1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (C) 2018 Oracle. All Rights Reserved. 4 * Author: Darrick J. Wong <darrick.wong@oracle.com> 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_trans_resv.h" 11 #include "xfs_mount.h" 12 #include "xfs_btree.h" 13 #include "xfs_log_format.h" 14 #include "xfs_trans.h" 15 #include "xfs_sb.h" 16 #include "xfs_inode.h" 17 #include "xfs_alloc.h" 18 #include "xfs_alloc_btree.h" 19 #include "xfs_ialloc.h" 20 #include "xfs_ialloc_btree.h" 21 #include "xfs_rmap.h" 22 #include "xfs_rmap_btree.h" 23 #include "xfs_refcount_btree.h" 24 #include "xfs_extent_busy.h" 25 #include "xfs_ag_resv.h" 26 #include "xfs_quota.h" 27 #include "scrub/scrub.h" 28 #include "scrub/common.h" 29 #include "scrub/trace.h" 30 #include "scrub/repair.h" 31 #include "scrub/bitmap.h" 32 33 /* 34 * Attempt to repair some metadata, if the metadata is corrupt and userspace 35 * told us to fix it. This function returns -EAGAIN to mean "re-run scrub", 36 * and will set *fixed to true if it thinks it repaired anything. 37 */ 38 int 39 xrep_attempt( 40 struct xfs_scrub *sc) 41 { 42 int error = 0; 43 44 trace_xrep_attempt(XFS_I(file_inode(sc->file)), sc->sm, error); 45 46 xchk_ag_btcur_free(&sc->sa); 47 48 /* Repair whatever's broken. */ 49 ASSERT(sc->ops->repair); 50 error = sc->ops->repair(sc); 51 trace_xrep_done(XFS_I(file_inode(sc->file)), sc->sm, error); 52 switch (error) { 53 case 0: 54 /* 55 * Repair succeeded. Commit the fixes and perform a second 56 * scrub so that we can tell userspace if we fixed the problem. 57 */ 58 sc->sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT; 59 sc->flags |= XREP_ALREADY_FIXED; 60 return -EAGAIN; 61 case -EDEADLOCK: 62 case -EAGAIN: 63 /* Tell the caller to try again having grabbed all the locks. */ 64 if (!(sc->flags & XCHK_TRY_HARDER)) { 65 sc->flags |= XCHK_TRY_HARDER; 66 return -EAGAIN; 67 } 68 /* 69 * We tried harder but still couldn't grab all the resources 70 * we needed to fix it. The corruption has not been fixed, 71 * so report back to userspace. 72 */ 73 return -EFSCORRUPTED; 74 default: 75 return error; 76 } 77 } 78 79 /* 80 * Complain about unfixable problems in the filesystem. We don't log 81 * corruptions when IFLAG_REPAIR wasn't set on the assumption that the driver 82 * program is xfs_scrub, which will call back with IFLAG_REPAIR set if the 83 * administrator isn't running xfs_scrub in no-repairs mode. 84 * 85 * Use this helper function because _ratelimited silently declares a static 86 * structure to track rate limiting information. 87 */ 88 void 89 xrep_failure( 90 struct xfs_mount *mp) 91 { 92 xfs_alert_ratelimited(mp, 93 "Corruption not fixed during online repair. Unmount and run xfs_repair."); 94 } 95 96 /* 97 * Repair probe -- userspace uses this to probe if we're willing to repair a 98 * given mountpoint. 99 */ 100 int 101 xrep_probe( 102 struct xfs_scrub *sc) 103 { 104 int error = 0; 105 106 if (xchk_should_terminate(sc, &error)) 107 return error; 108 109 return 0; 110 } 111 112 /* 113 * Roll a transaction, keeping the AG headers locked and reinitializing 114 * the btree cursors. 115 */ 116 int 117 xrep_roll_ag_trans( 118 struct xfs_scrub *sc) 119 { 120 int error; 121 122 /* Keep the AG header buffers locked so we can keep going. */ 123 if (sc->sa.agi_bp) 124 xfs_trans_bhold(sc->tp, sc->sa.agi_bp); 125 if (sc->sa.agf_bp) 126 xfs_trans_bhold(sc->tp, sc->sa.agf_bp); 127 if (sc->sa.agfl_bp) 128 xfs_trans_bhold(sc->tp, sc->sa.agfl_bp); 129 130 /* 131 * Roll the transaction. We still own the buffer and the buffer lock 132 * regardless of whether or not the roll succeeds. If the roll fails, 133 * the buffers will be released during teardown on our way out of the 134 * kernel. If it succeeds, we join them to the new transaction and 135 * move on. 136 */ 137 error = xfs_trans_roll(&sc->tp); 138 if (error) 139 return error; 140 141 /* Join AG headers to the new transaction. */ 142 if (sc->sa.agi_bp) 143 xfs_trans_bjoin(sc->tp, sc->sa.agi_bp); 144 if (sc->sa.agf_bp) 145 xfs_trans_bjoin(sc->tp, sc->sa.agf_bp); 146 if (sc->sa.agfl_bp) 147 xfs_trans_bjoin(sc->tp, sc->sa.agfl_bp); 148 149 return 0; 150 } 151 152 /* 153 * Does the given AG have enough space to rebuild a btree? Neither AG 154 * reservation can be critical, and we must have enough space (factoring 155 * in AG reservations) to construct a whole btree. 156 */ 157 bool 158 xrep_ag_has_space( 159 struct xfs_perag *pag, 160 xfs_extlen_t nr_blocks, 161 enum xfs_ag_resv_type type) 162 { 163 return !xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) && 164 !xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA) && 165 pag->pagf_freeblks > xfs_ag_resv_needed(pag, type) + nr_blocks; 166 } 167 168 /* 169 * Figure out how many blocks to reserve for an AG repair. We calculate the 170 * worst case estimate for the number of blocks we'd need to rebuild one of 171 * any type of per-AG btree. 172 */ 173 xfs_extlen_t 174 xrep_calc_ag_resblks( 175 struct xfs_scrub *sc) 176 { 177 struct xfs_mount *mp = sc->mp; 178 struct xfs_scrub_metadata *sm = sc->sm; 179 struct xfs_perag *pag; 180 struct xfs_buf *bp; 181 xfs_agino_t icount = NULLAGINO; 182 xfs_extlen_t aglen = NULLAGBLOCK; 183 xfs_extlen_t usedlen; 184 xfs_extlen_t freelen; 185 xfs_extlen_t bnobt_sz; 186 xfs_extlen_t inobt_sz; 187 xfs_extlen_t rmapbt_sz; 188 xfs_extlen_t refcbt_sz; 189 int error; 190 191 if (!(sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR)) 192 return 0; 193 194 pag = xfs_perag_get(mp, sm->sm_agno); 195 if (pag->pagi_init) { 196 /* Use in-core icount if possible. */ 197 icount = pag->pagi_count; 198 } else { 199 /* Try to get the actual counters from disk. */ 200 error = xfs_ialloc_read_agi(mp, NULL, sm->sm_agno, &bp); 201 if (!error) { 202 icount = pag->pagi_count; 203 xfs_buf_relse(bp); 204 } 205 } 206 207 /* Now grab the block counters from the AGF. */ 208 error = xfs_alloc_read_agf(mp, NULL, sm->sm_agno, 0, &bp); 209 if (error) { 210 aglen = xfs_ag_block_count(mp, sm->sm_agno); 211 freelen = aglen; 212 usedlen = aglen; 213 } else { 214 struct xfs_agf *agf = bp->b_addr; 215 216 aglen = be32_to_cpu(agf->agf_length); 217 freelen = be32_to_cpu(agf->agf_freeblks); 218 usedlen = aglen - freelen; 219 xfs_buf_relse(bp); 220 } 221 xfs_perag_put(pag); 222 223 /* If the icount is impossible, make some worst-case assumptions. */ 224 if (icount == NULLAGINO || 225 !xfs_verify_agino(mp, sm->sm_agno, icount)) { 226 xfs_agino_t first, last; 227 228 xfs_agino_range(mp, sm->sm_agno, &first, &last); 229 icount = last - first + 1; 230 } 231 232 /* If the block counts are impossible, make worst-case assumptions. */ 233 if (aglen == NULLAGBLOCK || 234 aglen != xfs_ag_block_count(mp, sm->sm_agno) || 235 freelen >= aglen) { 236 aglen = xfs_ag_block_count(mp, sm->sm_agno); 237 freelen = aglen; 238 usedlen = aglen; 239 } 240 241 trace_xrep_calc_ag_resblks(mp, sm->sm_agno, icount, aglen, 242 freelen, usedlen); 243 244 /* 245 * Figure out how many blocks we'd need worst case to rebuild 246 * each type of btree. Note that we can only rebuild the 247 * bnobt/cntbt or inobt/finobt as pairs. 248 */ 249 bnobt_sz = 2 * xfs_allocbt_calc_size(mp, freelen); 250 if (xfs_sb_version_hassparseinodes(&mp->m_sb)) 251 inobt_sz = xfs_iallocbt_calc_size(mp, icount / 252 XFS_INODES_PER_HOLEMASK_BIT); 253 else 254 inobt_sz = xfs_iallocbt_calc_size(mp, icount / 255 XFS_INODES_PER_CHUNK); 256 if (xfs_sb_version_hasfinobt(&mp->m_sb)) 257 inobt_sz *= 2; 258 if (xfs_sb_version_hasreflink(&mp->m_sb)) 259 refcbt_sz = xfs_refcountbt_calc_size(mp, usedlen); 260 else 261 refcbt_sz = 0; 262 if (xfs_sb_version_hasrmapbt(&mp->m_sb)) { 263 /* 264 * Guess how many blocks we need to rebuild the rmapbt. 265 * For non-reflink filesystems we can't have more records than 266 * used blocks. However, with reflink it's possible to have 267 * more than one rmap record per AG block. We don't know how 268 * many rmaps there could be in the AG, so we start off with 269 * what we hope is an generous over-estimation. 270 */ 271 if (xfs_sb_version_hasreflink(&mp->m_sb)) 272 rmapbt_sz = xfs_rmapbt_calc_size(mp, 273 (unsigned long long)aglen * 2); 274 else 275 rmapbt_sz = xfs_rmapbt_calc_size(mp, usedlen); 276 } else { 277 rmapbt_sz = 0; 278 } 279 280 trace_xrep_calc_ag_resblks_btsize(mp, sm->sm_agno, bnobt_sz, 281 inobt_sz, rmapbt_sz, refcbt_sz); 282 283 return max(max(bnobt_sz, inobt_sz), max(rmapbt_sz, refcbt_sz)); 284 } 285 286 /* Allocate a block in an AG. */ 287 int 288 xrep_alloc_ag_block( 289 struct xfs_scrub *sc, 290 const struct xfs_owner_info *oinfo, 291 xfs_fsblock_t *fsbno, 292 enum xfs_ag_resv_type resv) 293 { 294 struct xfs_alloc_arg args = {0}; 295 xfs_agblock_t bno; 296 int error; 297 298 switch (resv) { 299 case XFS_AG_RESV_AGFL: 300 case XFS_AG_RESV_RMAPBT: 301 error = xfs_alloc_get_freelist(sc->tp, sc->sa.agf_bp, &bno, 1); 302 if (error) 303 return error; 304 if (bno == NULLAGBLOCK) 305 return -ENOSPC; 306 xfs_extent_busy_reuse(sc->mp, sc->sa.agno, bno, 307 1, false); 308 *fsbno = XFS_AGB_TO_FSB(sc->mp, sc->sa.agno, bno); 309 if (resv == XFS_AG_RESV_RMAPBT) 310 xfs_ag_resv_rmapbt_alloc(sc->mp, sc->sa.agno); 311 return 0; 312 default: 313 break; 314 } 315 316 args.tp = sc->tp; 317 args.mp = sc->mp; 318 args.oinfo = *oinfo; 319 args.fsbno = XFS_AGB_TO_FSB(args.mp, sc->sa.agno, 0); 320 args.minlen = 1; 321 args.maxlen = 1; 322 args.prod = 1; 323 args.type = XFS_ALLOCTYPE_THIS_AG; 324 args.resv = resv; 325 326 error = xfs_alloc_vextent(&args); 327 if (error) 328 return error; 329 if (args.fsbno == NULLFSBLOCK) 330 return -ENOSPC; 331 ASSERT(args.len == 1); 332 *fsbno = args.fsbno; 333 334 return 0; 335 } 336 337 /* Initialize a new AG btree root block with zero entries. */ 338 int 339 xrep_init_btblock( 340 struct xfs_scrub *sc, 341 xfs_fsblock_t fsb, 342 struct xfs_buf **bpp, 343 xfs_btnum_t btnum, 344 const struct xfs_buf_ops *ops) 345 { 346 struct xfs_trans *tp = sc->tp; 347 struct xfs_mount *mp = sc->mp; 348 struct xfs_buf *bp; 349 int error; 350 351 trace_xrep_init_btblock(mp, XFS_FSB_TO_AGNO(mp, fsb), 352 XFS_FSB_TO_AGBNO(mp, fsb), btnum); 353 354 ASSERT(XFS_FSB_TO_AGNO(mp, fsb) == sc->sa.agno); 355 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, 356 XFS_FSB_TO_DADDR(mp, fsb), XFS_FSB_TO_BB(mp, 1), 0, 357 &bp); 358 if (error) 359 return error; 360 xfs_buf_zero(bp, 0, BBTOB(bp->b_length)); 361 xfs_btree_init_block(mp, bp, btnum, 0, 0, sc->sa.agno); 362 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_BTREE_BUF); 363 xfs_trans_log_buf(tp, bp, 0, BBTOB(bp->b_length) - 1); 364 bp->b_ops = ops; 365 *bpp = bp; 366 367 return 0; 368 } 369 370 /* 371 * Reconstructing per-AG Btrees 372 * 373 * When a space btree is corrupt, we don't bother trying to fix it. Instead, 374 * we scan secondary space metadata to derive the records that should be in 375 * the damaged btree, initialize a fresh btree root, and insert the records. 376 * Note that for rebuilding the rmapbt we scan all the primary data to 377 * generate the new records. 378 * 379 * However, that leaves the matter of removing all the metadata describing the 380 * old broken structure. For primary metadata we use the rmap data to collect 381 * every extent with a matching rmap owner (bitmap); we then iterate all other 382 * metadata structures with the same rmap owner to collect the extents that 383 * cannot be removed (sublist). We then subtract sublist from bitmap to 384 * derive the blocks that were used by the old btree. These blocks can be 385 * reaped. 386 * 387 * For rmapbt reconstructions we must use different tactics for extent 388 * collection. First we iterate all primary metadata (this excludes the old 389 * rmapbt, obviously) to generate new rmap records. The gaps in the rmap 390 * records are collected as bitmap. The bnobt records are collected as 391 * sublist. As with the other btrees we subtract sublist from bitmap, and the 392 * result (since the rmapbt lives in the free space) are the blocks from the 393 * old rmapbt. 394 * 395 * Disposal of Blocks from Old per-AG Btrees 396 * 397 * Now that we've constructed a new btree to replace the damaged one, we want 398 * to dispose of the blocks that (we think) the old btree was using. 399 * Previously, we used the rmapbt to collect the extents (bitmap) with the 400 * rmap owner corresponding to the tree we rebuilt, collected extents for any 401 * blocks with the same rmap owner that are owned by another data structure 402 * (sublist), and subtracted sublist from bitmap. In theory the extents 403 * remaining in bitmap are the old btree's blocks. 404 * 405 * Unfortunately, it's possible that the btree was crosslinked with other 406 * blocks on disk. The rmap data can tell us if there are multiple owners, so 407 * if the rmapbt says there is an owner of this block other than @oinfo, then 408 * the block is crosslinked. Remove the reverse mapping and continue. 409 * 410 * If there is one rmap record, we can free the block, which removes the 411 * reverse mapping but doesn't add the block to the free space. Our repair 412 * strategy is to hope the other metadata objects crosslinked on this block 413 * will be rebuilt (atop different blocks), thereby removing all the cross 414 * links. 415 * 416 * If there are no rmap records at all, we also free the block. If the btree 417 * being rebuilt lives in the free space (bnobt/cntbt/rmapbt) then there isn't 418 * supposed to be a rmap record and everything is ok. For other btrees there 419 * had to have been an rmap entry for the block to have ended up on @bitmap, 420 * so if it's gone now there's something wrong and the fs will shut down. 421 * 422 * Note: If there are multiple rmap records with only the same rmap owner as 423 * the btree we're trying to rebuild and the block is indeed owned by another 424 * data structure with the same rmap owner, then the block will be in sublist 425 * and therefore doesn't need disposal. If there are multiple rmap records 426 * with only the same rmap owner but the block is not owned by something with 427 * the same rmap owner, the block will be freed. 428 * 429 * The caller is responsible for locking the AG headers for the entire rebuild 430 * operation so that nothing else can sneak in and change the AG state while 431 * we're not looking. We also assume that the caller already invalidated any 432 * buffers associated with @bitmap. 433 */ 434 435 /* 436 * Invalidate buffers for per-AG btree blocks we're dumping. This function 437 * is not intended for use with file data repairs; we have bunmapi for that. 438 */ 439 int 440 xrep_invalidate_blocks( 441 struct xfs_scrub *sc, 442 struct xbitmap *bitmap) 443 { 444 struct xbitmap_range *bmr; 445 struct xbitmap_range *n; 446 struct xfs_buf *bp; 447 xfs_fsblock_t fsbno; 448 449 /* 450 * For each block in each extent, see if there's an incore buffer for 451 * exactly that block; if so, invalidate it. The buffer cache only 452 * lets us look for one buffer at a time, so we have to look one block 453 * at a time. Avoid invalidating AG headers and post-EOFS blocks 454 * because we never own those; and if we can't TRYLOCK the buffer we 455 * assume it's owned by someone else. 456 */ 457 for_each_xbitmap_block(fsbno, bmr, n, bitmap) { 458 /* Skip AG headers and post-EOFS blocks */ 459 if (!xfs_verify_fsbno(sc->mp, fsbno)) 460 continue; 461 bp = xfs_buf_incore(sc->mp->m_ddev_targp, 462 XFS_FSB_TO_DADDR(sc->mp, fsbno), 463 XFS_FSB_TO_BB(sc->mp, 1), XBF_TRYLOCK); 464 if (bp) { 465 xfs_trans_bjoin(sc->tp, bp); 466 xfs_trans_binval(sc->tp, bp); 467 } 468 } 469 470 return 0; 471 } 472 473 /* Ensure the freelist is the correct size. */ 474 int 475 xrep_fix_freelist( 476 struct xfs_scrub *sc, 477 bool can_shrink) 478 { 479 struct xfs_alloc_arg args = {0}; 480 481 args.mp = sc->mp; 482 args.tp = sc->tp; 483 args.agno = sc->sa.agno; 484 args.alignment = 1; 485 args.pag = sc->sa.pag; 486 487 return xfs_alloc_fix_freelist(&args, 488 can_shrink ? 0 : XFS_ALLOC_FLAG_NOSHRINK); 489 } 490 491 /* 492 * Put a block back on the AGFL. 493 */ 494 STATIC int 495 xrep_put_freelist( 496 struct xfs_scrub *sc, 497 xfs_agblock_t agbno) 498 { 499 int error; 500 501 /* Make sure there's space on the freelist. */ 502 error = xrep_fix_freelist(sc, true); 503 if (error) 504 return error; 505 506 /* 507 * Since we're "freeing" a lost block onto the AGFL, we have to 508 * create an rmap for the block prior to merging it or else other 509 * parts will break. 510 */ 511 error = xfs_rmap_alloc(sc->tp, sc->sa.agf_bp, sc->sa.agno, agbno, 1, 512 &XFS_RMAP_OINFO_AG); 513 if (error) 514 return error; 515 516 /* Put the block on the AGFL. */ 517 error = xfs_alloc_put_freelist(sc->tp, sc->sa.agf_bp, sc->sa.agfl_bp, 518 agbno, 0); 519 if (error) 520 return error; 521 xfs_extent_busy_insert(sc->tp, sc->sa.agno, agbno, 1, 522 XFS_EXTENT_BUSY_SKIP_DISCARD); 523 524 return 0; 525 } 526 527 /* Dispose of a single block. */ 528 STATIC int 529 xrep_reap_block( 530 struct xfs_scrub *sc, 531 xfs_fsblock_t fsbno, 532 const struct xfs_owner_info *oinfo, 533 enum xfs_ag_resv_type resv) 534 { 535 struct xfs_btree_cur *cur; 536 struct xfs_buf *agf_bp = NULL; 537 xfs_agnumber_t agno; 538 xfs_agblock_t agbno; 539 bool has_other_rmap; 540 int error; 541 542 agno = XFS_FSB_TO_AGNO(sc->mp, fsbno); 543 agbno = XFS_FSB_TO_AGBNO(sc->mp, fsbno); 544 545 /* 546 * If we are repairing per-inode metadata, we need to read in the AGF 547 * buffer. Otherwise, we're repairing a per-AG structure, so reuse 548 * the AGF buffer that the setup functions already grabbed. 549 */ 550 if (sc->ip) { 551 error = xfs_alloc_read_agf(sc->mp, sc->tp, agno, 0, &agf_bp); 552 if (error) 553 return error; 554 } else { 555 agf_bp = sc->sa.agf_bp; 556 } 557 cur = xfs_rmapbt_init_cursor(sc->mp, sc->tp, agf_bp, agno); 558 559 /* Can we find any other rmappings? */ 560 error = xfs_rmap_has_other_keys(cur, agbno, 1, oinfo, &has_other_rmap); 561 xfs_btree_del_cursor(cur, error); 562 if (error) 563 goto out_free; 564 565 /* 566 * If there are other rmappings, this block is cross linked and must 567 * not be freed. Remove the reverse mapping and move on. Otherwise, 568 * we were the only owner of the block, so free the extent, which will 569 * also remove the rmap. 570 * 571 * XXX: XFS doesn't support detecting the case where a single block 572 * metadata structure is crosslinked with a multi-block structure 573 * because the buffer cache doesn't detect aliasing problems, so we 574 * can't fix 100% of crosslinking problems (yet). The verifiers will 575 * blow on writeout, the filesystem will shut down, and the admin gets 576 * to run xfs_repair. 577 */ 578 if (has_other_rmap) 579 error = xfs_rmap_free(sc->tp, agf_bp, agno, agbno, 1, oinfo); 580 else if (resv == XFS_AG_RESV_AGFL) 581 error = xrep_put_freelist(sc, agbno); 582 else 583 error = xfs_free_extent(sc->tp, fsbno, 1, oinfo, resv); 584 if (agf_bp != sc->sa.agf_bp) 585 xfs_trans_brelse(sc->tp, agf_bp); 586 if (error) 587 return error; 588 589 if (sc->ip) 590 return xfs_trans_roll_inode(&sc->tp, sc->ip); 591 return xrep_roll_ag_trans(sc); 592 593 out_free: 594 if (agf_bp != sc->sa.agf_bp) 595 xfs_trans_brelse(sc->tp, agf_bp); 596 return error; 597 } 598 599 /* Dispose of every block of every extent in the bitmap. */ 600 int 601 xrep_reap_extents( 602 struct xfs_scrub *sc, 603 struct xbitmap *bitmap, 604 const struct xfs_owner_info *oinfo, 605 enum xfs_ag_resv_type type) 606 { 607 struct xbitmap_range *bmr; 608 struct xbitmap_range *n; 609 xfs_fsblock_t fsbno; 610 int error = 0; 611 612 ASSERT(xfs_sb_version_hasrmapbt(&sc->mp->m_sb)); 613 614 for_each_xbitmap_block(fsbno, bmr, n, bitmap) { 615 ASSERT(sc->ip != NULL || 616 XFS_FSB_TO_AGNO(sc->mp, fsbno) == sc->sa.agno); 617 trace_xrep_dispose_btree_extent(sc->mp, 618 XFS_FSB_TO_AGNO(sc->mp, fsbno), 619 XFS_FSB_TO_AGBNO(sc->mp, fsbno), 1); 620 621 error = xrep_reap_block(sc, fsbno, oinfo, type); 622 if (error) 623 break; 624 } 625 626 return error; 627 } 628 629 /* 630 * Finding per-AG Btree Roots for AGF/AGI Reconstruction 631 * 632 * If the AGF or AGI become slightly corrupted, it may be necessary to rebuild 633 * the AG headers by using the rmap data to rummage through the AG looking for 634 * btree roots. This is not guaranteed to work if the AG is heavily damaged 635 * or the rmap data are corrupt. 636 * 637 * Callers of xrep_find_ag_btree_roots must lock the AGF and AGFL 638 * buffers if the AGF is being rebuilt; or the AGF and AGI buffers if the 639 * AGI is being rebuilt. It must maintain these locks until it's safe for 640 * other threads to change the btrees' shapes. The caller provides 641 * information about the btrees to look for by passing in an array of 642 * xrep_find_ag_btree with the (rmap owner, buf_ops, magic) fields set. 643 * The (root, height) fields will be set on return if anything is found. The 644 * last element of the array should have a NULL buf_ops to mark the end of the 645 * array. 646 * 647 * For every rmapbt record matching any of the rmap owners in btree_info, 648 * read each block referenced by the rmap record. If the block is a btree 649 * block from this filesystem matching any of the magic numbers and has a 650 * level higher than what we've already seen, remember the block and the 651 * height of the tree required to have such a block. When the call completes, 652 * we return the highest block we've found for each btree description; those 653 * should be the roots. 654 */ 655 656 struct xrep_findroot { 657 struct xfs_scrub *sc; 658 struct xfs_buf *agfl_bp; 659 struct xfs_agf *agf; 660 struct xrep_find_ag_btree *btree_info; 661 }; 662 663 /* See if our block is in the AGFL. */ 664 STATIC int 665 xrep_findroot_agfl_walk( 666 struct xfs_mount *mp, 667 xfs_agblock_t bno, 668 void *priv) 669 { 670 xfs_agblock_t *agbno = priv; 671 672 return (*agbno == bno) ? -ECANCELED : 0; 673 } 674 675 /* Does this block match the btree information passed in? */ 676 STATIC int 677 xrep_findroot_block( 678 struct xrep_findroot *ri, 679 struct xrep_find_ag_btree *fab, 680 uint64_t owner, 681 xfs_agblock_t agbno, 682 bool *done_with_block) 683 { 684 struct xfs_mount *mp = ri->sc->mp; 685 struct xfs_buf *bp; 686 struct xfs_btree_block *btblock; 687 xfs_daddr_t daddr; 688 int block_level; 689 int error = 0; 690 691 daddr = XFS_AGB_TO_DADDR(mp, ri->sc->sa.agno, agbno); 692 693 /* 694 * Blocks in the AGFL have stale contents that might just happen to 695 * have a matching magic and uuid. We don't want to pull these blocks 696 * in as part of a tree root, so we have to filter out the AGFL stuff 697 * here. If the AGFL looks insane we'll just refuse to repair. 698 */ 699 if (owner == XFS_RMAP_OWN_AG) { 700 error = xfs_agfl_walk(mp, ri->agf, ri->agfl_bp, 701 xrep_findroot_agfl_walk, &agbno); 702 if (error == -ECANCELED) 703 return 0; 704 if (error) 705 return error; 706 } 707 708 /* 709 * Read the buffer into memory so that we can see if it's a match for 710 * our btree type. We have no clue if it is beforehand, and we want to 711 * avoid xfs_trans_read_buf's behavior of dumping the DONE state (which 712 * will cause needless disk reads in subsequent calls to this function) 713 * and logging metadata verifier failures. 714 * 715 * Therefore, pass in NULL buffer ops. If the buffer was already in 716 * memory from some other caller it will already have b_ops assigned. 717 * If it was in memory from a previous unsuccessful findroot_block 718 * call, the buffer won't have b_ops but it should be clean and ready 719 * for us to try to verify if the read call succeeds. The same applies 720 * if the buffer wasn't in memory at all. 721 * 722 * Note: If we never match a btree type with this buffer, it will be 723 * left in memory with NULL b_ops. This shouldn't be a problem unless 724 * the buffer gets written. 725 */ 726 error = xfs_trans_read_buf(mp, ri->sc->tp, mp->m_ddev_targp, daddr, 727 mp->m_bsize, 0, &bp, NULL); 728 if (error) 729 return error; 730 731 /* Ensure the block magic matches the btree type we're looking for. */ 732 btblock = XFS_BUF_TO_BLOCK(bp); 733 ASSERT(fab->buf_ops->magic[1] != 0); 734 if (btblock->bb_magic != fab->buf_ops->magic[1]) 735 goto out; 736 737 /* 738 * If the buffer already has ops applied and they're not the ones for 739 * this btree type, we know this block doesn't match the btree and we 740 * can bail out. 741 * 742 * If the buffer ops match ours, someone else has already validated 743 * the block for us, so we can move on to checking if this is a root 744 * block candidate. 745 * 746 * If the buffer does not have ops, nobody has successfully validated 747 * the contents and the buffer cannot be dirty. If the magic, uuid, 748 * and structure match this btree type then we'll move on to checking 749 * if it's a root block candidate. If there is no match, bail out. 750 */ 751 if (bp->b_ops) { 752 if (bp->b_ops != fab->buf_ops) 753 goto out; 754 } else { 755 ASSERT(!xfs_trans_buf_is_dirty(bp)); 756 if (!uuid_equal(&btblock->bb_u.s.bb_uuid, 757 &mp->m_sb.sb_meta_uuid)) 758 goto out; 759 /* 760 * Read verifiers can reference b_ops, so we set the pointer 761 * here. If the verifier fails we'll reset the buffer state 762 * to what it was before we touched the buffer. 763 */ 764 bp->b_ops = fab->buf_ops; 765 fab->buf_ops->verify_read(bp); 766 if (bp->b_error) { 767 bp->b_ops = NULL; 768 bp->b_error = 0; 769 goto out; 770 } 771 772 /* 773 * Some read verifiers will (re)set b_ops, so we must be 774 * careful not to change b_ops after running the verifier. 775 */ 776 } 777 778 /* 779 * This block passes the magic/uuid and verifier tests for this btree 780 * type. We don't need the caller to try the other tree types. 781 */ 782 *done_with_block = true; 783 784 /* 785 * Compare this btree block's level to the height of the current 786 * candidate root block. 787 * 788 * If the level matches the root we found previously, throw away both 789 * blocks because there can't be two candidate roots. 790 * 791 * If level is lower in the tree than the root we found previously, 792 * ignore this block. 793 */ 794 block_level = xfs_btree_get_level(btblock); 795 if (block_level + 1 == fab->height) { 796 fab->root = NULLAGBLOCK; 797 goto out; 798 } else if (block_level < fab->height) { 799 goto out; 800 } 801 802 /* 803 * This is the highest block in the tree that we've found so far. 804 * Update the btree height to reflect what we've learned from this 805 * block. 806 */ 807 fab->height = block_level + 1; 808 809 /* 810 * If this block doesn't have sibling pointers, then it's the new root 811 * block candidate. Otherwise, the root will be found farther up the 812 * tree. 813 */ 814 if (btblock->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK) && 815 btblock->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK)) 816 fab->root = agbno; 817 else 818 fab->root = NULLAGBLOCK; 819 820 trace_xrep_findroot_block(mp, ri->sc->sa.agno, agbno, 821 be32_to_cpu(btblock->bb_magic), fab->height - 1); 822 out: 823 xfs_trans_brelse(ri->sc->tp, bp); 824 return error; 825 } 826 827 /* 828 * Do any of the blocks in this rmap record match one of the btrees we're 829 * looking for? 830 */ 831 STATIC int 832 xrep_findroot_rmap( 833 struct xfs_btree_cur *cur, 834 struct xfs_rmap_irec *rec, 835 void *priv) 836 { 837 struct xrep_findroot *ri = priv; 838 struct xrep_find_ag_btree *fab; 839 xfs_agblock_t b; 840 bool done; 841 int error = 0; 842 843 /* Ignore anything that isn't AG metadata. */ 844 if (!XFS_RMAP_NON_INODE_OWNER(rec->rm_owner)) 845 return 0; 846 847 /* Otherwise scan each block + btree type. */ 848 for (b = 0; b < rec->rm_blockcount; b++) { 849 done = false; 850 for (fab = ri->btree_info; fab->buf_ops; fab++) { 851 if (rec->rm_owner != fab->rmap_owner) 852 continue; 853 error = xrep_findroot_block(ri, fab, 854 rec->rm_owner, rec->rm_startblock + b, 855 &done); 856 if (error) 857 return error; 858 if (done) 859 break; 860 } 861 } 862 863 return 0; 864 } 865 866 /* Find the roots of the per-AG btrees described in btree_info. */ 867 int 868 xrep_find_ag_btree_roots( 869 struct xfs_scrub *sc, 870 struct xfs_buf *agf_bp, 871 struct xrep_find_ag_btree *btree_info, 872 struct xfs_buf *agfl_bp) 873 { 874 struct xfs_mount *mp = sc->mp; 875 struct xrep_findroot ri; 876 struct xrep_find_ag_btree *fab; 877 struct xfs_btree_cur *cur; 878 int error; 879 880 ASSERT(xfs_buf_islocked(agf_bp)); 881 ASSERT(agfl_bp == NULL || xfs_buf_islocked(agfl_bp)); 882 883 ri.sc = sc; 884 ri.btree_info = btree_info; 885 ri.agf = agf_bp->b_addr; 886 ri.agfl_bp = agfl_bp; 887 for (fab = btree_info; fab->buf_ops; fab++) { 888 ASSERT(agfl_bp || fab->rmap_owner != XFS_RMAP_OWN_AG); 889 ASSERT(XFS_RMAP_NON_INODE_OWNER(fab->rmap_owner)); 890 fab->root = NULLAGBLOCK; 891 fab->height = 0; 892 } 893 894 cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.agno); 895 error = xfs_rmap_query_all(cur, xrep_findroot_rmap, &ri); 896 xfs_btree_del_cursor(cur, error); 897 898 return error; 899 } 900 901 /* Force a quotacheck the next time we mount. */ 902 void 903 xrep_force_quotacheck( 904 struct xfs_scrub *sc, 905 xfs_dqtype_t type) 906 { 907 uint flag; 908 909 flag = xfs_quota_chkd_flag(type); 910 if (!(flag & sc->mp->m_qflags)) 911 return; 912 913 sc->mp->m_qflags &= ~flag; 914 spin_lock(&sc->mp->m_sb_lock); 915 sc->mp->m_sb.sb_qflags &= ~flag; 916 spin_unlock(&sc->mp->m_sb_lock); 917 xfs_log_sb(sc->tp); 918 } 919 920 /* 921 * Attach dquots to this inode, or schedule quotacheck to fix them. 922 * 923 * This function ensures that the appropriate dquots are attached to an inode. 924 * We cannot allow the dquot code to allocate an on-disk dquot block here 925 * because we're already in transaction context with the inode locked. The 926 * on-disk dquot should already exist anyway. If the quota code signals 927 * corruption or missing quota information, schedule quotacheck, which will 928 * repair corruptions in the quota metadata. 929 */ 930 int 931 xrep_ino_dqattach( 932 struct xfs_scrub *sc) 933 { 934 int error; 935 936 error = xfs_qm_dqattach_locked(sc->ip, false); 937 switch (error) { 938 case -EFSBADCRC: 939 case -EFSCORRUPTED: 940 case -ENOENT: 941 xfs_err_ratelimited(sc->mp, 942 "inode %llu repair encountered quota error %d, quotacheck forced.", 943 (unsigned long long)sc->ip->i_ino, error); 944 if (XFS_IS_UQUOTA_ON(sc->mp) && !sc->ip->i_udquot) 945 xrep_force_quotacheck(sc, XFS_DQTYPE_USER); 946 if (XFS_IS_GQUOTA_ON(sc->mp) && !sc->ip->i_gdquot) 947 xrep_force_quotacheck(sc, XFS_DQTYPE_GROUP); 948 if (XFS_IS_PQUOTA_ON(sc->mp) && !sc->ip->i_pdquot) 949 xrep_force_quotacheck(sc, XFS_DQTYPE_PROJ); 950 /* fall through */ 951 case -ESRCH: 952 error = 0; 953 break; 954 default: 955 break; 956 } 957 958 return error; 959 } 960