xref: /linux/fs/xfs/scrub/repair.c (revision c6ed444fd6fffaaf2e3857d926ed18bf3df81e8e)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2018 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_mount.h"
12 #include "xfs_defer.h"
13 #include "xfs_btree.h"
14 #include "xfs_bit.h"
15 #include "xfs_log_format.h"
16 #include "xfs_trans.h"
17 #include "xfs_sb.h"
18 #include "xfs_inode.h"
19 #include "xfs_icache.h"
20 #include "xfs_alloc.h"
21 #include "xfs_alloc_btree.h"
22 #include "xfs_ialloc.h"
23 #include "xfs_ialloc_btree.h"
24 #include "xfs_rmap.h"
25 #include "xfs_rmap_btree.h"
26 #include "xfs_refcount.h"
27 #include "xfs_refcount_btree.h"
28 #include "xfs_extent_busy.h"
29 #include "xfs_ag_resv.h"
30 #include "xfs_trans_space.h"
31 #include "xfs_quota.h"
32 #include "scrub/xfs_scrub.h"
33 #include "scrub/scrub.h"
34 #include "scrub/common.h"
35 #include "scrub/trace.h"
36 #include "scrub/repair.h"
37 #include "scrub/bitmap.h"
38 
39 /*
40  * Attempt to repair some metadata, if the metadata is corrupt and userspace
41  * told us to fix it.  This function returns -EAGAIN to mean "re-run scrub",
42  * and will set *fixed to true if it thinks it repaired anything.
43  */
44 int
45 xrep_attempt(
46 	struct xfs_inode	*ip,
47 	struct xfs_scrub	*sc,
48 	bool			*fixed)
49 {
50 	int			error = 0;
51 
52 	trace_xrep_attempt(ip, sc->sm, error);
53 
54 	xchk_ag_btcur_free(&sc->sa);
55 
56 	/* Repair whatever's broken. */
57 	ASSERT(sc->ops->repair);
58 	error = sc->ops->repair(sc);
59 	trace_xrep_done(ip, sc->sm, error);
60 	switch (error) {
61 	case 0:
62 		/*
63 		 * Repair succeeded.  Commit the fixes and perform a second
64 		 * scrub so that we can tell userspace if we fixed the problem.
65 		 */
66 		sc->sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
67 		*fixed = true;
68 		return -EAGAIN;
69 	case -EDEADLOCK:
70 	case -EAGAIN:
71 		/* Tell the caller to try again having grabbed all the locks. */
72 		if (!sc->try_harder) {
73 			sc->try_harder = true;
74 			return -EAGAIN;
75 		}
76 		/*
77 		 * We tried harder but still couldn't grab all the resources
78 		 * we needed to fix it.  The corruption has not been fixed,
79 		 * so report back to userspace.
80 		 */
81 		return -EFSCORRUPTED;
82 	default:
83 		return error;
84 	}
85 }
86 
87 /*
88  * Complain about unfixable problems in the filesystem.  We don't log
89  * corruptions when IFLAG_REPAIR wasn't set on the assumption that the driver
90  * program is xfs_scrub, which will call back with IFLAG_REPAIR set if the
91  * administrator isn't running xfs_scrub in no-repairs mode.
92  *
93  * Use this helper function because _ratelimited silently declares a static
94  * structure to track rate limiting information.
95  */
96 void
97 xrep_failure(
98 	struct xfs_mount	*mp)
99 {
100 	xfs_alert_ratelimited(mp,
101 "Corruption not fixed during online repair.  Unmount and run xfs_repair.");
102 }
103 
104 /*
105  * Repair probe -- userspace uses this to probe if we're willing to repair a
106  * given mountpoint.
107  */
108 int
109 xrep_probe(
110 	struct xfs_scrub	*sc)
111 {
112 	int			error = 0;
113 
114 	if (xchk_should_terminate(sc, &error))
115 		return error;
116 
117 	return 0;
118 }
119 
120 /*
121  * Roll a transaction, keeping the AG headers locked and reinitializing
122  * the btree cursors.
123  */
124 int
125 xrep_roll_ag_trans(
126 	struct xfs_scrub	*sc)
127 {
128 	int			error;
129 
130 	/* Keep the AG header buffers locked so we can keep going. */
131 	if (sc->sa.agi_bp)
132 		xfs_trans_bhold(sc->tp, sc->sa.agi_bp);
133 	if (sc->sa.agf_bp)
134 		xfs_trans_bhold(sc->tp, sc->sa.agf_bp);
135 	if (sc->sa.agfl_bp)
136 		xfs_trans_bhold(sc->tp, sc->sa.agfl_bp);
137 
138 	/* Roll the transaction. */
139 	error = xfs_trans_roll(&sc->tp);
140 	if (error)
141 		goto out_release;
142 
143 	/* Join AG headers to the new transaction. */
144 	if (sc->sa.agi_bp)
145 		xfs_trans_bjoin(sc->tp, sc->sa.agi_bp);
146 	if (sc->sa.agf_bp)
147 		xfs_trans_bjoin(sc->tp, sc->sa.agf_bp);
148 	if (sc->sa.agfl_bp)
149 		xfs_trans_bjoin(sc->tp, sc->sa.agfl_bp);
150 
151 	return 0;
152 
153 out_release:
154 	/*
155 	 * Rolling failed, so release the hold on the buffers.  The
156 	 * buffers will be released during teardown on our way out
157 	 * of the kernel.
158 	 */
159 	if (sc->sa.agi_bp)
160 		xfs_trans_bhold_release(sc->tp, sc->sa.agi_bp);
161 	if (sc->sa.agf_bp)
162 		xfs_trans_bhold_release(sc->tp, sc->sa.agf_bp);
163 	if (sc->sa.agfl_bp)
164 		xfs_trans_bhold_release(sc->tp, sc->sa.agfl_bp);
165 
166 	return error;
167 }
168 
169 /*
170  * Does the given AG have enough space to rebuild a btree?  Neither AG
171  * reservation can be critical, and we must have enough space (factoring
172  * in AG reservations) to construct a whole btree.
173  */
174 bool
175 xrep_ag_has_space(
176 	struct xfs_perag	*pag,
177 	xfs_extlen_t		nr_blocks,
178 	enum xfs_ag_resv_type	type)
179 {
180 	return  !xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) &&
181 		!xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA) &&
182 		pag->pagf_freeblks > xfs_ag_resv_needed(pag, type) + nr_blocks;
183 }
184 
185 /*
186  * Figure out how many blocks to reserve for an AG repair.  We calculate the
187  * worst case estimate for the number of blocks we'd need to rebuild one of
188  * any type of per-AG btree.
189  */
190 xfs_extlen_t
191 xrep_calc_ag_resblks(
192 	struct xfs_scrub		*sc)
193 {
194 	struct xfs_mount		*mp = sc->mp;
195 	struct xfs_scrub_metadata	*sm = sc->sm;
196 	struct xfs_perag		*pag;
197 	struct xfs_buf			*bp;
198 	xfs_agino_t			icount = 0;
199 	xfs_extlen_t			aglen = 0;
200 	xfs_extlen_t			usedlen;
201 	xfs_extlen_t			freelen;
202 	xfs_extlen_t			bnobt_sz;
203 	xfs_extlen_t			inobt_sz;
204 	xfs_extlen_t			rmapbt_sz;
205 	xfs_extlen_t			refcbt_sz;
206 	int				error;
207 
208 	if (!(sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR))
209 		return 0;
210 
211 	/* Use in-core counters if possible. */
212 	pag = xfs_perag_get(mp, sm->sm_agno);
213 	if (pag->pagi_init)
214 		icount = pag->pagi_count;
215 
216 	/*
217 	 * Otherwise try to get the actual counters from disk; if not, make
218 	 * some worst case assumptions.
219 	 */
220 	if (icount == 0) {
221 		error = xfs_ialloc_read_agi(mp, NULL, sm->sm_agno, &bp);
222 		if (error) {
223 			icount = mp->m_sb.sb_agblocks / mp->m_sb.sb_inopblock;
224 		} else {
225 			icount = pag->pagi_count;
226 			xfs_buf_relse(bp);
227 		}
228 	}
229 
230 	/* Now grab the block counters from the AGF. */
231 	error = xfs_alloc_read_agf(mp, NULL, sm->sm_agno, 0, &bp);
232 	if (error) {
233 		aglen = mp->m_sb.sb_agblocks;
234 		freelen = aglen;
235 		usedlen = aglen;
236 	} else {
237 		aglen = be32_to_cpu(XFS_BUF_TO_AGF(bp)->agf_length);
238 		freelen = pag->pagf_freeblks;
239 		usedlen = aglen - freelen;
240 		xfs_buf_relse(bp);
241 	}
242 	xfs_perag_put(pag);
243 
244 	trace_xrep_calc_ag_resblks(mp, sm->sm_agno, icount, aglen,
245 			freelen, usedlen);
246 
247 	/*
248 	 * Figure out how many blocks we'd need worst case to rebuild
249 	 * each type of btree.  Note that we can only rebuild the
250 	 * bnobt/cntbt or inobt/finobt as pairs.
251 	 */
252 	bnobt_sz = 2 * xfs_allocbt_calc_size(mp, freelen);
253 	if (xfs_sb_version_hassparseinodes(&mp->m_sb))
254 		inobt_sz = xfs_iallocbt_calc_size(mp, icount /
255 				XFS_INODES_PER_HOLEMASK_BIT);
256 	else
257 		inobt_sz = xfs_iallocbt_calc_size(mp, icount /
258 				XFS_INODES_PER_CHUNK);
259 	if (xfs_sb_version_hasfinobt(&mp->m_sb))
260 		inobt_sz *= 2;
261 	if (xfs_sb_version_hasreflink(&mp->m_sb))
262 		refcbt_sz = xfs_refcountbt_calc_size(mp, usedlen);
263 	else
264 		refcbt_sz = 0;
265 	if (xfs_sb_version_hasrmapbt(&mp->m_sb)) {
266 		/*
267 		 * Guess how many blocks we need to rebuild the rmapbt.
268 		 * For non-reflink filesystems we can't have more records than
269 		 * used blocks.  However, with reflink it's possible to have
270 		 * more than one rmap record per AG block.  We don't know how
271 		 * many rmaps there could be in the AG, so we start off with
272 		 * what we hope is an generous over-estimation.
273 		 */
274 		if (xfs_sb_version_hasreflink(&mp->m_sb))
275 			rmapbt_sz = xfs_rmapbt_calc_size(mp,
276 					(unsigned long long)aglen * 2);
277 		else
278 			rmapbt_sz = xfs_rmapbt_calc_size(mp, usedlen);
279 	} else {
280 		rmapbt_sz = 0;
281 	}
282 
283 	trace_xrep_calc_ag_resblks_btsize(mp, sm->sm_agno, bnobt_sz,
284 			inobt_sz, rmapbt_sz, refcbt_sz);
285 
286 	return max(max(bnobt_sz, inobt_sz), max(rmapbt_sz, refcbt_sz));
287 }
288 
289 /* Allocate a block in an AG. */
290 int
291 xrep_alloc_ag_block(
292 	struct xfs_scrub	*sc,
293 	struct xfs_owner_info	*oinfo,
294 	xfs_fsblock_t		*fsbno,
295 	enum xfs_ag_resv_type	resv)
296 {
297 	struct xfs_alloc_arg	args = {0};
298 	xfs_agblock_t		bno;
299 	int			error;
300 
301 	switch (resv) {
302 	case XFS_AG_RESV_AGFL:
303 	case XFS_AG_RESV_RMAPBT:
304 		error = xfs_alloc_get_freelist(sc->tp, sc->sa.agf_bp, &bno, 1);
305 		if (error)
306 			return error;
307 		if (bno == NULLAGBLOCK)
308 			return -ENOSPC;
309 		xfs_extent_busy_reuse(sc->mp, sc->sa.agno, bno,
310 				1, false);
311 		*fsbno = XFS_AGB_TO_FSB(sc->mp, sc->sa.agno, bno);
312 		if (resv == XFS_AG_RESV_RMAPBT)
313 			xfs_ag_resv_rmapbt_alloc(sc->mp, sc->sa.agno);
314 		return 0;
315 	default:
316 		break;
317 	}
318 
319 	args.tp = sc->tp;
320 	args.mp = sc->mp;
321 	args.oinfo = *oinfo;
322 	args.fsbno = XFS_AGB_TO_FSB(args.mp, sc->sa.agno, 0);
323 	args.minlen = 1;
324 	args.maxlen = 1;
325 	args.prod = 1;
326 	args.type = XFS_ALLOCTYPE_THIS_AG;
327 	args.resv = resv;
328 
329 	error = xfs_alloc_vextent(&args);
330 	if (error)
331 		return error;
332 	if (args.fsbno == NULLFSBLOCK)
333 		return -ENOSPC;
334 	ASSERT(args.len == 1);
335 	*fsbno = args.fsbno;
336 
337 	return 0;
338 }
339 
340 /* Initialize a new AG btree root block with zero entries. */
341 int
342 xrep_init_btblock(
343 	struct xfs_scrub		*sc,
344 	xfs_fsblock_t			fsb,
345 	struct xfs_buf			**bpp,
346 	xfs_btnum_t			btnum,
347 	const struct xfs_buf_ops	*ops)
348 {
349 	struct xfs_trans		*tp = sc->tp;
350 	struct xfs_mount		*mp = sc->mp;
351 	struct xfs_buf			*bp;
352 
353 	trace_xrep_init_btblock(mp, XFS_FSB_TO_AGNO(mp, fsb),
354 			XFS_FSB_TO_AGBNO(mp, fsb), btnum);
355 
356 	ASSERT(XFS_FSB_TO_AGNO(mp, fsb) == sc->sa.agno);
357 	bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, XFS_FSB_TO_DADDR(mp, fsb),
358 			XFS_FSB_TO_BB(mp, 1), 0);
359 	xfs_buf_zero(bp, 0, BBTOB(bp->b_length));
360 	xfs_btree_init_block(mp, bp, btnum, 0, 0, sc->sa.agno, 0);
361 	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_BTREE_BUF);
362 	xfs_trans_log_buf(tp, bp, 0, bp->b_length);
363 	bp->b_ops = ops;
364 	*bpp = bp;
365 
366 	return 0;
367 }
368 
369 /*
370  * Reconstructing per-AG Btrees
371  *
372  * When a space btree is corrupt, we don't bother trying to fix it.  Instead,
373  * we scan secondary space metadata to derive the records that should be in
374  * the damaged btree, initialize a fresh btree root, and insert the records.
375  * Note that for rebuilding the rmapbt we scan all the primary data to
376  * generate the new records.
377  *
378  * However, that leaves the matter of removing all the metadata describing the
379  * old broken structure.  For primary metadata we use the rmap data to collect
380  * every extent with a matching rmap owner (bitmap); we then iterate all other
381  * metadata structures with the same rmap owner to collect the extents that
382  * cannot be removed (sublist).  We then subtract sublist from bitmap to
383  * derive the blocks that were used by the old btree.  These blocks can be
384  * reaped.
385  *
386  * For rmapbt reconstructions we must use different tactics for extent
387  * collection.  First we iterate all primary metadata (this excludes the old
388  * rmapbt, obviously) to generate new rmap records.  The gaps in the rmap
389  * records are collected as bitmap.  The bnobt records are collected as
390  * sublist.  As with the other btrees we subtract sublist from bitmap, and the
391  * result (since the rmapbt lives in the free space) are the blocks from the
392  * old rmapbt.
393  *
394  * Disposal of Blocks from Old per-AG Btrees
395  *
396  * Now that we've constructed a new btree to replace the damaged one, we want
397  * to dispose of the blocks that (we think) the old btree was using.
398  * Previously, we used the rmapbt to collect the extents (bitmap) with the
399  * rmap owner corresponding to the tree we rebuilt, collected extents for any
400  * blocks with the same rmap owner that are owned by another data structure
401  * (sublist), and subtracted sublist from bitmap.  In theory the extents
402  * remaining in bitmap are the old btree's blocks.
403  *
404  * Unfortunately, it's possible that the btree was crosslinked with other
405  * blocks on disk.  The rmap data can tell us if there are multiple owners, so
406  * if the rmapbt says there is an owner of this block other than @oinfo, then
407  * the block is crosslinked.  Remove the reverse mapping and continue.
408  *
409  * If there is one rmap record, we can free the block, which removes the
410  * reverse mapping but doesn't add the block to the free space.  Our repair
411  * strategy is to hope the other metadata objects crosslinked on this block
412  * will be rebuilt (atop different blocks), thereby removing all the cross
413  * links.
414  *
415  * If there are no rmap records at all, we also free the block.  If the btree
416  * being rebuilt lives in the free space (bnobt/cntbt/rmapbt) then there isn't
417  * supposed to be a rmap record and everything is ok.  For other btrees there
418  * had to have been an rmap entry for the block to have ended up on @bitmap,
419  * so if it's gone now there's something wrong and the fs will shut down.
420  *
421  * Note: If there are multiple rmap records with only the same rmap owner as
422  * the btree we're trying to rebuild and the block is indeed owned by another
423  * data structure with the same rmap owner, then the block will be in sublist
424  * and therefore doesn't need disposal.  If there are multiple rmap records
425  * with only the same rmap owner but the block is not owned by something with
426  * the same rmap owner, the block will be freed.
427  *
428  * The caller is responsible for locking the AG headers for the entire rebuild
429  * operation so that nothing else can sneak in and change the AG state while
430  * we're not looking.  We also assume that the caller already invalidated any
431  * buffers associated with @bitmap.
432  */
433 
434 /*
435  * Invalidate buffers for per-AG btree blocks we're dumping.  This function
436  * is not intended for use with file data repairs; we have bunmapi for that.
437  */
438 int
439 xrep_invalidate_blocks(
440 	struct xfs_scrub	*sc,
441 	struct xfs_bitmap	*bitmap)
442 {
443 	struct xfs_bitmap_range	*bmr;
444 	struct xfs_bitmap_range	*n;
445 	struct xfs_buf		*bp;
446 	xfs_fsblock_t		fsbno;
447 
448 	/*
449 	 * For each block in each extent, see if there's an incore buffer for
450 	 * exactly that block; if so, invalidate it.  The buffer cache only
451 	 * lets us look for one buffer at a time, so we have to look one block
452 	 * at a time.  Avoid invalidating AG headers and post-EOFS blocks
453 	 * because we never own those; and if we can't TRYLOCK the buffer we
454 	 * assume it's owned by someone else.
455 	 */
456 	for_each_xfs_bitmap_block(fsbno, bmr, n, bitmap) {
457 		/* Skip AG headers and post-EOFS blocks */
458 		if (!xfs_verify_fsbno(sc->mp, fsbno))
459 			continue;
460 		bp = xfs_buf_incore(sc->mp->m_ddev_targp,
461 				XFS_FSB_TO_DADDR(sc->mp, fsbno),
462 				XFS_FSB_TO_BB(sc->mp, 1), XBF_TRYLOCK);
463 		if (bp) {
464 			xfs_trans_bjoin(sc->tp, bp);
465 			xfs_trans_binval(sc->tp, bp);
466 		}
467 	}
468 
469 	return 0;
470 }
471 
472 /* Ensure the freelist is the correct size. */
473 int
474 xrep_fix_freelist(
475 	struct xfs_scrub	*sc,
476 	bool			can_shrink)
477 {
478 	struct xfs_alloc_arg	args = {0};
479 
480 	args.mp = sc->mp;
481 	args.tp = sc->tp;
482 	args.agno = sc->sa.agno;
483 	args.alignment = 1;
484 	args.pag = sc->sa.pag;
485 
486 	return xfs_alloc_fix_freelist(&args,
487 			can_shrink ? 0 : XFS_ALLOC_FLAG_NOSHRINK);
488 }
489 
490 /*
491  * Put a block back on the AGFL.
492  */
493 STATIC int
494 xrep_put_freelist(
495 	struct xfs_scrub	*sc,
496 	xfs_agblock_t		agbno)
497 {
498 	struct xfs_owner_info	oinfo;
499 	int			error;
500 
501 	/* Make sure there's space on the freelist. */
502 	error = xrep_fix_freelist(sc, true);
503 	if (error)
504 		return error;
505 
506 	/*
507 	 * Since we're "freeing" a lost block onto the AGFL, we have to
508 	 * create an rmap for the block prior to merging it or else other
509 	 * parts will break.
510 	 */
511 	xfs_rmap_ag_owner(&oinfo, XFS_RMAP_OWN_AG);
512 	error = xfs_rmap_alloc(sc->tp, sc->sa.agf_bp, sc->sa.agno, agbno, 1,
513 			&oinfo);
514 	if (error)
515 		return error;
516 
517 	/* Put the block on the AGFL. */
518 	error = xfs_alloc_put_freelist(sc->tp, sc->sa.agf_bp, sc->sa.agfl_bp,
519 			agbno, 0);
520 	if (error)
521 		return error;
522 	xfs_extent_busy_insert(sc->tp, sc->sa.agno, agbno, 1,
523 			XFS_EXTENT_BUSY_SKIP_DISCARD);
524 
525 	return 0;
526 }
527 
528 /* Dispose of a single block. */
529 STATIC int
530 xrep_reap_block(
531 	struct xfs_scrub	*sc,
532 	xfs_fsblock_t		fsbno,
533 	struct xfs_owner_info	*oinfo,
534 	enum xfs_ag_resv_type	resv)
535 {
536 	struct xfs_btree_cur	*cur;
537 	struct xfs_buf		*agf_bp = NULL;
538 	xfs_agnumber_t		agno;
539 	xfs_agblock_t		agbno;
540 	bool			has_other_rmap;
541 	int			error;
542 
543 	agno = XFS_FSB_TO_AGNO(sc->mp, fsbno);
544 	agbno = XFS_FSB_TO_AGBNO(sc->mp, fsbno);
545 
546 	/*
547 	 * If we are repairing per-inode metadata, we need to read in the AGF
548 	 * buffer.  Otherwise, we're repairing a per-AG structure, so reuse
549 	 * the AGF buffer that the setup functions already grabbed.
550 	 */
551 	if (sc->ip) {
552 		error = xfs_alloc_read_agf(sc->mp, sc->tp, agno, 0, &agf_bp);
553 		if (error)
554 			return error;
555 		if (!agf_bp)
556 			return -ENOMEM;
557 	} else {
558 		agf_bp = sc->sa.agf_bp;
559 	}
560 	cur = xfs_rmapbt_init_cursor(sc->mp, sc->tp, agf_bp, agno);
561 
562 	/* Can we find any other rmappings? */
563 	error = xfs_rmap_has_other_keys(cur, agbno, 1, oinfo, &has_other_rmap);
564 	xfs_btree_del_cursor(cur, error);
565 	if (error)
566 		goto out_free;
567 
568 	/*
569 	 * If there are other rmappings, this block is cross linked and must
570 	 * not be freed.  Remove the reverse mapping and move on.  Otherwise,
571 	 * we were the only owner of the block, so free the extent, which will
572 	 * also remove the rmap.
573 	 *
574 	 * XXX: XFS doesn't support detecting the case where a single block
575 	 * metadata structure is crosslinked with a multi-block structure
576 	 * because the buffer cache doesn't detect aliasing problems, so we
577 	 * can't fix 100% of crosslinking problems (yet).  The verifiers will
578 	 * blow on writeout, the filesystem will shut down, and the admin gets
579 	 * to run xfs_repair.
580 	 */
581 	if (has_other_rmap)
582 		error = xfs_rmap_free(sc->tp, agf_bp, agno, agbno, 1, oinfo);
583 	else if (resv == XFS_AG_RESV_AGFL)
584 		error = xrep_put_freelist(sc, agbno);
585 	else
586 		error = xfs_free_extent(sc->tp, fsbno, 1, oinfo, resv);
587 	if (agf_bp != sc->sa.agf_bp)
588 		xfs_trans_brelse(sc->tp, agf_bp);
589 	if (error)
590 		return error;
591 
592 	if (sc->ip)
593 		return xfs_trans_roll_inode(&sc->tp, sc->ip);
594 	return xrep_roll_ag_trans(sc);
595 
596 out_free:
597 	if (agf_bp != sc->sa.agf_bp)
598 		xfs_trans_brelse(sc->tp, agf_bp);
599 	return error;
600 }
601 
602 /* Dispose of every block of every extent in the bitmap. */
603 int
604 xrep_reap_extents(
605 	struct xfs_scrub	*sc,
606 	struct xfs_bitmap	*bitmap,
607 	struct xfs_owner_info	*oinfo,
608 	enum xfs_ag_resv_type	type)
609 {
610 	struct xfs_bitmap_range	*bmr;
611 	struct xfs_bitmap_range	*n;
612 	xfs_fsblock_t		fsbno;
613 	int			error = 0;
614 
615 	ASSERT(xfs_sb_version_hasrmapbt(&sc->mp->m_sb));
616 
617 	for_each_xfs_bitmap_block(fsbno, bmr, n, bitmap) {
618 		ASSERT(sc->ip != NULL ||
619 		       XFS_FSB_TO_AGNO(sc->mp, fsbno) == sc->sa.agno);
620 		trace_xrep_dispose_btree_extent(sc->mp,
621 				XFS_FSB_TO_AGNO(sc->mp, fsbno),
622 				XFS_FSB_TO_AGBNO(sc->mp, fsbno), 1);
623 
624 		error = xrep_reap_block(sc, fsbno, oinfo, type);
625 		if (error)
626 			goto out;
627 	}
628 
629 out:
630 	xfs_bitmap_destroy(bitmap);
631 	return error;
632 }
633 
634 /*
635  * Finding per-AG Btree Roots for AGF/AGI Reconstruction
636  *
637  * If the AGF or AGI become slightly corrupted, it may be necessary to rebuild
638  * the AG headers by using the rmap data to rummage through the AG looking for
639  * btree roots.  This is not guaranteed to work if the AG is heavily damaged
640  * or the rmap data are corrupt.
641  *
642  * Callers of xrep_find_ag_btree_roots must lock the AGF and AGFL
643  * buffers if the AGF is being rebuilt; or the AGF and AGI buffers if the
644  * AGI is being rebuilt.  It must maintain these locks until it's safe for
645  * other threads to change the btrees' shapes.  The caller provides
646  * information about the btrees to look for by passing in an array of
647  * xrep_find_ag_btree with the (rmap owner, buf_ops, magic) fields set.
648  * The (root, height) fields will be set on return if anything is found.  The
649  * last element of the array should have a NULL buf_ops to mark the end of the
650  * array.
651  *
652  * For every rmapbt record matching any of the rmap owners in btree_info,
653  * read each block referenced by the rmap record.  If the block is a btree
654  * block from this filesystem matching any of the magic numbers and has a
655  * level higher than what we've already seen, remember the block and the
656  * height of the tree required to have such a block.  When the call completes,
657  * we return the highest block we've found for each btree description; those
658  * should be the roots.
659  */
660 
661 struct xrep_findroot {
662 	struct xfs_scrub		*sc;
663 	struct xfs_buf			*agfl_bp;
664 	struct xfs_agf			*agf;
665 	struct xrep_find_ag_btree	*btree_info;
666 };
667 
668 /* See if our block is in the AGFL. */
669 STATIC int
670 xrep_findroot_agfl_walk(
671 	struct xfs_mount	*mp,
672 	xfs_agblock_t		bno,
673 	void			*priv)
674 {
675 	xfs_agblock_t		*agbno = priv;
676 
677 	return (*agbno == bno) ? XFS_BTREE_QUERY_RANGE_ABORT : 0;
678 }
679 
680 /* Does this block match the btree information passed in? */
681 STATIC int
682 xrep_findroot_block(
683 	struct xrep_findroot		*ri,
684 	struct xrep_find_ag_btree	*fab,
685 	uint64_t			owner,
686 	xfs_agblock_t			agbno,
687 	bool				*found_it)
688 {
689 	struct xfs_mount		*mp = ri->sc->mp;
690 	struct xfs_buf			*bp;
691 	struct xfs_btree_block		*btblock;
692 	xfs_daddr_t			daddr;
693 	int				error;
694 
695 	daddr = XFS_AGB_TO_DADDR(mp, ri->sc->sa.agno, agbno);
696 
697 	/*
698 	 * Blocks in the AGFL have stale contents that might just happen to
699 	 * have a matching magic and uuid.  We don't want to pull these blocks
700 	 * in as part of a tree root, so we have to filter out the AGFL stuff
701 	 * here.  If the AGFL looks insane we'll just refuse to repair.
702 	 */
703 	if (owner == XFS_RMAP_OWN_AG) {
704 		error = xfs_agfl_walk(mp, ri->agf, ri->agfl_bp,
705 				xrep_findroot_agfl_walk, &agbno);
706 		if (error == XFS_BTREE_QUERY_RANGE_ABORT)
707 			return 0;
708 		if (error)
709 			return error;
710 	}
711 
712 	error = xfs_trans_read_buf(mp, ri->sc->tp, mp->m_ddev_targp, daddr,
713 			mp->m_bsize, 0, &bp, NULL);
714 	if (error)
715 		return error;
716 
717 	/*
718 	 * Does this look like a block matching our fs and higher than any
719 	 * other block we've found so far?  If so, reattach buffer verifiers
720 	 * so the AIL won't complain if the buffer is also dirty.
721 	 */
722 	btblock = XFS_BUF_TO_BLOCK(bp);
723 	if (be32_to_cpu(btblock->bb_magic) != fab->magic)
724 		goto out;
725 	if (xfs_sb_version_hascrc(&mp->m_sb) &&
726 	    !uuid_equal(&btblock->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
727 		goto out;
728 	bp->b_ops = fab->buf_ops;
729 
730 	/* Ignore this block if it's lower in the tree than we've seen. */
731 	if (fab->root != NULLAGBLOCK &&
732 	    xfs_btree_get_level(btblock) < fab->height)
733 		goto out;
734 
735 	/* Make sure we pass the verifiers. */
736 	bp->b_ops->verify_read(bp);
737 	if (bp->b_error)
738 		goto out;
739 	fab->root = agbno;
740 	fab->height = xfs_btree_get_level(btblock) + 1;
741 	*found_it = true;
742 
743 	trace_xrep_findroot_block(mp, ri->sc->sa.agno, agbno,
744 			be32_to_cpu(btblock->bb_magic), fab->height - 1);
745 out:
746 	xfs_trans_brelse(ri->sc->tp, bp);
747 	return error;
748 }
749 
750 /*
751  * Do any of the blocks in this rmap record match one of the btrees we're
752  * looking for?
753  */
754 STATIC int
755 xrep_findroot_rmap(
756 	struct xfs_btree_cur		*cur,
757 	struct xfs_rmap_irec		*rec,
758 	void				*priv)
759 {
760 	struct xrep_findroot		*ri = priv;
761 	struct xrep_find_ag_btree	*fab;
762 	xfs_agblock_t			b;
763 	bool				found_it;
764 	int				error = 0;
765 
766 	/* Ignore anything that isn't AG metadata. */
767 	if (!XFS_RMAP_NON_INODE_OWNER(rec->rm_owner))
768 		return 0;
769 
770 	/* Otherwise scan each block + btree type. */
771 	for (b = 0; b < rec->rm_blockcount; b++) {
772 		found_it = false;
773 		for (fab = ri->btree_info; fab->buf_ops; fab++) {
774 			if (rec->rm_owner != fab->rmap_owner)
775 				continue;
776 			error = xrep_findroot_block(ri, fab,
777 					rec->rm_owner, rec->rm_startblock + b,
778 					&found_it);
779 			if (error)
780 				return error;
781 			if (found_it)
782 				break;
783 		}
784 	}
785 
786 	return 0;
787 }
788 
789 /* Find the roots of the per-AG btrees described in btree_info. */
790 int
791 xrep_find_ag_btree_roots(
792 	struct xfs_scrub		*sc,
793 	struct xfs_buf			*agf_bp,
794 	struct xrep_find_ag_btree	*btree_info,
795 	struct xfs_buf			*agfl_bp)
796 {
797 	struct xfs_mount		*mp = sc->mp;
798 	struct xrep_findroot		ri;
799 	struct xrep_find_ag_btree	*fab;
800 	struct xfs_btree_cur		*cur;
801 	int				error;
802 
803 	ASSERT(xfs_buf_islocked(agf_bp));
804 	ASSERT(agfl_bp == NULL || xfs_buf_islocked(agfl_bp));
805 
806 	ri.sc = sc;
807 	ri.btree_info = btree_info;
808 	ri.agf = XFS_BUF_TO_AGF(agf_bp);
809 	ri.agfl_bp = agfl_bp;
810 	for (fab = btree_info; fab->buf_ops; fab++) {
811 		ASSERT(agfl_bp || fab->rmap_owner != XFS_RMAP_OWN_AG);
812 		ASSERT(XFS_RMAP_NON_INODE_OWNER(fab->rmap_owner));
813 		fab->root = NULLAGBLOCK;
814 		fab->height = 0;
815 	}
816 
817 	cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.agno);
818 	error = xfs_rmap_query_all(cur, xrep_findroot_rmap, &ri);
819 	xfs_btree_del_cursor(cur, error);
820 
821 	return error;
822 }
823 
824 /* Force a quotacheck the next time we mount. */
825 void
826 xrep_force_quotacheck(
827 	struct xfs_scrub	*sc,
828 	uint			dqtype)
829 {
830 	uint			flag;
831 
832 	flag = xfs_quota_chkd_flag(dqtype);
833 	if (!(flag & sc->mp->m_qflags))
834 		return;
835 
836 	sc->mp->m_qflags &= ~flag;
837 	spin_lock(&sc->mp->m_sb_lock);
838 	sc->mp->m_sb.sb_qflags &= ~flag;
839 	spin_unlock(&sc->mp->m_sb_lock);
840 	xfs_log_sb(sc->tp);
841 }
842 
843 /*
844  * Attach dquots to this inode, or schedule quotacheck to fix them.
845  *
846  * This function ensures that the appropriate dquots are attached to an inode.
847  * We cannot allow the dquot code to allocate an on-disk dquot block here
848  * because we're already in transaction context with the inode locked.  The
849  * on-disk dquot should already exist anyway.  If the quota code signals
850  * corruption or missing quota information, schedule quotacheck, which will
851  * repair corruptions in the quota metadata.
852  */
853 int
854 xrep_ino_dqattach(
855 	struct xfs_scrub	*sc)
856 {
857 	int			error;
858 
859 	error = xfs_qm_dqattach_locked(sc->ip, false);
860 	switch (error) {
861 	case -EFSBADCRC:
862 	case -EFSCORRUPTED:
863 	case -ENOENT:
864 		xfs_err_ratelimited(sc->mp,
865 "inode %llu repair encountered quota error %d, quotacheck forced.",
866 				(unsigned long long)sc->ip->i_ino, error);
867 		if (XFS_IS_UQUOTA_ON(sc->mp) && !sc->ip->i_udquot)
868 			xrep_force_quotacheck(sc, XFS_DQ_USER);
869 		if (XFS_IS_GQUOTA_ON(sc->mp) && !sc->ip->i_gdquot)
870 			xrep_force_quotacheck(sc, XFS_DQ_GROUP);
871 		if (XFS_IS_PQUOTA_ON(sc->mp) && !sc->ip->i_pdquot)
872 			xrep_force_quotacheck(sc, XFS_DQ_PROJ);
873 		/* fall through */
874 	case -ESRCH:
875 		error = 0;
876 		break;
877 	default:
878 		break;
879 	}
880 
881 	return error;
882 }
883