1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (C) 2018 Oracle. All Rights Reserved. 4 * Author: Darrick J. Wong <darrick.wong@oracle.com> 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_trans_resv.h" 11 #include "xfs_mount.h" 12 #include "xfs_defer.h" 13 #include "xfs_btree.h" 14 #include "xfs_bit.h" 15 #include "xfs_log_format.h" 16 #include "xfs_trans.h" 17 #include "xfs_sb.h" 18 #include "xfs_inode.h" 19 #include "xfs_icache.h" 20 #include "xfs_alloc.h" 21 #include "xfs_alloc_btree.h" 22 #include "xfs_ialloc.h" 23 #include "xfs_ialloc_btree.h" 24 #include "xfs_rmap.h" 25 #include "xfs_rmap_btree.h" 26 #include "xfs_refcount.h" 27 #include "xfs_refcount_btree.h" 28 #include "xfs_extent_busy.h" 29 #include "xfs_ag_resv.h" 30 #include "xfs_trans_space.h" 31 #include "xfs_quota.h" 32 #include "scrub/xfs_scrub.h" 33 #include "scrub/scrub.h" 34 #include "scrub/common.h" 35 #include "scrub/trace.h" 36 #include "scrub/repair.h" 37 #include "scrub/bitmap.h" 38 39 /* 40 * Attempt to repair some metadata, if the metadata is corrupt and userspace 41 * told us to fix it. This function returns -EAGAIN to mean "re-run scrub", 42 * and will set *fixed to true if it thinks it repaired anything. 43 */ 44 int 45 xrep_attempt( 46 struct xfs_inode *ip, 47 struct xfs_scrub *sc, 48 bool *fixed) 49 { 50 int error = 0; 51 52 trace_xrep_attempt(ip, sc->sm, error); 53 54 xchk_ag_btcur_free(&sc->sa); 55 56 /* Repair whatever's broken. */ 57 ASSERT(sc->ops->repair); 58 error = sc->ops->repair(sc); 59 trace_xrep_done(ip, sc->sm, error); 60 switch (error) { 61 case 0: 62 /* 63 * Repair succeeded. Commit the fixes and perform a second 64 * scrub so that we can tell userspace if we fixed the problem. 65 */ 66 sc->sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT; 67 *fixed = true; 68 return -EAGAIN; 69 case -EDEADLOCK: 70 case -EAGAIN: 71 /* Tell the caller to try again having grabbed all the locks. */ 72 if (!sc->try_harder) { 73 sc->try_harder = true; 74 return -EAGAIN; 75 } 76 /* 77 * We tried harder but still couldn't grab all the resources 78 * we needed to fix it. The corruption has not been fixed, 79 * so report back to userspace. 80 */ 81 return -EFSCORRUPTED; 82 default: 83 return error; 84 } 85 } 86 87 /* 88 * Complain about unfixable problems in the filesystem. We don't log 89 * corruptions when IFLAG_REPAIR wasn't set on the assumption that the driver 90 * program is xfs_scrub, which will call back with IFLAG_REPAIR set if the 91 * administrator isn't running xfs_scrub in no-repairs mode. 92 * 93 * Use this helper function because _ratelimited silently declares a static 94 * structure to track rate limiting information. 95 */ 96 void 97 xrep_failure( 98 struct xfs_mount *mp) 99 { 100 xfs_alert_ratelimited(mp, 101 "Corruption not fixed during online repair. Unmount and run xfs_repair."); 102 } 103 104 /* 105 * Repair probe -- userspace uses this to probe if we're willing to repair a 106 * given mountpoint. 107 */ 108 int 109 xrep_probe( 110 struct xfs_scrub *sc) 111 { 112 int error = 0; 113 114 if (xchk_should_terminate(sc, &error)) 115 return error; 116 117 return 0; 118 } 119 120 /* 121 * Roll a transaction, keeping the AG headers locked and reinitializing 122 * the btree cursors. 123 */ 124 int 125 xrep_roll_ag_trans( 126 struct xfs_scrub *sc) 127 { 128 int error; 129 130 /* Keep the AG header buffers locked so we can keep going. */ 131 if (sc->sa.agi_bp) 132 xfs_trans_bhold(sc->tp, sc->sa.agi_bp); 133 if (sc->sa.agf_bp) 134 xfs_trans_bhold(sc->tp, sc->sa.agf_bp); 135 if (sc->sa.agfl_bp) 136 xfs_trans_bhold(sc->tp, sc->sa.agfl_bp); 137 138 /* Roll the transaction. */ 139 error = xfs_trans_roll(&sc->tp); 140 if (error) 141 goto out_release; 142 143 /* Join AG headers to the new transaction. */ 144 if (sc->sa.agi_bp) 145 xfs_trans_bjoin(sc->tp, sc->sa.agi_bp); 146 if (sc->sa.agf_bp) 147 xfs_trans_bjoin(sc->tp, sc->sa.agf_bp); 148 if (sc->sa.agfl_bp) 149 xfs_trans_bjoin(sc->tp, sc->sa.agfl_bp); 150 151 return 0; 152 153 out_release: 154 /* 155 * Rolling failed, so release the hold on the buffers. The 156 * buffers will be released during teardown on our way out 157 * of the kernel. 158 */ 159 if (sc->sa.agi_bp) 160 xfs_trans_bhold_release(sc->tp, sc->sa.agi_bp); 161 if (sc->sa.agf_bp) 162 xfs_trans_bhold_release(sc->tp, sc->sa.agf_bp); 163 if (sc->sa.agfl_bp) 164 xfs_trans_bhold_release(sc->tp, sc->sa.agfl_bp); 165 166 return error; 167 } 168 169 /* 170 * Does the given AG have enough space to rebuild a btree? Neither AG 171 * reservation can be critical, and we must have enough space (factoring 172 * in AG reservations) to construct a whole btree. 173 */ 174 bool 175 xrep_ag_has_space( 176 struct xfs_perag *pag, 177 xfs_extlen_t nr_blocks, 178 enum xfs_ag_resv_type type) 179 { 180 return !xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) && 181 !xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA) && 182 pag->pagf_freeblks > xfs_ag_resv_needed(pag, type) + nr_blocks; 183 } 184 185 /* 186 * Figure out how many blocks to reserve for an AG repair. We calculate the 187 * worst case estimate for the number of blocks we'd need to rebuild one of 188 * any type of per-AG btree. 189 */ 190 xfs_extlen_t 191 xrep_calc_ag_resblks( 192 struct xfs_scrub *sc) 193 { 194 struct xfs_mount *mp = sc->mp; 195 struct xfs_scrub_metadata *sm = sc->sm; 196 struct xfs_perag *pag; 197 struct xfs_buf *bp; 198 xfs_agino_t icount = 0; 199 xfs_extlen_t aglen = 0; 200 xfs_extlen_t usedlen; 201 xfs_extlen_t freelen; 202 xfs_extlen_t bnobt_sz; 203 xfs_extlen_t inobt_sz; 204 xfs_extlen_t rmapbt_sz; 205 xfs_extlen_t refcbt_sz; 206 int error; 207 208 if (!(sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR)) 209 return 0; 210 211 /* Use in-core counters if possible. */ 212 pag = xfs_perag_get(mp, sm->sm_agno); 213 if (pag->pagi_init) 214 icount = pag->pagi_count; 215 216 /* 217 * Otherwise try to get the actual counters from disk; if not, make 218 * some worst case assumptions. 219 */ 220 if (icount == 0) { 221 error = xfs_ialloc_read_agi(mp, NULL, sm->sm_agno, &bp); 222 if (error) { 223 icount = mp->m_sb.sb_agblocks / mp->m_sb.sb_inopblock; 224 } else { 225 icount = pag->pagi_count; 226 xfs_buf_relse(bp); 227 } 228 } 229 230 /* Now grab the block counters from the AGF. */ 231 error = xfs_alloc_read_agf(mp, NULL, sm->sm_agno, 0, &bp); 232 if (error) { 233 aglen = mp->m_sb.sb_agblocks; 234 freelen = aglen; 235 usedlen = aglen; 236 } else { 237 aglen = be32_to_cpu(XFS_BUF_TO_AGF(bp)->agf_length); 238 freelen = pag->pagf_freeblks; 239 usedlen = aglen - freelen; 240 xfs_buf_relse(bp); 241 } 242 xfs_perag_put(pag); 243 244 trace_xrep_calc_ag_resblks(mp, sm->sm_agno, icount, aglen, 245 freelen, usedlen); 246 247 /* 248 * Figure out how many blocks we'd need worst case to rebuild 249 * each type of btree. Note that we can only rebuild the 250 * bnobt/cntbt or inobt/finobt as pairs. 251 */ 252 bnobt_sz = 2 * xfs_allocbt_calc_size(mp, freelen); 253 if (xfs_sb_version_hassparseinodes(&mp->m_sb)) 254 inobt_sz = xfs_iallocbt_calc_size(mp, icount / 255 XFS_INODES_PER_HOLEMASK_BIT); 256 else 257 inobt_sz = xfs_iallocbt_calc_size(mp, icount / 258 XFS_INODES_PER_CHUNK); 259 if (xfs_sb_version_hasfinobt(&mp->m_sb)) 260 inobt_sz *= 2; 261 if (xfs_sb_version_hasreflink(&mp->m_sb)) 262 refcbt_sz = xfs_refcountbt_calc_size(mp, usedlen); 263 else 264 refcbt_sz = 0; 265 if (xfs_sb_version_hasrmapbt(&mp->m_sb)) { 266 /* 267 * Guess how many blocks we need to rebuild the rmapbt. 268 * For non-reflink filesystems we can't have more records than 269 * used blocks. However, with reflink it's possible to have 270 * more than one rmap record per AG block. We don't know how 271 * many rmaps there could be in the AG, so we start off with 272 * what we hope is an generous over-estimation. 273 */ 274 if (xfs_sb_version_hasreflink(&mp->m_sb)) 275 rmapbt_sz = xfs_rmapbt_calc_size(mp, 276 (unsigned long long)aglen * 2); 277 else 278 rmapbt_sz = xfs_rmapbt_calc_size(mp, usedlen); 279 } else { 280 rmapbt_sz = 0; 281 } 282 283 trace_xrep_calc_ag_resblks_btsize(mp, sm->sm_agno, bnobt_sz, 284 inobt_sz, rmapbt_sz, refcbt_sz); 285 286 return max(max(bnobt_sz, inobt_sz), max(rmapbt_sz, refcbt_sz)); 287 } 288 289 /* Allocate a block in an AG. */ 290 int 291 xrep_alloc_ag_block( 292 struct xfs_scrub *sc, 293 struct xfs_owner_info *oinfo, 294 xfs_fsblock_t *fsbno, 295 enum xfs_ag_resv_type resv) 296 { 297 struct xfs_alloc_arg args = {0}; 298 xfs_agblock_t bno; 299 int error; 300 301 switch (resv) { 302 case XFS_AG_RESV_AGFL: 303 case XFS_AG_RESV_RMAPBT: 304 error = xfs_alloc_get_freelist(sc->tp, sc->sa.agf_bp, &bno, 1); 305 if (error) 306 return error; 307 if (bno == NULLAGBLOCK) 308 return -ENOSPC; 309 xfs_extent_busy_reuse(sc->mp, sc->sa.agno, bno, 310 1, false); 311 *fsbno = XFS_AGB_TO_FSB(sc->mp, sc->sa.agno, bno); 312 if (resv == XFS_AG_RESV_RMAPBT) 313 xfs_ag_resv_rmapbt_alloc(sc->mp, sc->sa.agno); 314 return 0; 315 default: 316 break; 317 } 318 319 args.tp = sc->tp; 320 args.mp = sc->mp; 321 args.oinfo = *oinfo; 322 args.fsbno = XFS_AGB_TO_FSB(args.mp, sc->sa.agno, 0); 323 args.minlen = 1; 324 args.maxlen = 1; 325 args.prod = 1; 326 args.type = XFS_ALLOCTYPE_THIS_AG; 327 args.resv = resv; 328 329 error = xfs_alloc_vextent(&args); 330 if (error) 331 return error; 332 if (args.fsbno == NULLFSBLOCK) 333 return -ENOSPC; 334 ASSERT(args.len == 1); 335 *fsbno = args.fsbno; 336 337 return 0; 338 } 339 340 /* Initialize a new AG btree root block with zero entries. */ 341 int 342 xrep_init_btblock( 343 struct xfs_scrub *sc, 344 xfs_fsblock_t fsb, 345 struct xfs_buf **bpp, 346 xfs_btnum_t btnum, 347 const struct xfs_buf_ops *ops) 348 { 349 struct xfs_trans *tp = sc->tp; 350 struct xfs_mount *mp = sc->mp; 351 struct xfs_buf *bp; 352 353 trace_xrep_init_btblock(mp, XFS_FSB_TO_AGNO(mp, fsb), 354 XFS_FSB_TO_AGBNO(mp, fsb), btnum); 355 356 ASSERT(XFS_FSB_TO_AGNO(mp, fsb) == sc->sa.agno); 357 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, XFS_FSB_TO_DADDR(mp, fsb), 358 XFS_FSB_TO_BB(mp, 1), 0); 359 xfs_buf_zero(bp, 0, BBTOB(bp->b_length)); 360 xfs_btree_init_block(mp, bp, btnum, 0, 0, sc->sa.agno, 0); 361 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_BTREE_BUF); 362 xfs_trans_log_buf(tp, bp, 0, bp->b_length); 363 bp->b_ops = ops; 364 *bpp = bp; 365 366 return 0; 367 } 368 369 /* 370 * Reconstructing per-AG Btrees 371 * 372 * When a space btree is corrupt, we don't bother trying to fix it. Instead, 373 * we scan secondary space metadata to derive the records that should be in 374 * the damaged btree, initialize a fresh btree root, and insert the records. 375 * Note that for rebuilding the rmapbt we scan all the primary data to 376 * generate the new records. 377 * 378 * However, that leaves the matter of removing all the metadata describing the 379 * old broken structure. For primary metadata we use the rmap data to collect 380 * every extent with a matching rmap owner (bitmap); we then iterate all other 381 * metadata structures with the same rmap owner to collect the extents that 382 * cannot be removed (sublist). We then subtract sublist from bitmap to 383 * derive the blocks that were used by the old btree. These blocks can be 384 * reaped. 385 * 386 * For rmapbt reconstructions we must use different tactics for extent 387 * collection. First we iterate all primary metadata (this excludes the old 388 * rmapbt, obviously) to generate new rmap records. The gaps in the rmap 389 * records are collected as bitmap. The bnobt records are collected as 390 * sublist. As with the other btrees we subtract sublist from bitmap, and the 391 * result (since the rmapbt lives in the free space) are the blocks from the 392 * old rmapbt. 393 * 394 * Disposal of Blocks from Old per-AG Btrees 395 * 396 * Now that we've constructed a new btree to replace the damaged one, we want 397 * to dispose of the blocks that (we think) the old btree was using. 398 * Previously, we used the rmapbt to collect the extents (bitmap) with the 399 * rmap owner corresponding to the tree we rebuilt, collected extents for any 400 * blocks with the same rmap owner that are owned by another data structure 401 * (sublist), and subtracted sublist from bitmap. In theory the extents 402 * remaining in bitmap are the old btree's blocks. 403 * 404 * Unfortunately, it's possible that the btree was crosslinked with other 405 * blocks on disk. The rmap data can tell us if there are multiple owners, so 406 * if the rmapbt says there is an owner of this block other than @oinfo, then 407 * the block is crosslinked. Remove the reverse mapping and continue. 408 * 409 * If there is one rmap record, we can free the block, which removes the 410 * reverse mapping but doesn't add the block to the free space. Our repair 411 * strategy is to hope the other metadata objects crosslinked on this block 412 * will be rebuilt (atop different blocks), thereby removing all the cross 413 * links. 414 * 415 * If there are no rmap records at all, we also free the block. If the btree 416 * being rebuilt lives in the free space (bnobt/cntbt/rmapbt) then there isn't 417 * supposed to be a rmap record and everything is ok. For other btrees there 418 * had to have been an rmap entry for the block to have ended up on @bitmap, 419 * so if it's gone now there's something wrong and the fs will shut down. 420 * 421 * Note: If there are multiple rmap records with only the same rmap owner as 422 * the btree we're trying to rebuild and the block is indeed owned by another 423 * data structure with the same rmap owner, then the block will be in sublist 424 * and therefore doesn't need disposal. If there are multiple rmap records 425 * with only the same rmap owner but the block is not owned by something with 426 * the same rmap owner, the block will be freed. 427 * 428 * The caller is responsible for locking the AG headers for the entire rebuild 429 * operation so that nothing else can sneak in and change the AG state while 430 * we're not looking. We also assume that the caller already invalidated any 431 * buffers associated with @bitmap. 432 */ 433 434 /* 435 * Invalidate buffers for per-AG btree blocks we're dumping. This function 436 * is not intended for use with file data repairs; we have bunmapi for that. 437 */ 438 int 439 xrep_invalidate_blocks( 440 struct xfs_scrub *sc, 441 struct xfs_bitmap *bitmap) 442 { 443 struct xfs_bitmap_range *bmr; 444 struct xfs_bitmap_range *n; 445 struct xfs_buf *bp; 446 xfs_fsblock_t fsbno; 447 448 /* 449 * For each block in each extent, see if there's an incore buffer for 450 * exactly that block; if so, invalidate it. The buffer cache only 451 * lets us look for one buffer at a time, so we have to look one block 452 * at a time. Avoid invalidating AG headers and post-EOFS blocks 453 * because we never own those; and if we can't TRYLOCK the buffer we 454 * assume it's owned by someone else. 455 */ 456 for_each_xfs_bitmap_block(fsbno, bmr, n, bitmap) { 457 /* Skip AG headers and post-EOFS blocks */ 458 if (!xfs_verify_fsbno(sc->mp, fsbno)) 459 continue; 460 bp = xfs_buf_incore(sc->mp->m_ddev_targp, 461 XFS_FSB_TO_DADDR(sc->mp, fsbno), 462 XFS_FSB_TO_BB(sc->mp, 1), XBF_TRYLOCK); 463 if (bp) { 464 xfs_trans_bjoin(sc->tp, bp); 465 xfs_trans_binval(sc->tp, bp); 466 } 467 } 468 469 return 0; 470 } 471 472 /* Ensure the freelist is the correct size. */ 473 int 474 xrep_fix_freelist( 475 struct xfs_scrub *sc, 476 bool can_shrink) 477 { 478 struct xfs_alloc_arg args = {0}; 479 480 args.mp = sc->mp; 481 args.tp = sc->tp; 482 args.agno = sc->sa.agno; 483 args.alignment = 1; 484 args.pag = sc->sa.pag; 485 486 return xfs_alloc_fix_freelist(&args, 487 can_shrink ? 0 : XFS_ALLOC_FLAG_NOSHRINK); 488 } 489 490 /* 491 * Put a block back on the AGFL. 492 */ 493 STATIC int 494 xrep_put_freelist( 495 struct xfs_scrub *sc, 496 xfs_agblock_t agbno) 497 { 498 struct xfs_owner_info oinfo; 499 int error; 500 501 /* Make sure there's space on the freelist. */ 502 error = xrep_fix_freelist(sc, true); 503 if (error) 504 return error; 505 506 /* 507 * Since we're "freeing" a lost block onto the AGFL, we have to 508 * create an rmap for the block prior to merging it or else other 509 * parts will break. 510 */ 511 xfs_rmap_ag_owner(&oinfo, XFS_RMAP_OWN_AG); 512 error = xfs_rmap_alloc(sc->tp, sc->sa.agf_bp, sc->sa.agno, agbno, 1, 513 &oinfo); 514 if (error) 515 return error; 516 517 /* Put the block on the AGFL. */ 518 error = xfs_alloc_put_freelist(sc->tp, sc->sa.agf_bp, sc->sa.agfl_bp, 519 agbno, 0); 520 if (error) 521 return error; 522 xfs_extent_busy_insert(sc->tp, sc->sa.agno, agbno, 1, 523 XFS_EXTENT_BUSY_SKIP_DISCARD); 524 525 return 0; 526 } 527 528 /* Dispose of a single block. */ 529 STATIC int 530 xrep_reap_block( 531 struct xfs_scrub *sc, 532 xfs_fsblock_t fsbno, 533 struct xfs_owner_info *oinfo, 534 enum xfs_ag_resv_type resv) 535 { 536 struct xfs_btree_cur *cur; 537 struct xfs_buf *agf_bp = NULL; 538 xfs_agnumber_t agno; 539 xfs_agblock_t agbno; 540 bool has_other_rmap; 541 int error; 542 543 agno = XFS_FSB_TO_AGNO(sc->mp, fsbno); 544 agbno = XFS_FSB_TO_AGBNO(sc->mp, fsbno); 545 546 /* 547 * If we are repairing per-inode metadata, we need to read in the AGF 548 * buffer. Otherwise, we're repairing a per-AG structure, so reuse 549 * the AGF buffer that the setup functions already grabbed. 550 */ 551 if (sc->ip) { 552 error = xfs_alloc_read_agf(sc->mp, sc->tp, agno, 0, &agf_bp); 553 if (error) 554 return error; 555 if (!agf_bp) 556 return -ENOMEM; 557 } else { 558 agf_bp = sc->sa.agf_bp; 559 } 560 cur = xfs_rmapbt_init_cursor(sc->mp, sc->tp, agf_bp, agno); 561 562 /* Can we find any other rmappings? */ 563 error = xfs_rmap_has_other_keys(cur, agbno, 1, oinfo, &has_other_rmap); 564 xfs_btree_del_cursor(cur, error); 565 if (error) 566 goto out_free; 567 568 /* 569 * If there are other rmappings, this block is cross linked and must 570 * not be freed. Remove the reverse mapping and move on. Otherwise, 571 * we were the only owner of the block, so free the extent, which will 572 * also remove the rmap. 573 * 574 * XXX: XFS doesn't support detecting the case where a single block 575 * metadata structure is crosslinked with a multi-block structure 576 * because the buffer cache doesn't detect aliasing problems, so we 577 * can't fix 100% of crosslinking problems (yet). The verifiers will 578 * blow on writeout, the filesystem will shut down, and the admin gets 579 * to run xfs_repair. 580 */ 581 if (has_other_rmap) 582 error = xfs_rmap_free(sc->tp, agf_bp, agno, agbno, 1, oinfo); 583 else if (resv == XFS_AG_RESV_AGFL) 584 error = xrep_put_freelist(sc, agbno); 585 else 586 error = xfs_free_extent(sc->tp, fsbno, 1, oinfo, resv); 587 if (agf_bp != sc->sa.agf_bp) 588 xfs_trans_brelse(sc->tp, agf_bp); 589 if (error) 590 return error; 591 592 if (sc->ip) 593 return xfs_trans_roll_inode(&sc->tp, sc->ip); 594 return xrep_roll_ag_trans(sc); 595 596 out_free: 597 if (agf_bp != sc->sa.agf_bp) 598 xfs_trans_brelse(sc->tp, agf_bp); 599 return error; 600 } 601 602 /* Dispose of every block of every extent in the bitmap. */ 603 int 604 xrep_reap_extents( 605 struct xfs_scrub *sc, 606 struct xfs_bitmap *bitmap, 607 struct xfs_owner_info *oinfo, 608 enum xfs_ag_resv_type type) 609 { 610 struct xfs_bitmap_range *bmr; 611 struct xfs_bitmap_range *n; 612 xfs_fsblock_t fsbno; 613 int error = 0; 614 615 ASSERT(xfs_sb_version_hasrmapbt(&sc->mp->m_sb)); 616 617 for_each_xfs_bitmap_block(fsbno, bmr, n, bitmap) { 618 ASSERT(sc->ip != NULL || 619 XFS_FSB_TO_AGNO(sc->mp, fsbno) == sc->sa.agno); 620 trace_xrep_dispose_btree_extent(sc->mp, 621 XFS_FSB_TO_AGNO(sc->mp, fsbno), 622 XFS_FSB_TO_AGBNO(sc->mp, fsbno), 1); 623 624 error = xrep_reap_block(sc, fsbno, oinfo, type); 625 if (error) 626 goto out; 627 } 628 629 out: 630 xfs_bitmap_destroy(bitmap); 631 return error; 632 } 633 634 /* 635 * Finding per-AG Btree Roots for AGF/AGI Reconstruction 636 * 637 * If the AGF or AGI become slightly corrupted, it may be necessary to rebuild 638 * the AG headers by using the rmap data to rummage through the AG looking for 639 * btree roots. This is not guaranteed to work if the AG is heavily damaged 640 * or the rmap data are corrupt. 641 * 642 * Callers of xrep_find_ag_btree_roots must lock the AGF and AGFL 643 * buffers if the AGF is being rebuilt; or the AGF and AGI buffers if the 644 * AGI is being rebuilt. It must maintain these locks until it's safe for 645 * other threads to change the btrees' shapes. The caller provides 646 * information about the btrees to look for by passing in an array of 647 * xrep_find_ag_btree with the (rmap owner, buf_ops, magic) fields set. 648 * The (root, height) fields will be set on return if anything is found. The 649 * last element of the array should have a NULL buf_ops to mark the end of the 650 * array. 651 * 652 * For every rmapbt record matching any of the rmap owners in btree_info, 653 * read each block referenced by the rmap record. If the block is a btree 654 * block from this filesystem matching any of the magic numbers and has a 655 * level higher than what we've already seen, remember the block and the 656 * height of the tree required to have such a block. When the call completes, 657 * we return the highest block we've found for each btree description; those 658 * should be the roots. 659 */ 660 661 struct xrep_findroot { 662 struct xfs_scrub *sc; 663 struct xfs_buf *agfl_bp; 664 struct xfs_agf *agf; 665 struct xrep_find_ag_btree *btree_info; 666 }; 667 668 /* See if our block is in the AGFL. */ 669 STATIC int 670 xrep_findroot_agfl_walk( 671 struct xfs_mount *mp, 672 xfs_agblock_t bno, 673 void *priv) 674 { 675 xfs_agblock_t *agbno = priv; 676 677 return (*agbno == bno) ? XFS_BTREE_QUERY_RANGE_ABORT : 0; 678 } 679 680 /* Does this block match the btree information passed in? */ 681 STATIC int 682 xrep_findroot_block( 683 struct xrep_findroot *ri, 684 struct xrep_find_ag_btree *fab, 685 uint64_t owner, 686 xfs_agblock_t agbno, 687 bool *found_it) 688 { 689 struct xfs_mount *mp = ri->sc->mp; 690 struct xfs_buf *bp; 691 struct xfs_btree_block *btblock; 692 xfs_daddr_t daddr; 693 int error; 694 695 daddr = XFS_AGB_TO_DADDR(mp, ri->sc->sa.agno, agbno); 696 697 /* 698 * Blocks in the AGFL have stale contents that might just happen to 699 * have a matching magic and uuid. We don't want to pull these blocks 700 * in as part of a tree root, so we have to filter out the AGFL stuff 701 * here. If the AGFL looks insane we'll just refuse to repair. 702 */ 703 if (owner == XFS_RMAP_OWN_AG) { 704 error = xfs_agfl_walk(mp, ri->agf, ri->agfl_bp, 705 xrep_findroot_agfl_walk, &agbno); 706 if (error == XFS_BTREE_QUERY_RANGE_ABORT) 707 return 0; 708 if (error) 709 return error; 710 } 711 712 error = xfs_trans_read_buf(mp, ri->sc->tp, mp->m_ddev_targp, daddr, 713 mp->m_bsize, 0, &bp, NULL); 714 if (error) 715 return error; 716 717 /* 718 * Does this look like a block matching our fs and higher than any 719 * other block we've found so far? If so, reattach buffer verifiers 720 * so the AIL won't complain if the buffer is also dirty. 721 */ 722 btblock = XFS_BUF_TO_BLOCK(bp); 723 if (be32_to_cpu(btblock->bb_magic) != fab->magic) 724 goto out; 725 if (xfs_sb_version_hascrc(&mp->m_sb) && 726 !uuid_equal(&btblock->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid)) 727 goto out; 728 bp->b_ops = fab->buf_ops; 729 730 /* Ignore this block if it's lower in the tree than we've seen. */ 731 if (fab->root != NULLAGBLOCK && 732 xfs_btree_get_level(btblock) < fab->height) 733 goto out; 734 735 /* Make sure we pass the verifiers. */ 736 bp->b_ops->verify_read(bp); 737 if (bp->b_error) 738 goto out; 739 fab->root = agbno; 740 fab->height = xfs_btree_get_level(btblock) + 1; 741 *found_it = true; 742 743 trace_xrep_findroot_block(mp, ri->sc->sa.agno, agbno, 744 be32_to_cpu(btblock->bb_magic), fab->height - 1); 745 out: 746 xfs_trans_brelse(ri->sc->tp, bp); 747 return error; 748 } 749 750 /* 751 * Do any of the blocks in this rmap record match one of the btrees we're 752 * looking for? 753 */ 754 STATIC int 755 xrep_findroot_rmap( 756 struct xfs_btree_cur *cur, 757 struct xfs_rmap_irec *rec, 758 void *priv) 759 { 760 struct xrep_findroot *ri = priv; 761 struct xrep_find_ag_btree *fab; 762 xfs_agblock_t b; 763 bool found_it; 764 int error = 0; 765 766 /* Ignore anything that isn't AG metadata. */ 767 if (!XFS_RMAP_NON_INODE_OWNER(rec->rm_owner)) 768 return 0; 769 770 /* Otherwise scan each block + btree type. */ 771 for (b = 0; b < rec->rm_blockcount; b++) { 772 found_it = false; 773 for (fab = ri->btree_info; fab->buf_ops; fab++) { 774 if (rec->rm_owner != fab->rmap_owner) 775 continue; 776 error = xrep_findroot_block(ri, fab, 777 rec->rm_owner, rec->rm_startblock + b, 778 &found_it); 779 if (error) 780 return error; 781 if (found_it) 782 break; 783 } 784 } 785 786 return 0; 787 } 788 789 /* Find the roots of the per-AG btrees described in btree_info. */ 790 int 791 xrep_find_ag_btree_roots( 792 struct xfs_scrub *sc, 793 struct xfs_buf *agf_bp, 794 struct xrep_find_ag_btree *btree_info, 795 struct xfs_buf *agfl_bp) 796 { 797 struct xfs_mount *mp = sc->mp; 798 struct xrep_findroot ri; 799 struct xrep_find_ag_btree *fab; 800 struct xfs_btree_cur *cur; 801 int error; 802 803 ASSERT(xfs_buf_islocked(agf_bp)); 804 ASSERT(agfl_bp == NULL || xfs_buf_islocked(agfl_bp)); 805 806 ri.sc = sc; 807 ri.btree_info = btree_info; 808 ri.agf = XFS_BUF_TO_AGF(agf_bp); 809 ri.agfl_bp = agfl_bp; 810 for (fab = btree_info; fab->buf_ops; fab++) { 811 ASSERT(agfl_bp || fab->rmap_owner != XFS_RMAP_OWN_AG); 812 ASSERT(XFS_RMAP_NON_INODE_OWNER(fab->rmap_owner)); 813 fab->root = NULLAGBLOCK; 814 fab->height = 0; 815 } 816 817 cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.agno); 818 error = xfs_rmap_query_all(cur, xrep_findroot_rmap, &ri); 819 xfs_btree_del_cursor(cur, error); 820 821 return error; 822 } 823 824 /* Force a quotacheck the next time we mount. */ 825 void 826 xrep_force_quotacheck( 827 struct xfs_scrub *sc, 828 uint dqtype) 829 { 830 uint flag; 831 832 flag = xfs_quota_chkd_flag(dqtype); 833 if (!(flag & sc->mp->m_qflags)) 834 return; 835 836 sc->mp->m_qflags &= ~flag; 837 spin_lock(&sc->mp->m_sb_lock); 838 sc->mp->m_sb.sb_qflags &= ~flag; 839 spin_unlock(&sc->mp->m_sb_lock); 840 xfs_log_sb(sc->tp); 841 } 842 843 /* 844 * Attach dquots to this inode, or schedule quotacheck to fix them. 845 * 846 * This function ensures that the appropriate dquots are attached to an inode. 847 * We cannot allow the dquot code to allocate an on-disk dquot block here 848 * because we're already in transaction context with the inode locked. The 849 * on-disk dquot should already exist anyway. If the quota code signals 850 * corruption or missing quota information, schedule quotacheck, which will 851 * repair corruptions in the quota metadata. 852 */ 853 int 854 xrep_ino_dqattach( 855 struct xfs_scrub *sc) 856 { 857 int error; 858 859 error = xfs_qm_dqattach_locked(sc->ip, false); 860 switch (error) { 861 case -EFSBADCRC: 862 case -EFSCORRUPTED: 863 case -ENOENT: 864 xfs_err_ratelimited(sc->mp, 865 "inode %llu repair encountered quota error %d, quotacheck forced.", 866 (unsigned long long)sc->ip->i_ino, error); 867 if (XFS_IS_UQUOTA_ON(sc->mp) && !sc->ip->i_udquot) 868 xrep_force_quotacheck(sc, XFS_DQ_USER); 869 if (XFS_IS_GQUOTA_ON(sc->mp) && !sc->ip->i_gdquot) 870 xrep_force_quotacheck(sc, XFS_DQ_GROUP); 871 if (XFS_IS_PQUOTA_ON(sc->mp) && !sc->ip->i_pdquot) 872 xrep_force_quotacheck(sc, XFS_DQ_PROJ); 873 /* fall through */ 874 case -ESRCH: 875 error = 0; 876 break; 877 default: 878 break; 879 } 880 881 return error; 882 } 883