			freelen, usedlen);
240 
241 	/*
242 	 * Figure out how many blocks we'd need worst case to rebuild
243 	 * each type of btree.  Note that we can only rebuild the
244 	 * bnobt/cntbt or inobt/finobt as pairs.
245 	 */
246 	bnobt_sz = 2 * xfs_allocbt_calc_size(mp, freelen);
247 	if (xfs_sb_version_hassparseinodes(&mp->m_sb))
248 		inobt_sz = xfs_iallocbt_calc_size(mp, icount /
249 				XFS_INODES_PER_HOLEMASK_BIT);
250 	else
251 		inobt_sz = xfs_iallocbt_calc_size(mp, icount /
252 				XFS_INODES_PER_CHUNK);
253 	if (xfs_sb_version_hasfinobt(&mp->m_sb))
254 		inobt_sz *= 2;
255 	if (xfs_sb_version_hasreflink(&mp->m_sb))
256 		refcbt_sz = xfs_refcountbt_calc_size(mp, usedlen);
257 	else
258 		refcbt_sz = 0;
259 	if (xfs_sb_version_hasrmapbt(&mp->m_sb)) {
260 		/*
261 		 * Guess how many blocks we need to rebuild the rmapbt.
262 		 * For non-reflink filesystems we can't have more records than
263 		 * used blocks.  However, with reflink it's possible to have
264 		 * more than one rmap record per AG block.  We don't know how
265 		 * many rmaps there could be in the AG, so we start off with
266 		 * what we hope is an generous over-estimation.
267 		 */
268 		if (xfs_sb_version_hasreflink(&mp->m_sb))
269 			rmapbt_sz = xfs_rmapbt_calc_size(mp,
270 					(unsigned long long)aglen * 2);
271 		else
272 			rmapbt_sz = xfs_rmapbt_calc_size(mp, usedlen);
273 	} else {
274 		rmapbt_sz = 0;
275 	}
276 
277 	trace_xrep_calc_ag_resblks_btsize(mp, sm->sm_agno, bnobt_sz,
278 			inobt_sz, rmapbt_sz, refcbt_sz);
279 
280 	return max(max(bnobt_sz, inobt_sz), max(rmapbt_sz, refcbt_sz));
281 }
282 
283 /* Allocate a block in an AG. */
284 int
285 xrep_alloc_ag_block(
286 	struct xfs_scrub		*sc,
287 	const struct xfs_owner_info	*oinfo,
288 	xfs_fsblock_t			*fsbno,
289 	enum xfs_ag_resv_type		resv)
290 {
291 	struct xfs_alloc_arg		args = {0};
292 	xfs_agblock_t			bno;
293 	int				error;
294 
295 	switch (resv) {
296 	case XFS_AG_RESV_AGFL:
297 	case XFS_AG_RESV_RMAPBT:
298 		error = xfs_alloc_get_freelist(sc->tp, sc->sa.agf_bp, &bno, 1);
299 		if (error)
300 			return error;
301 		if (bno == NULLAGBLOCK)
302 			return -ENOSPC;
303 		xfs_extent_busy_reuse(sc->mp, sc->sa.agno, bno,
304 				1, false);
305 		*fsbno = XFS_AGB_TO_FSB(sc->mp, sc->sa.agno, bno);
306 		if (resv == XFS_AG_RESV_RMAPBT)
307 			xfs_ag_resv_rmapbt_alloc(sc->mp, sc->sa.agno);
308 		return 0;
309 	default:
310 		break;
311 	}
312 
313 	args.tp = sc->tp;
314 	args.mp = sc->mp;
315 	args.oinfo = *oinfo;
316 	args.fsbno = XFS_AGB_TO_FSB(args.mp, sc->sa.agno, 0);
317 	args.minlen = 1;
318 	args.maxlen = 1;
319 	args.prod = 1;
320 	args.type = XFS_ALLOCTYPE_THIS_AG;
321 	args.resv = resv;
322 
323 	error = xfs_alloc_vextent(&args);
324 	if (error)
325 		return error;
326 	if (args.fsbno == NULLFSBLOCK)
327 		return -ENOSPC;
328 	ASSERT(args.len == 1);
329 	*fsbno = args.fsbno;
330 
331 	return 0;
332 }
333 
334 /* Initialize a new AG btree root block with zero entries. */
335 int
336 xrep_init_btblock(
337 	struct xfs_scrub		*sc,
338 	xfs_fsblock_t			fsb,
339 	struct xfs_buf			**bpp,
340 	xfs_btnum_t			btnum,
341 	const struct xfs_buf_ops	*ops)
342 {
343 	struct xfs_trans		*tp = sc->tp;
344 	struct xfs_mount		*mp = sc->mp;
345 	struct xfs_buf			*bp;
346 	int				error;
347 
348 	trace_xrep_init_btblock(mp, XFS_FSB_TO_AGNO(mp, fsb),
349 			XFS_FSB_TO_AGBNO(mp, fsb), btnum);
350 
351 	ASSERT(XFS_FSB_TO_AGNO(mp, fsb) == sc->sa.agno);
352 	error = xfs_trans_get_buf(tp, mp->m_ddev_targp,
353 			XFS_FSB_TO_DADDR(mp, fsb), XFS_FSB_TO_BB(mp, 1), 0,
354 			&bp);
355 	if (error)
356 		return error;
357 	xfs_buf_zero(bp, 0, BBTOB(bp->b_length));
358 	xfs_btree_init_block(mp, bp, btnum, 0, 0, sc->sa.agno);
359 	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_BTREE_BUF);
360 	xfs_trans_log_buf(tp, bp, 0, BBTOB(bp->b_length) - 1);
361 	bp->b_ops = ops;
362 	*bpp = bp;
363 
364 	return 0;
365 }
366 
367 /*
368  * Reconstructing per-AG Btrees
369  *
370  * When a space btree is corrupt, we don't bother trying to fix it.  Instead,
371  * we scan secondary space metadata to derive the records that should be in
372  * the damaged btree, initialize a fresh btree root, and insert the records.
373  * Note that for rebuilding the rmapbt we scan all the primary data to
374  * generate the new records.
375  *
376  * However, that leaves the matter of removing all the metadata describing the
377  * old broken structure.  For primary metadata we use the rmap data to collect
378  * every extent with a matching rmap owner (bitmap); we then iterate all other
379  * metadata structures with the same rmap owner to collect the extents that
380  * cannot be removed (sublist).  We then subtract sublist from bitmap to
381  * derive the blocks that were used by the old btree.  These blocks can be
382  * reaped.
383  *
384  * For rmapbt reconstructions we must use different tactics for extent
385  * collection.  First we iterate all primary metadata (this excludes the old
386  * rmapbt, obviously) to generate new rmap records.  The gaps in the rmap
387  * records are collected as bitmap.  The bnobt records are collected as
388  * sublist.  As with the other btrees we subtract sublist from bitmap, and the
389  * result (since the rmapbt lives in the free space) are the blocks from the
390  * old rmapbt.
391  *
392  * Disposal of Blocks from Old per-AG Btrees
393  *
394  * Now that we've constructed a new btree to replace the damaged one, we want
395  * to dispose of the blocks that (we think) the old btree was using.
396  * Previously, we used the rmapbt to collect the extents (bitmap) with the
397  * rmap owner corresponding to the tree we rebuilt, collected extents for any
398  * blocks with the same rmap owner that are owned by another data structure
399  * (sublist), and subtracted sublist from bitmap.  In theory the extents
400  * remaining in bitmap are the old btree's blocks.
401  *
402  * Unfortunately, it's possible that the btree was crosslinked with other
403  * blocks on disk.  The rmap data can tell us if there are multiple owners, so
404  * if the rmapbt says there is an owner of this block other than @oinfo, then
405  * the block is crosslinked.  Remove the reverse mapping and continue.
406  *
407  * If there is one rmap record, we can free the block, which removes the
408  * reverse mapping but doesn't add the block to the free space.  Our repair
409  * strategy is to hope the other metadata objects crosslinked on this block
410  * will be rebuilt (atop different blocks), thereby removing all the cross
411  * links.
412  *
413  * If there are no rmap records at all, we also free the block.  If the btree
414  * being rebuilt lives in the free space (bnobt/cntbt/rmapbt) then there isn't
415  * supposed to be a rmap record and everything is ok.  For other btrees there
416  * had to have been an rmap entry for the block to have ended up on @bitmap,
417  * so if it's gone now there's something wrong and the fs will shut down.
418  *
419  * Note: If there are multiple rmap records with only the same rmap owner as
420  * the btree we're trying to rebuild and the block is indeed owned by another
421  * data structure with the same rmap owner, then the block will be in sublist
422  * and therefore doesn't need disposal.  If there are multiple rmap records
423  * with only the same rmap owner but the block is not owned by something with
424  * the same rmap owner, the block will be freed.
425  *
426  * The caller is responsible for locking the AG headers for the entire rebuild
427  * operation so that nothing else can sneak in and change the AG state while
428  * we're not looking.  We also assume that the caller already invalidated any
429  * buffers associated with @bitmap.
430  */
431 
432 /*
433  * Invalidate buffers for per-AG btree blocks we're dumping.  This function
434  * is not intended for use with file data repairs; we have bunmapi for that.
435  */
436 int
437 xrep_invalidate_blocks(
438 	struct xfs_scrub	*sc,
439 	struct xbitmap		*bitmap)
440 {
441 	struct xbitmap_range	*bmr;
442 	struct xbitmap_range	*n;
443 	struct xfs_buf		*bp;
444 	xfs_fsblock_t		fsbno;
445 
446 	/*
447 	 * For each block in each extent, see if there's an incore buffer for
448 	 * exactly that block; if so, invalidate it.  The buffer cache only
449 	 * lets us look for one buffer at a time, so we have to look one block
450 	 * at a time.  Avoid invalidating AG headers and post-EOFS blocks
451 	 * because we never own those; and if we can't TRYLOCK the buffer we
452 	 * assume it's owned by someone else.
453 	 */
454 	for_each_xbitmap_block(fsbno, bmr, n, bitmap) {
455 		/* Skip AG headers and post-EOFS blocks */
456 		if (!xfs_verify_fsbno(sc->mp, fsbno))
457 			continue;
458 		bp = xfs_buf_incore(sc->mp->m_ddev_targp,
459 				XFS_FSB_TO_DADDR(sc->mp, fsbno),
460 				XFS_FSB_TO_BB(sc->mp, 1), XBF_TRYLOCK);
461 		if (bp) {
462 			xfs_trans_bjoin(sc->tp, bp);
463 			xfs_trans_binval(sc->tp, bp);
464 		}
465 	}
466 
467 	return 0;
468 }
469 
470 /* Ensure the freelist is the correct size. */
471 int
472 xrep_fix_freelist(
473 	struct xfs_scrub	*sc,
474 	bool			can_shrink)
475 {
476 	struct xfs_alloc_arg	args = {0};
477 
478 	args.mp = sc->mp;
479 	args.tp = sc->tp;
480 	args.agno = sc->sa.agno;
481 	args.alignment = 1;
482 	args.pag = sc->sa.pag;
483 
484 	return xfs_alloc_fix_freelist(&args,
485 			can_shrink ? 0 : XFS_ALLOC_FLAG_NOSHRINK);
486 }
487 
488 /*
489  * Put a block back on the AGFL.
490  */
491 STATIC int
492 xrep_put_freelist(
493 	struct xfs_scrub	*sc,
494 	xfs_agblock_t		agbno)
495 {
496 	int			error;
497 
498 	/* Make sure there's space on the freelist. */
499 	error = xrep_fix_freelist(sc, true);
500 	if (error)
501 		return error;
502 
503 	/*
504 	 * Since we're "freeing" a lost block onto the AGFL, we have to
505 	 * create an rmap for the block prior to merging it or else other
506 	 * parts will break.
507 	 */
508 	error = xfs_rmap_alloc(sc->tp, sc->sa.agf_bp, sc->sa.agno, agbno, 1,
509 			&XFS_RMAP_OINFO_AG);
510 	if (error)
511 		return error;
512 
513 	/* Put the block on the AGFL. */
514 	error = xfs_alloc_put_freelist(sc->tp, sc->sa.agf_bp, sc->sa.agfl_bp,
515 			agbno, 0);
516 	if (error)
517 		return error;
518 	xfs_extent_busy_insert(sc->tp, sc->sa.agno, agbno, 1,
519 			XFS_EXTENT_BUSY_SKIP_DISCARD);
520 
521 	return 0;
522 }
523 
524 /* Dispose of a single block. */
525 STATIC int
526 xrep_reap_block(
527 	struct xfs_scrub		*sc,
528 	xfs_fsblock_t			fsbno,
529 	const struct xfs_owner_info	*oinfo,
530 	enum xfs_ag_resv_type		resv)
531 {
532 	struct xfs_btree_cur		*cur;
533 	struct xfs_buf			*agf_bp = NULL;
534 	xfs_agnumber_t			agno;
535 	xfs_agblock_t			agbno;
536 	bool				has_other_rmap;
537 	int				error;
538 
539 	agno = XFS_FSB_TO_AGNO(sc->mp, fsbno);
540 	agbno = XFS_FSB_TO_AGBNO(sc->mp, fsbno);
541 
542 	/*
543 	 * If we are repairing per-inode metadata, we need to read in the AGF
544 	 * buffer.  Otherwise, we're repairing a per-AG structure, so reuse
545 	 * the AGF buffer that the setup functions already grabbed.
546 	 */
547 	if (sc->ip) {
548 		error = xfs_alloc_read_agf(sc->mp, sc->tp, agno, 0, &agf_bp);
549 		if (error)
550 			return error;
551 	} else {
552 		agf_bp = sc->sa.agf_bp;
553 	}
554 	cur = xfs_rmapbt_init_cursor(sc->mp, sc->tp, agf_bp, agno);
555 
556 	/* Can we find any other rmappings? */
557 	error = xfs_rmap_has_other_keys(cur, agbno, 1, oinfo, &has_other_rmap);
558 	xfs_btree_del_cursor(cur, error);
559 	if (error)
560 		goto out_free;
561 
562 	/*
563 	 * If there are other rmappings, this block is cross linked and must
564 	 * not be freed.  Remove the reverse mapping and move on.  Otherwise,
565 	 * we were the only owner of the block, so free the extent, which will
566 	 * also remove the rmap.
567 	 *
568 	 * XXX: XFS doesn't support detecting the case where a single block
569 	 * metadata structure is crosslinked with a multi-block structure
570 	 * because the buffer cache doesn't detect aliasing problems, so we
571 	 * can't fix 100% of crosslinking problems (yet).  The verifiers will
572 	 * blow on writeout, the filesystem will shut down, and the admin gets
573 	 * to run xfs_repair.
574 	 */
575 	if (has_other_rmap)
576 		error = xfs_rmap_free(sc->tp, agf_bp, agno, agbno, 1, oinfo);
577 	else if (resv == XFS_AG_RESV_AGFL)
578 		error = xrep_put_freelist(sc, agbno);
579 	else
580 		error = xfs_free_extent(sc->tp, fsbno, 1, oinfo, resv);
581 	if (agf_bp != sc->sa.agf_bp)
582 		xfs_trans_brelse(sc->tp, agf_bp);
583 	if (error)
584 		return error;
585 
586 	if (sc->ip)
587 		return xfs_trans_roll_inode(&sc->tp, sc->ip);
588 	return xrep_roll_ag_trans(sc);
589 
590 out_free:
591 	if (agf_bp != sc->sa.agf_bp)
592 		xfs_trans_brelse(sc->tp, agf_bp);
593 	return error;
594 }
595 
596 /* Dispose of every block of every extent in the bitmap. */
597 int
598 xrep_reap_extents(
599 	struct xfs_scrub		*sc,
600 	struct xbitmap			*bitmap,
601 	const struct xfs_owner_info	*oinfo,
602 	enum xfs_ag_resv_type		type)
603 {
604 	struct xbitmap_range		*bmr;
605 	struct xbitmap_range		*n;
606 	xfs_fsblock_t			fsbno;
607 	int				error = 0;
608 
609 	ASSERT(xfs_sb_version_hasrmapbt(&sc->mp->m_sb));
610 
611 	for_each_xbitmap_block(fsbno, bmr, n, bitmap) {
612 		ASSERT(sc->ip != NULL ||
613 		       XFS_FSB_TO_AGNO(sc->mp, fsbno) == sc->sa.agno);
614 		trace_xrep_dispose_btree_extent(sc->mp,
615 				XFS_FSB_TO_AGNO(sc->mp, fsbno),
616 				XFS_FSB_TO_AGBNO(sc->mp, fsbno), 1);
617 
618 		error = xrep_reap_block(sc, fsbno, oinfo, type);
619 		if (error)
620 			break;
621 	}
622 
623 	return error;
624 }
625 
626 /*
627  * Finding per-AG Btree Roots for AGF/AGI Reconstruction
628  *
629  * If the AGF or AGI become slightly corrupted, it may be necessary to rebuild
630  * the AG headers by using the rmap data to rummage through the AG looking for
631  * btree roots.  This is not guaranteed to work if the AG is heavily damaged
632  * or the rmap data are corrupt.
633  *
634  * Callers of xrep_find_ag_btree_roots must lock the AGF and AGFL
635  * buffers if the AGF is being rebuilt; or the AGF and AGI buffers if the
636  * AGI is being rebuilt.  It must maintain these locks until it's safe for
637  * other threads to change the btrees' shapes.  The caller provides
638  * information about the btrees to look for by passing in an array of
639  * xrep_find_ag_btree with the (rmap owner, buf_ops, magic) fields set.
640  * The (root, height) fields will be set on return if anything is found.  The
641  * last element of the array should have a NULL buf_ops to mark the end of the
642  * array.
643  *
644  * For every rmapbt record matching any of the rmap owners in btree_info,
645  * read each block referenced by the rmap record.  If the block is a btree
646  * block from this filesystem matching any of the magic numbers and has a
647  * level higher than what we've already seen, remember the block and the
648  * height of the tree required to have such a block.  When the call completes,
649  * we return the highest block we've found for each btree description; those
650  * should be the roots.
651  */
652 
653 struct xrep_findroot {
654 	struct xfs_scrub		*sc;
655 	struct xfs_buf			*agfl_bp;
656 	struct xfs_agf			*agf;
657 	struct xrep_find_ag_btree	*btree_info;
658 };
659 
660 /* See if our block is in the AGFL. */
661 STATIC int
662 xrep_findroot_agfl_walk(
663 	struct xfs_mount	*mp,
664 	xfs_agblock_t		bno,
665 	void			*priv)
666 {
667 	xfs_agblock_t		*agbno = priv;
668 
669 	return (*agbno == bno) ? -ECANCELED : 0;
670 }
671 
672 /* Does this block match the btree information passed in? */
673 STATIC int
674 xrep_findroot_block(
675 	struct xrep_findroot		*ri,
676 	struct xrep_find_ag_btree	*fab,
677 	uint64_t			owner,
678 	xfs_agblock_t			agbno,
679 	bool				*done_with_block)
680 {
681 	struct xfs_mount		*mp = ri->sc->mp;
682 	struct xfs_buf			*bp;
683 	struct xfs_btree_block		*btblock;
684 	xfs_daddr_t			daddr;
685 	int				block_level;
686 	int				error = 0;
687 
688 	daddr = XFS_AGB_TO_DADDR(mp, ri->sc->sa.agno, agbno);
689 
690 	/*
691 	 * Blocks in the AGFL have stale contents that might just happen to
692 	 * have a matching magic and uuid.  We don't want to pull these blocks
693 	 * in as part of a tree root, so we have to filter out the AGFL stuff
694 	 * here.  If the AGFL looks insane we'll just refuse to repair.
695 	 */
696 	if (owner == XFS_RMAP_OWN_AG) {
697 		error = xfs_agfl_walk(mp, ri->agf, ri->agfl_bp,
698 				xrep_findroot_agfl_walk, &agbno);
699 		if (error == -ECANCELED)
700 			return 0;
701 		if (error)
702 			return error;
703 	}
704 
705 	/*
706 	 * Read the buffer into memory so that we can see if it's a match for
707 	 * our btree type.  We have no clue if it is beforehand, and we want to
708 	 * avoid xfs_trans_read_buf's behavior of dumping the DONE state (which
709 	 * will cause needless disk reads in subsequent calls to this function)
710 	 * and logging metadata verifier failures.
711 	 *
712 	 * Therefore, pass in NULL buffer ops.  If the buffer was already in
713 	 * memory from some other caller it will already have b_ops assigned.
714 	 * If it was in memory from a previous unsuccessful findroot_block
715 	 * call, the buffer won't have b_ops but it should be clean and ready
716 	 * for us to try to verify if the read call succeeds.  The same applies
717 	 * if the buffer wasn't in memory at all.
718 	 *
719 	 * Note: If we never match a btree type with this buffer, it will be
720 	 * left in memory with NULL b_ops.  This shouldn't be a problem unless
721 	 * the buffer gets written.
722 	 */
723 	error = xfs_trans_read_buf(mp, ri->sc->tp, mp->m_ddev_targp, daddr,
724 			mp->m_bsize, 0, &bp, NULL);
725 	if (error)
726 		return error;
727 
728 	/* Ensure the block magic matches the btree type we're looking for. */
729 	btblock = XFS_BUF_TO_BLOCK(bp);
730 	ASSERT(fab->buf_ops->magic[1] != 0);
731 	if (btblock->bb_magic != fab->buf_ops->magic[1])
732 		goto out;
733 
734 	/*
735 	 * If the buffer already has ops applied and they're not the ones for
736 	 * this btree type, we know this block doesn't match the btree and we
737 	 * can bail out.
738 	 *
739 	 * If the buffer ops match ours, someone else has already validated
740 	 * the block for us, so we can move on to checking if this is a root
741 	 * block candidate.
742 	 *
743 	 * If the buffer does not have ops, nobody has successfully validated
744 	 * the contents and the buffer cannot be dirty.  If the magic, uuid,
745 	 * and structure match this btree type then we'll move on to checking
746 	 * if it's a root block candidate.  If there is no match, bail out.
747 	 */
748 	if (bp->b_ops) {
749 		if (bp->b_ops != fab->buf_ops)
750 			goto out;
751 	} else {
752 		ASSERT(!xfs_trans_buf_is_dirty(bp));
753 		if (!uuid_equal(&btblock->bb_u.s.bb_uuid,
754 				&mp->m_sb.sb_meta_uuid))
755 			goto out;
756 		/*
757 		 * Read verifiers can reference b_ops, so we set the pointer
758 		 * here.  If the verifier fails we'll reset the buffer state
759 		 * to what it was before we touched the buffer.
760 		 */
761 		bp->b_ops = fab->buf_ops;
762 		fab->buf_ops->verify_read(bp);
763 		if (bp->b_error) {
764 			bp->b_ops = NULL;
765 			bp->b_error = 0;
766 			goto out;
767 		}
768 
769 		/*
770 		 * Some read verifiers will (re)set b_ops, so we must be
771 		 * careful not to change b_ops after running the verifier.
772 		 */
773 	}
774 
775 	/*
776 	 * This block passes the magic/uuid and verifier tests for this btree
777 	 * type.  We don't need the caller to try the other tree types.
778 	 */
779 	*done_with_block = true;
780 
781 	/*
782 	 * Compare this btree block's level to the height of the current
783 	 * candidate root block.
784 	 *
785 	 * If the level matches the root we found previously, throw away both
786 	 * blocks because there can't be two candidate roots.
787 	 *
788 	 * If level is lower in the tree than the root we found previously,
789 	 * ignore this block.
790 	 */
791 	block_level = xfs_btree_get_level(btblock);
792 	if (block_level + 1 == fab->height) {
793 		fab->root = NULLAGBLOCK;
794 		goto out;
795 	} else if (block_level < fab->height) {
796 		goto out;
797 	}
798 
799 	/*
800 	 * This is the highest block in the tree that we've found so far.
801 	 * Update the btree height to reflect what we've learned from this
802 	 * block.
803 	 */
804 	fab->height = block_level + 1;
805 
806 	/*
807 	 * If this block doesn't have sibling pointers, then it's the new root
808 	 * block candidate.  Otherwise, the root will be found farther up the
809 	 * tree.
810 	 */
811 	if (btblock->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK) &&
812 	    btblock->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
813 		fab->root = agbno;
814 	else
815 		fab->root = NULLAGBLOCK;
816 
817 	trace_xrep_findroot_block(mp, ri->sc->sa.agno, agbno,
818 			be32_to_cpu(btblock->bb_magic), fab->height - 1);
819 out:
820 	xfs_trans_brelse(ri->sc->tp, bp);
821 	return error;
822 }
823 
824 /*
825  * Do any of the blocks in this rmap record match one of the btrees we're
826  * looking for?
827  */
828 STATIC int
829 xrep_findroot_rmap(
830 	struct xfs_btree_cur		*cur,
831 	struct xfs_rmap_irec		*rec,
832 	void				*priv)
833 {
834 	struct xrep_findroot		*ri = priv;
835 	struct xrep_find_ag_btree	*fab;
836 	xfs_agblock_t			b;
837 	bool				done;
838 	int				error = 0;
839 
840 	/* Ignore anything that isn't AG metadata. */
841 	if (!XFS_RMAP_NON_INODE_OWNER(rec->rm_owner))
842 		return 0;
843 
844 	/* Otherwise scan each block + btree type. */
845 	for (b = 0; b < rec->rm_blockcount; b++) {
846 		done = false;
847 		for (fab = ri->btree_info; fab->buf_ops; fab++) {
848 			if (rec->rm_owner != fab->rmap_owner)
849 				continue;
850 			error = xrep_findroot_block(ri, fab,
851 					rec->rm_owner, rec->rm_startblock + b,
852 					&done);
853 			if (error)
854 				return error;
855 			if (done)
856 				break;
857 		}
858 	}
859 
860 	return 0;
861 }
862 
863 /* Find the roots of the per-AG btrees described in btree_info. */
864 int
865 xrep_find_ag_btree_roots(
866 	struct xfs_scrub		*sc,
867 	struct xfs_buf			*agf_bp,
868 	struct xrep_find_ag_btree	*btree_info,
869 	struct xfs_buf			*agfl_bp)
870 {
871 	struct xfs_mount		*mp = sc->mp;
872 	struct xrep_findroot		ri;
873 	struct xrep_find_ag_btree	*fab;
874 	struct xfs_btree_cur		*cur;
875 	int				error;
876 
877 	ASSERT(xfs_buf_islocked(agf_bp));
878 	ASSERT(agfl_bp == NULL || xfs_buf_islocked(agfl_bp));
879 
880 	ri.sc = sc;
881 	ri.btree_info = btree_info;
882 	ri.agf = agf_bp->b_addr;
883 	ri.agfl_bp = agfl_bp;
884 	for (fab = btree_info; fab->buf_ops; fab++) {
885 		ASSERT(agfl_bp || fab->rmap_owner != XFS_RMAP_OWN_AG);
886 		ASSERT(XFS_RMAP_NON_INODE_OWNER(fab->rmap_owner));
887 		fab->root = NULLAGBLOCK;
888 		fab->height = 0;
889 	}
890 
891 	cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.agno);
892 	error = xfs_rmap_query_all(cur, xrep_findroot_rmap, &ri);
893 	xfs_btree_del_cursor(cur, error);
894 
895 	return error;
896 }
897 
898 /* Force a quotacheck the next time we mount. */
899 void
900 xrep_force_quotacheck(
901 	struct xfs_scrub	*sc,
902 	xfs_dqtype_t		type)
903 {
904 	uint			flag;
905 
906 	flag = xfs_quota_chkd_flag(type);
907 	if (!(flag & sc->mp->m_qflags))
908 		return;
909 
910 	sc->mp->m_qflags &= ~flag;
911 	spin_lock(&sc->mp->m_sb_lock);
912 	sc->mp->m_sb.sb_qflags &= ~flag;
913 	spin_unlock(&sc->mp->m_sb_lock);
914 	xfs_log_sb(sc->tp);
915 }
916 
917 /*
918  * Attach dquots to this inode, or schedule quotacheck to fix them.
919  *
920  * This function ensures that the appropriate dquots are attached to an inode.
921  * We cannot allow the dquot code to allocate an on-disk dquot block here
922  * because we're already in transaction context with the inode locked.  The
923  * on-disk dquot should already exist anyway.  If the quota code signals
924  * corruption or missing quota information, schedule quotacheck, which will
925  * repair corruptions in the quota metadata.
926  */
927 int
928 xrep_ino_dqattach(
929 	struct xfs_scrub	*sc)
930 {
931 	int			error;
932 
933 	error = xfs_qm_dqattach_locked(sc->ip, false);
934 	switch (error) {
935 	case -EFSBADCRC:
936 	case -EFSCORRUPTED:
937 	case -ENOENT:
938 		xfs_err_ratelimited(sc->mp,
939 "inode %llu repair encountered quota error %d, quotacheck forced.",
940 				(unsigned long long)sc->ip->i_ino, error);
941 		if (XFS_IS_UQUOTA_ON(sc->mp) && !sc->ip->i_udquot)
942 			xrep_force_quotacheck(sc, XFS_DQTYPE_USER);
943 		if (XFS_IS_GQUOTA_ON(sc->mp) && !sc->ip->i_gdquot)
944 			xrep_force_quotacheck(sc, XFS_DQTYPE_GROUP);
945 		if (XFS_IS_PQUOTA_ON(sc->mp) && !sc->ip->i_pdquot)
946 			xrep_force_quotacheck(sc, XFS_DQTYPE_PROJ);
947 		/* fall through */
948 	case -ESRCH:
949 		error = 0;
950 		break;
951 	default:
952 		break;
953 	}
954 
955 	return error;
956 }
957