1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2018-2023 Oracle. All Rights Reserved. 4 * Author: Darrick J. Wong <djwong@kernel.org> 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_trans_resv.h" 11 #include "xfs_mount.h" 12 #include "xfs_btree.h" 13 #include "xfs_log_format.h" 14 #include "xfs_trans.h" 15 #include "xfs_sb.h" 16 #include "xfs_inode.h" 17 #include "xfs_alloc.h" 18 #include "xfs_alloc_btree.h" 19 #include "xfs_ialloc.h" 20 #include "xfs_ialloc_btree.h" 21 #include "xfs_rmap.h" 22 #include "xfs_rmap_btree.h" 23 #include "xfs_refcount_btree.h" 24 #include "xfs_extent_busy.h" 25 #include "xfs_ag.h" 26 #include "xfs_ag_resv.h" 27 #include "xfs_quota.h" 28 #include "xfs_qm.h" 29 #include "xfs_defer.h" 30 #include "xfs_errortag.h" 31 #include "xfs_error.h" 32 #include "xfs_reflink.h" 33 #include "xfs_health.h" 34 #include "scrub/scrub.h" 35 #include "scrub/common.h" 36 #include "scrub/trace.h" 37 #include "scrub/repair.h" 38 #include "scrub/bitmap.h" 39 #include "scrub/stats.h" 40 41 /* 42 * Attempt to repair some metadata, if the metadata is corrupt and userspace 43 * told us to fix it. This function returns -EAGAIN to mean "re-run scrub", 44 * and will set *fixed to true if it thinks it repaired anything. 45 */ 46 int 47 xrep_attempt( 48 struct xfs_scrub *sc, 49 struct xchk_stats_run *run) 50 { 51 u64 repair_start; 52 int error = 0; 53 54 trace_xrep_attempt(XFS_I(file_inode(sc->file)), sc->sm, error); 55 56 xchk_ag_btcur_free(&sc->sa); 57 58 /* Repair whatever's broken. */ 59 ASSERT(sc->ops->repair); 60 run->repair_attempted = true; 61 repair_start = xchk_stats_now(); 62 error = sc->ops->repair(sc); 63 trace_xrep_done(XFS_I(file_inode(sc->file)), sc->sm, error); 64 run->repair_ns += xchk_stats_elapsed_ns(repair_start); 65 switch (error) { 66 case 0: 67 /* 68 * Repair succeeded. Commit the fixes and perform a second 69 * scrub so that we can tell userspace if we fixed the problem. 70 */ 71 sc->sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT; 72 sc->flags |= XREP_ALREADY_FIXED; 73 run->repair_succeeded = true; 74 return -EAGAIN; 75 case -ECHRNG: 76 sc->flags |= XCHK_NEED_DRAIN; 77 run->retries++; 78 return -EAGAIN; 79 case -EDEADLOCK: 80 /* Tell the caller to try again having grabbed all the locks. */ 81 if (!(sc->flags & XCHK_TRY_HARDER)) { 82 sc->flags |= XCHK_TRY_HARDER; 83 run->retries++; 84 return -EAGAIN; 85 } 86 /* 87 * We tried harder but still couldn't grab all the resources 88 * we needed to fix it. The corruption has not been fixed, 89 * so exit to userspace with the scan's output flags unchanged. 90 */ 91 return 0; 92 default: 93 /* 94 * EAGAIN tells the caller to re-scrub, so we cannot return 95 * that here. 96 */ 97 ASSERT(error != -EAGAIN); 98 return error; 99 } 100 } 101 102 /* 103 * Complain about unfixable problems in the filesystem. We don't log 104 * corruptions when IFLAG_REPAIR wasn't set on the assumption that the driver 105 * program is xfs_scrub, which will call back with IFLAG_REPAIR set if the 106 * administrator isn't running xfs_scrub in no-repairs mode. 107 * 108 * Use this helper function because _ratelimited silently declares a static 109 * structure to track rate limiting information. 110 */ 111 void 112 xrep_failure( 113 struct xfs_mount *mp) 114 { 115 xfs_alert_ratelimited(mp, 116 "Corruption not fixed during online repair. Unmount and run xfs_repair."); 117 } 118 119 /* 120 * Repair probe -- userspace uses this to probe if we're willing to repair a 121 * given mountpoint. 122 */ 123 int 124 xrep_probe( 125 struct xfs_scrub *sc) 126 { 127 int error = 0; 128 129 if (xchk_should_terminate(sc, &error)) 130 return error; 131 132 return 0; 133 } 134 135 /* 136 * Roll a transaction, keeping the AG headers locked and reinitializing 137 * the btree cursors. 138 */ 139 int 140 xrep_roll_ag_trans( 141 struct xfs_scrub *sc) 142 { 143 int error; 144 145 /* 146 * Keep the AG header buffers locked while we roll the transaction. 147 * Ensure that both AG buffers are dirty and held when we roll the 148 * transaction so that they move forward in the log without losing the 149 * bli (and hence the bli type) when the transaction commits. 150 * 151 * Normal code would never hold clean buffers across a roll, but repair 152 * needs both buffers to maintain a total lock on the AG. 153 */ 154 if (sc->sa.agi_bp) { 155 xfs_ialloc_log_agi(sc->tp, sc->sa.agi_bp, XFS_AGI_MAGICNUM); 156 xfs_trans_bhold(sc->tp, sc->sa.agi_bp); 157 } 158 159 if (sc->sa.agf_bp) { 160 xfs_alloc_log_agf(sc->tp, sc->sa.agf_bp, XFS_AGF_MAGICNUM); 161 xfs_trans_bhold(sc->tp, sc->sa.agf_bp); 162 } 163 164 /* 165 * Roll the transaction. We still hold the AG header buffers locked 166 * regardless of whether or not that succeeds. On failure, the buffers 167 * will be released during teardown on our way out of the kernel. If 168 * successful, join the buffers to the new transaction and move on. 169 */ 170 error = xfs_trans_roll(&sc->tp); 171 if (error) 172 return error; 173 174 /* Join the AG headers to the new transaction. */ 175 if (sc->sa.agi_bp) 176 xfs_trans_bjoin(sc->tp, sc->sa.agi_bp); 177 if (sc->sa.agf_bp) 178 xfs_trans_bjoin(sc->tp, sc->sa.agf_bp); 179 180 return 0; 181 } 182 183 /* Roll the scrub transaction, holding the primary metadata locked. */ 184 int 185 xrep_roll_trans( 186 struct xfs_scrub *sc) 187 { 188 if (!sc->ip) 189 return xrep_roll_ag_trans(sc); 190 return xfs_trans_roll_inode(&sc->tp, sc->ip); 191 } 192 193 /* Finish all deferred work attached to the repair transaction. */ 194 int 195 xrep_defer_finish( 196 struct xfs_scrub *sc) 197 { 198 int error; 199 200 /* 201 * Keep the AG header buffers locked while we complete deferred work 202 * items. Ensure that both AG buffers are dirty and held when we roll 203 * the transaction so that they move forward in the log without losing 204 * the bli (and hence the bli type) when the transaction commits. 205 * 206 * Normal code would never hold clean buffers across a roll, but repair 207 * needs both buffers to maintain a total lock on the AG. 208 */ 209 if (sc->sa.agi_bp) { 210 xfs_ialloc_log_agi(sc->tp, sc->sa.agi_bp, XFS_AGI_MAGICNUM); 211 xfs_trans_bhold(sc->tp, sc->sa.agi_bp); 212 } 213 214 if (sc->sa.agf_bp) { 215 xfs_alloc_log_agf(sc->tp, sc->sa.agf_bp, XFS_AGF_MAGICNUM); 216 xfs_trans_bhold(sc->tp, sc->sa.agf_bp); 217 } 218 219 /* 220 * Finish all deferred work items. We still hold the AG header buffers 221 * locked regardless of whether or not that succeeds. On failure, the 222 * buffers will be released during teardown on our way out of the 223 * kernel. If successful, join the buffers to the new transaction 224 * and move on. 225 */ 226 error = xfs_defer_finish(&sc->tp); 227 if (error) 228 return error; 229 230 /* 231 * Release the hold that we set above because defer_finish won't do 232 * that for us. The defer roll code redirties held buffers after each 233 * roll, so the AG header buffers should be ready for logging. 234 */ 235 if (sc->sa.agi_bp) 236 xfs_trans_bhold_release(sc->tp, sc->sa.agi_bp); 237 if (sc->sa.agf_bp) 238 xfs_trans_bhold_release(sc->tp, sc->sa.agf_bp); 239 240 return 0; 241 } 242 243 /* 244 * Does the given AG have enough space to rebuild a btree? Neither AG 245 * reservation can be critical, and we must have enough space (factoring 246 * in AG reservations) to construct a whole btree. 247 */ 248 bool 249 xrep_ag_has_space( 250 struct xfs_perag *pag, 251 xfs_extlen_t nr_blocks, 252 enum xfs_ag_resv_type type) 253 { 254 return !xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) && 255 !xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA) && 256 pag->pagf_freeblks > xfs_ag_resv_needed(pag, type) + nr_blocks; 257 } 258 259 /* 260 * Figure out how many blocks to reserve for an AG repair. We calculate the 261 * worst case estimate for the number of blocks we'd need to rebuild one of 262 * any type of per-AG btree. 263 */ 264 xfs_extlen_t 265 xrep_calc_ag_resblks( 266 struct xfs_scrub *sc) 267 { 268 struct xfs_mount *mp = sc->mp; 269 struct xfs_scrub_metadata *sm = sc->sm; 270 struct xfs_perag *pag; 271 struct xfs_buf *bp; 272 xfs_agino_t icount = NULLAGINO; 273 xfs_extlen_t aglen = NULLAGBLOCK; 274 xfs_extlen_t usedlen; 275 xfs_extlen_t freelen; 276 xfs_extlen_t bnobt_sz; 277 xfs_extlen_t inobt_sz; 278 xfs_extlen_t rmapbt_sz; 279 xfs_extlen_t refcbt_sz; 280 int error; 281 282 if (!(sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR)) 283 return 0; 284 285 pag = xfs_perag_get(mp, sm->sm_agno); 286 if (xfs_perag_initialised_agi(pag)) { 287 /* Use in-core icount if possible. */ 288 icount = pag->pagi_count; 289 } else { 290 /* Try to get the actual counters from disk. */ 291 error = xfs_ialloc_read_agi(pag, NULL, &bp); 292 if (!error) { 293 icount = pag->pagi_count; 294 xfs_buf_relse(bp); 295 } 296 } 297 298 /* Now grab the block counters from the AGF. */ 299 error = xfs_alloc_read_agf(pag, NULL, 0, &bp); 300 if (error) { 301 aglen = pag->block_count; 302 freelen = aglen; 303 usedlen = aglen; 304 } else { 305 struct xfs_agf *agf = bp->b_addr; 306 307 aglen = be32_to_cpu(agf->agf_length); 308 freelen = be32_to_cpu(agf->agf_freeblks); 309 usedlen = aglen - freelen; 310 xfs_buf_relse(bp); 311 } 312 313 /* If the icount is impossible, make some worst-case assumptions. */ 314 if (icount == NULLAGINO || 315 !xfs_verify_agino(pag, icount)) { 316 icount = pag->agino_max - pag->agino_min + 1; 317 } 318 319 /* If the block counts are impossible, make worst-case assumptions. */ 320 if (aglen == NULLAGBLOCK || 321 aglen != pag->block_count || 322 freelen >= aglen) { 323 aglen = pag->block_count; 324 freelen = aglen; 325 usedlen = aglen; 326 } 327 xfs_perag_put(pag); 328 329 trace_xrep_calc_ag_resblks(mp, sm->sm_agno, icount, aglen, 330 freelen, usedlen); 331 332 /* 333 * Figure out how many blocks we'd need worst case to rebuild 334 * each type of btree. Note that we can only rebuild the 335 * bnobt/cntbt or inobt/finobt as pairs. 336 */ 337 bnobt_sz = 2 * xfs_allocbt_calc_size(mp, freelen); 338 if (xfs_has_sparseinodes(mp)) 339 inobt_sz = xfs_iallocbt_calc_size(mp, icount / 340 XFS_INODES_PER_HOLEMASK_BIT); 341 else 342 inobt_sz = xfs_iallocbt_calc_size(mp, icount / 343 XFS_INODES_PER_CHUNK); 344 if (xfs_has_finobt(mp)) 345 inobt_sz *= 2; 346 if (xfs_has_reflink(mp)) 347 refcbt_sz = xfs_refcountbt_calc_size(mp, usedlen); 348 else 349 refcbt_sz = 0; 350 if (xfs_has_rmapbt(mp)) { 351 /* 352 * Guess how many blocks we need to rebuild the rmapbt. 353 * For non-reflink filesystems we can't have more records than 354 * used blocks. However, with reflink it's possible to have 355 * more than one rmap record per AG block. We don't know how 356 * many rmaps there could be in the AG, so we start off with 357 * what we hope is an generous over-estimation. 358 */ 359 if (xfs_has_reflink(mp)) 360 rmapbt_sz = xfs_rmapbt_calc_size(mp, 361 (unsigned long long)aglen * 2); 362 else 363 rmapbt_sz = xfs_rmapbt_calc_size(mp, usedlen); 364 } else { 365 rmapbt_sz = 0; 366 } 367 368 trace_xrep_calc_ag_resblks_btsize(mp, sm->sm_agno, bnobt_sz, 369 inobt_sz, rmapbt_sz, refcbt_sz); 370 371 return max(max(bnobt_sz, inobt_sz), max(rmapbt_sz, refcbt_sz)); 372 } 373 374 /* 375 * Reconstructing per-AG Btrees 376 * 377 * When a space btree is corrupt, we don't bother trying to fix it. Instead, 378 * we scan secondary space metadata to derive the records that should be in 379 * the damaged btree, initialize a fresh btree root, and insert the records. 380 * Note that for rebuilding the rmapbt we scan all the primary data to 381 * generate the new records. 382 * 383 * However, that leaves the matter of removing all the metadata describing the 384 * old broken structure. For primary metadata we use the rmap data to collect 385 * every extent with a matching rmap owner (bitmap); we then iterate all other 386 * metadata structures with the same rmap owner to collect the extents that 387 * cannot be removed (sublist). We then subtract sublist from bitmap to 388 * derive the blocks that were used by the old btree. These blocks can be 389 * reaped. 390 * 391 * For rmapbt reconstructions we must use different tactics for extent 392 * collection. First we iterate all primary metadata (this excludes the old 393 * rmapbt, obviously) to generate new rmap records. The gaps in the rmap 394 * records are collected as bitmap. The bnobt records are collected as 395 * sublist. As with the other btrees we subtract sublist from bitmap, and the 396 * result (since the rmapbt lives in the free space) are the blocks from the 397 * old rmapbt. 398 */ 399 400 /* Ensure the freelist is the correct size. */ 401 int 402 xrep_fix_freelist( 403 struct xfs_scrub *sc, 404 bool can_shrink) 405 { 406 struct xfs_alloc_arg args = {0}; 407 408 args.mp = sc->mp; 409 args.tp = sc->tp; 410 args.agno = sc->sa.pag->pag_agno; 411 args.alignment = 1; 412 args.pag = sc->sa.pag; 413 414 return xfs_alloc_fix_freelist(&args, 415 can_shrink ? 0 : XFS_ALLOC_FLAG_NOSHRINK); 416 } 417 418 /* 419 * Finding per-AG Btree Roots for AGF/AGI Reconstruction 420 * 421 * If the AGF or AGI become slightly corrupted, it may be necessary to rebuild 422 * the AG headers by using the rmap data to rummage through the AG looking for 423 * btree roots. This is not guaranteed to work if the AG is heavily damaged 424 * or the rmap data are corrupt. 425 * 426 * Callers of xrep_find_ag_btree_roots must lock the AGF and AGFL 427 * buffers if the AGF is being rebuilt; or the AGF and AGI buffers if the 428 * AGI is being rebuilt. It must maintain these locks until it's safe for 429 * other threads to change the btrees' shapes. The caller provides 430 * information about the btrees to look for by passing in an array of 431 * xrep_find_ag_btree with the (rmap owner, buf_ops, magic) fields set. 432 * The (root, height) fields will be set on return if anything is found. The 433 * last element of the array should have a NULL buf_ops to mark the end of the 434 * array. 435 * 436 * For every rmapbt record matching any of the rmap owners in btree_info, 437 * read each block referenced by the rmap record. If the block is a btree 438 * block from this filesystem matching any of the magic numbers and has a 439 * level higher than what we've already seen, remember the block and the 440 * height of the tree required to have such a block. When the call completes, 441 * we return the highest block we've found for each btree description; those 442 * should be the roots. 443 */ 444 445 struct xrep_findroot { 446 struct xfs_scrub *sc; 447 struct xfs_buf *agfl_bp; 448 struct xfs_agf *agf; 449 struct xrep_find_ag_btree *btree_info; 450 }; 451 452 /* See if our block is in the AGFL. */ 453 STATIC int 454 xrep_findroot_agfl_walk( 455 struct xfs_mount *mp, 456 xfs_agblock_t bno, 457 void *priv) 458 { 459 xfs_agblock_t *agbno = priv; 460 461 return (*agbno == bno) ? -ECANCELED : 0; 462 } 463 464 /* Does this block match the btree information passed in? */ 465 STATIC int 466 xrep_findroot_block( 467 struct xrep_findroot *ri, 468 struct xrep_find_ag_btree *fab, 469 uint64_t owner, 470 xfs_agblock_t agbno, 471 bool *done_with_block) 472 { 473 struct xfs_mount *mp = ri->sc->mp; 474 struct xfs_buf *bp; 475 struct xfs_btree_block *btblock; 476 xfs_daddr_t daddr; 477 int block_level; 478 int error = 0; 479 480 daddr = XFS_AGB_TO_DADDR(mp, ri->sc->sa.pag->pag_agno, agbno); 481 482 /* 483 * Blocks in the AGFL have stale contents that might just happen to 484 * have a matching magic and uuid. We don't want to pull these blocks 485 * in as part of a tree root, so we have to filter out the AGFL stuff 486 * here. If the AGFL looks insane we'll just refuse to repair. 487 */ 488 if (owner == XFS_RMAP_OWN_AG) { 489 error = xfs_agfl_walk(mp, ri->agf, ri->agfl_bp, 490 xrep_findroot_agfl_walk, &agbno); 491 if (error == -ECANCELED) 492 return 0; 493 if (error) 494 return error; 495 } 496 497 /* 498 * Read the buffer into memory so that we can see if it's a match for 499 * our btree type. We have no clue if it is beforehand, and we want to 500 * avoid xfs_trans_read_buf's behavior of dumping the DONE state (which 501 * will cause needless disk reads in subsequent calls to this function) 502 * and logging metadata verifier failures. 503 * 504 * Therefore, pass in NULL buffer ops. If the buffer was already in 505 * memory from some other caller it will already have b_ops assigned. 506 * If it was in memory from a previous unsuccessful findroot_block 507 * call, the buffer won't have b_ops but it should be clean and ready 508 * for us to try to verify if the read call succeeds. The same applies 509 * if the buffer wasn't in memory at all. 510 * 511 * Note: If we never match a btree type with this buffer, it will be 512 * left in memory with NULL b_ops. This shouldn't be a problem unless 513 * the buffer gets written. 514 */ 515 error = xfs_trans_read_buf(mp, ri->sc->tp, mp->m_ddev_targp, daddr, 516 mp->m_bsize, 0, &bp, NULL); 517 if (error) 518 return error; 519 520 /* Ensure the block magic matches the btree type we're looking for. */ 521 btblock = XFS_BUF_TO_BLOCK(bp); 522 ASSERT(fab->buf_ops->magic[1] != 0); 523 if (btblock->bb_magic != fab->buf_ops->magic[1]) 524 goto out; 525 526 /* 527 * If the buffer already has ops applied and they're not the ones for 528 * this btree type, we know this block doesn't match the btree and we 529 * can bail out. 530 * 531 * If the buffer ops match ours, someone else has already validated 532 * the block for us, so we can move on to checking if this is a root 533 * block candidate. 534 * 535 * If the buffer does not have ops, nobody has successfully validated 536 * the contents and the buffer cannot be dirty. If the magic, uuid, 537 * and structure match this btree type then we'll move on to checking 538 * if it's a root block candidate. If there is no match, bail out. 539 */ 540 if (bp->b_ops) { 541 if (bp->b_ops != fab->buf_ops) 542 goto out; 543 } else { 544 ASSERT(!xfs_trans_buf_is_dirty(bp)); 545 if (!uuid_equal(&btblock->bb_u.s.bb_uuid, 546 &mp->m_sb.sb_meta_uuid)) 547 goto out; 548 /* 549 * Read verifiers can reference b_ops, so we set the pointer 550 * here. If the verifier fails we'll reset the buffer state 551 * to what it was before we touched the buffer. 552 */ 553 bp->b_ops = fab->buf_ops; 554 fab->buf_ops->verify_read(bp); 555 if (bp->b_error) { 556 bp->b_ops = NULL; 557 bp->b_error = 0; 558 goto out; 559 } 560 561 /* 562 * Some read verifiers will (re)set b_ops, so we must be 563 * careful not to change b_ops after running the verifier. 564 */ 565 } 566 567 /* 568 * This block passes the magic/uuid and verifier tests for this btree 569 * type. We don't need the caller to try the other tree types. 570 */ 571 *done_with_block = true; 572 573 /* 574 * Compare this btree block's level to the height of the current 575 * candidate root block. 576 * 577 * If the level matches the root we found previously, throw away both 578 * blocks because there can't be two candidate roots. 579 * 580 * If level is lower in the tree than the root we found previously, 581 * ignore this block. 582 */ 583 block_level = xfs_btree_get_level(btblock); 584 if (block_level + 1 == fab->height) { 585 fab->root = NULLAGBLOCK; 586 goto out; 587 } else if (block_level < fab->height) { 588 goto out; 589 } 590 591 /* 592 * This is the highest block in the tree that we've found so far. 593 * Update the btree height to reflect what we've learned from this 594 * block. 595 */ 596 fab->height = block_level + 1; 597 598 /* 599 * If this block doesn't have sibling pointers, then it's the new root 600 * block candidate. Otherwise, the root will be found farther up the 601 * tree. 602 */ 603 if (btblock->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK) && 604 btblock->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK)) 605 fab->root = agbno; 606 else 607 fab->root = NULLAGBLOCK; 608 609 trace_xrep_findroot_block(mp, ri->sc->sa.pag->pag_agno, agbno, 610 be32_to_cpu(btblock->bb_magic), fab->height - 1); 611 out: 612 xfs_trans_brelse(ri->sc->tp, bp); 613 return error; 614 } 615 616 /* 617 * Do any of the blocks in this rmap record match one of the btrees we're 618 * looking for? 619 */ 620 STATIC int 621 xrep_findroot_rmap( 622 struct xfs_btree_cur *cur, 623 const struct xfs_rmap_irec *rec, 624 void *priv) 625 { 626 struct xrep_findroot *ri = priv; 627 struct xrep_find_ag_btree *fab; 628 xfs_agblock_t b; 629 bool done; 630 int error = 0; 631 632 /* Ignore anything that isn't AG metadata. */ 633 if (!XFS_RMAP_NON_INODE_OWNER(rec->rm_owner)) 634 return 0; 635 636 /* Otherwise scan each block + btree type. */ 637 for (b = 0; b < rec->rm_blockcount; b++) { 638 done = false; 639 for (fab = ri->btree_info; fab->buf_ops; fab++) { 640 if (rec->rm_owner != fab->rmap_owner) 641 continue; 642 error = xrep_findroot_block(ri, fab, 643 rec->rm_owner, rec->rm_startblock + b, 644 &done); 645 if (error) 646 return error; 647 if (done) 648 break; 649 } 650 } 651 652 return 0; 653 } 654 655 /* Find the roots of the per-AG btrees described in btree_info. */ 656 int 657 xrep_find_ag_btree_roots( 658 struct xfs_scrub *sc, 659 struct xfs_buf *agf_bp, 660 struct xrep_find_ag_btree *btree_info, 661 struct xfs_buf *agfl_bp) 662 { 663 struct xfs_mount *mp = sc->mp; 664 struct xrep_findroot ri; 665 struct xrep_find_ag_btree *fab; 666 struct xfs_btree_cur *cur; 667 int error; 668 669 ASSERT(xfs_buf_islocked(agf_bp)); 670 ASSERT(agfl_bp == NULL || xfs_buf_islocked(agfl_bp)); 671 672 ri.sc = sc; 673 ri.btree_info = btree_info; 674 ri.agf = agf_bp->b_addr; 675 ri.agfl_bp = agfl_bp; 676 for (fab = btree_info; fab->buf_ops; fab++) { 677 ASSERT(agfl_bp || fab->rmap_owner != XFS_RMAP_OWN_AG); 678 ASSERT(XFS_RMAP_NON_INODE_OWNER(fab->rmap_owner)); 679 fab->root = NULLAGBLOCK; 680 fab->height = 0; 681 } 682 683 cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.pag); 684 error = xfs_rmap_query_all(cur, xrep_findroot_rmap, &ri); 685 xfs_btree_del_cursor(cur, error); 686 687 return error; 688 } 689 690 #ifdef CONFIG_XFS_QUOTA 691 /* Update some quota flags in the superblock. */ 692 void 693 xrep_update_qflags( 694 struct xfs_scrub *sc, 695 unsigned int clear_flags, 696 unsigned int set_flags) 697 { 698 struct xfs_mount *mp = sc->mp; 699 struct xfs_buf *bp; 700 701 mutex_lock(&mp->m_quotainfo->qi_quotaofflock); 702 if ((mp->m_qflags & clear_flags) == 0 && 703 (mp->m_qflags & set_flags) == set_flags) 704 goto no_update; 705 706 mp->m_qflags &= ~clear_flags; 707 mp->m_qflags |= set_flags; 708 709 spin_lock(&mp->m_sb_lock); 710 mp->m_sb.sb_qflags &= ~clear_flags; 711 mp->m_sb.sb_qflags |= set_flags; 712 spin_unlock(&mp->m_sb_lock); 713 714 /* 715 * Update the quota flags in the ondisk superblock without touching 716 * the summary counters. We have not quiesced inode chunk allocation, 717 * so we cannot coordinate with updates to the icount and ifree percpu 718 * counters. 719 */ 720 bp = xfs_trans_getsb(sc->tp); 721 xfs_sb_to_disk(bp->b_addr, &mp->m_sb); 722 xfs_trans_buf_set_type(sc->tp, bp, XFS_BLFT_SB_BUF); 723 xfs_trans_log_buf(sc->tp, bp, 0, sizeof(struct xfs_dsb) - 1); 724 725 no_update: 726 mutex_unlock(&sc->mp->m_quotainfo->qi_quotaofflock); 727 } 728 729 /* Force a quotacheck the next time we mount. */ 730 void 731 xrep_force_quotacheck( 732 struct xfs_scrub *sc, 733 xfs_dqtype_t type) 734 { 735 uint flag; 736 737 flag = xfs_quota_chkd_flag(type); 738 if (!(flag & sc->mp->m_qflags)) 739 return; 740 741 xrep_update_qflags(sc, flag, 0); 742 } 743 744 /* 745 * Attach dquots to this inode, or schedule quotacheck to fix them. 746 * 747 * This function ensures that the appropriate dquots are attached to an inode. 748 * We cannot allow the dquot code to allocate an on-disk dquot block here 749 * because we're already in transaction context. The on-disk dquot should 750 * already exist anyway. If the quota code signals corruption or missing quota 751 * information, schedule quotacheck, which will repair corruptions in the quota 752 * metadata. 753 */ 754 int 755 xrep_ino_dqattach( 756 struct xfs_scrub *sc) 757 { 758 int error; 759 760 ASSERT(sc->tp != NULL); 761 ASSERT(sc->ip != NULL); 762 763 error = xfs_qm_dqattach(sc->ip); 764 switch (error) { 765 case -EFSBADCRC: 766 case -EFSCORRUPTED: 767 case -ENOENT: 768 xfs_err_ratelimited(sc->mp, 769 "inode %llu repair encountered quota error %d, quotacheck forced.", 770 (unsigned long long)sc->ip->i_ino, error); 771 if (XFS_IS_UQUOTA_ON(sc->mp) && !sc->ip->i_udquot) 772 xrep_force_quotacheck(sc, XFS_DQTYPE_USER); 773 if (XFS_IS_GQUOTA_ON(sc->mp) && !sc->ip->i_gdquot) 774 xrep_force_quotacheck(sc, XFS_DQTYPE_GROUP); 775 if (XFS_IS_PQUOTA_ON(sc->mp) && !sc->ip->i_pdquot) 776 xrep_force_quotacheck(sc, XFS_DQTYPE_PROJ); 777 fallthrough; 778 case -ESRCH: 779 error = 0; 780 break; 781 default: 782 break; 783 } 784 785 return error; 786 } 787 #endif /* CONFIG_XFS_QUOTA */ 788 789 /* 790 * Ensure that the inode being repaired is ready to handle a certain number of 791 * extents, or return EFSCORRUPTED. Caller must hold the ILOCK of the inode 792 * being repaired and have joined it to the scrub transaction. 793 */ 794 int 795 xrep_ino_ensure_extent_count( 796 struct xfs_scrub *sc, 797 int whichfork, 798 xfs_extnum_t nextents) 799 { 800 xfs_extnum_t max_extents; 801 bool inode_has_nrext64; 802 803 inode_has_nrext64 = xfs_inode_has_large_extent_counts(sc->ip); 804 max_extents = xfs_iext_max_nextents(inode_has_nrext64, whichfork); 805 if (nextents <= max_extents) 806 return 0; 807 if (inode_has_nrext64) 808 return -EFSCORRUPTED; 809 if (!xfs_has_large_extent_counts(sc->mp)) 810 return -EFSCORRUPTED; 811 812 max_extents = xfs_iext_max_nextents(true, whichfork); 813 if (nextents > max_extents) 814 return -EFSCORRUPTED; 815 816 sc->ip->i_diflags2 |= XFS_DIFLAG2_NREXT64; 817 xfs_trans_log_inode(sc->tp, sc->ip, XFS_ILOG_CORE); 818 return 0; 819 } 820 821 /* 822 * Initialize all the btree cursors for an AG repair except for the btree that 823 * we're rebuilding. 824 */ 825 void 826 xrep_ag_btcur_init( 827 struct xfs_scrub *sc, 828 struct xchk_ag *sa) 829 { 830 struct xfs_mount *mp = sc->mp; 831 832 /* Set up a bnobt cursor for cross-referencing. */ 833 if (sc->sm->sm_type != XFS_SCRUB_TYPE_BNOBT && 834 sc->sm->sm_type != XFS_SCRUB_TYPE_CNTBT) { 835 sa->bno_cur = xfs_bnobt_init_cursor(mp, sc->tp, sa->agf_bp, 836 sc->sa.pag); 837 sa->cnt_cur = xfs_cntbt_init_cursor(mp, sc->tp, sa->agf_bp, 838 sc->sa.pag); 839 } 840 841 /* Set up a inobt cursor for cross-referencing. */ 842 if (sc->sm->sm_type != XFS_SCRUB_TYPE_INOBT && 843 sc->sm->sm_type != XFS_SCRUB_TYPE_FINOBT) { 844 sa->ino_cur = xfs_inobt_init_cursor(sc->sa.pag, sc->tp, 845 sa->agi_bp); 846 if (xfs_has_finobt(mp)) 847 sa->fino_cur = xfs_finobt_init_cursor(sc->sa.pag, 848 sc->tp, sa->agi_bp); 849 } 850 851 /* Set up a rmapbt cursor for cross-referencing. */ 852 if (sc->sm->sm_type != XFS_SCRUB_TYPE_RMAPBT && 853 xfs_has_rmapbt(mp)) 854 sa->rmap_cur = xfs_rmapbt_init_cursor(mp, sc->tp, sa->agf_bp, 855 sc->sa.pag); 856 857 /* Set up a refcountbt cursor for cross-referencing. */ 858 if (sc->sm->sm_type != XFS_SCRUB_TYPE_REFCNTBT && 859 xfs_has_reflink(mp)) 860 sa->refc_cur = xfs_refcountbt_init_cursor(mp, sc->tp, 861 sa->agf_bp, sc->sa.pag); 862 } 863 864 /* 865 * Reinitialize the in-core AG state after a repair by rereading the AGF 866 * buffer. We had better get the same AGF buffer as the one that's attached 867 * to the scrub context. 868 */ 869 int 870 xrep_reinit_pagf( 871 struct xfs_scrub *sc) 872 { 873 struct xfs_perag *pag = sc->sa.pag; 874 struct xfs_buf *bp; 875 int error; 876 877 ASSERT(pag); 878 ASSERT(xfs_perag_initialised_agf(pag)); 879 880 clear_bit(XFS_AGSTATE_AGF_INIT, &pag->pag_opstate); 881 error = xfs_alloc_read_agf(pag, sc->tp, 0, &bp); 882 if (error) 883 return error; 884 885 if (bp != sc->sa.agf_bp) { 886 ASSERT(bp == sc->sa.agf_bp); 887 return -EFSCORRUPTED; 888 } 889 890 return 0; 891 } 892 893 /* 894 * Reinitialize the in-core AG state after a repair by rereading the AGI 895 * buffer. We had better get the same AGI buffer as the one that's attached 896 * to the scrub context. 897 */ 898 int 899 xrep_reinit_pagi( 900 struct xfs_scrub *sc) 901 { 902 struct xfs_perag *pag = sc->sa.pag; 903 struct xfs_buf *bp; 904 int error; 905 906 ASSERT(pag); 907 ASSERT(xfs_perag_initialised_agi(pag)); 908 909 clear_bit(XFS_AGSTATE_AGI_INIT, &pag->pag_opstate); 910 error = xfs_ialloc_read_agi(pag, sc->tp, &bp); 911 if (error) 912 return error; 913 914 if (bp != sc->sa.agi_bp) { 915 ASSERT(bp == sc->sa.agi_bp); 916 return -EFSCORRUPTED; 917 } 918 919 return 0; 920 } 921 922 /* 923 * Given an active reference to a perag structure, load AG headers and cursors. 924 * This should only be called to scan an AG while repairing file-based metadata. 925 */ 926 int 927 xrep_ag_init( 928 struct xfs_scrub *sc, 929 struct xfs_perag *pag, 930 struct xchk_ag *sa) 931 { 932 int error; 933 934 ASSERT(!sa->pag); 935 936 error = xfs_ialloc_read_agi(pag, sc->tp, &sa->agi_bp); 937 if (error) 938 return error; 939 940 error = xfs_alloc_read_agf(pag, sc->tp, 0, &sa->agf_bp); 941 if (error) 942 return error; 943 944 /* Grab our own passive reference from the caller's ref. */ 945 sa->pag = xfs_perag_hold(pag); 946 xrep_ag_btcur_init(sc, sa); 947 return 0; 948 } 949 950 /* Reinitialize the per-AG block reservation for the AG we just fixed. */ 951 int 952 xrep_reset_perag_resv( 953 struct xfs_scrub *sc) 954 { 955 int error; 956 957 if (!(sc->flags & XREP_RESET_PERAG_RESV)) 958 return 0; 959 960 ASSERT(sc->sa.pag != NULL); 961 ASSERT(sc->ops->type == ST_PERAG); 962 ASSERT(sc->tp); 963 964 sc->flags &= ~XREP_RESET_PERAG_RESV; 965 error = xfs_ag_resv_free(sc->sa.pag); 966 if (error) 967 goto out; 968 error = xfs_ag_resv_init(sc->sa.pag, sc->tp); 969 if (error == -ENOSPC) { 970 xfs_err(sc->mp, 971 "Insufficient free space to reset per-AG reservation for AG %u after repair.", 972 sc->sa.pag->pag_agno); 973 error = 0; 974 } 975 976 out: 977 return error; 978 } 979 980 /* Decide if we are going to call the repair function for a scrub type. */ 981 bool 982 xrep_will_attempt( 983 struct xfs_scrub *sc) 984 { 985 /* Userspace asked us to rebuild the structure regardless. */ 986 if (sc->sm->sm_flags & XFS_SCRUB_IFLAG_FORCE_REBUILD) 987 return true; 988 989 /* Let debug users force us into the repair routines. */ 990 if (XFS_TEST_ERROR(false, sc->mp, XFS_ERRTAG_FORCE_SCRUB_REPAIR)) 991 return true; 992 993 /* Metadata is corrupt or failed cross-referencing. */ 994 if (xchk_needs_repair(sc->sm)) 995 return true; 996 997 return false; 998 } 999 1000 /* Try to fix some part of a metadata inode by calling another scrubber. */ 1001 STATIC int 1002 xrep_metadata_inode_subtype( 1003 struct xfs_scrub *sc, 1004 unsigned int scrub_type) 1005 { 1006 __u32 smtype = sc->sm->sm_type; 1007 __u32 smflags = sc->sm->sm_flags; 1008 unsigned int sick_mask = sc->sick_mask; 1009 int error; 1010 1011 /* 1012 * Let's see if the inode needs repair. We're going to open-code calls 1013 * to the scrub and repair functions so that we can hang on to the 1014 * resources that we already acquired instead of using the standard 1015 * setup/teardown routines. 1016 */ 1017 sc->sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT; 1018 sc->sm->sm_type = scrub_type; 1019 1020 switch (scrub_type) { 1021 case XFS_SCRUB_TYPE_INODE: 1022 error = xchk_inode(sc); 1023 break; 1024 case XFS_SCRUB_TYPE_BMBTD: 1025 error = xchk_bmap_data(sc); 1026 break; 1027 case XFS_SCRUB_TYPE_BMBTA: 1028 error = xchk_bmap_attr(sc); 1029 break; 1030 default: 1031 ASSERT(0); 1032 error = -EFSCORRUPTED; 1033 } 1034 if (error) 1035 goto out; 1036 1037 if (!xrep_will_attempt(sc)) 1038 goto out; 1039 1040 /* 1041 * Repair some part of the inode. This will potentially join the inode 1042 * to the transaction. 1043 */ 1044 switch (scrub_type) { 1045 case XFS_SCRUB_TYPE_INODE: 1046 error = xrep_inode(sc); 1047 break; 1048 case XFS_SCRUB_TYPE_BMBTD: 1049 error = xrep_bmap(sc, XFS_DATA_FORK, false); 1050 break; 1051 case XFS_SCRUB_TYPE_BMBTA: 1052 error = xrep_bmap(sc, XFS_ATTR_FORK, false); 1053 break; 1054 } 1055 if (error) 1056 goto out; 1057 1058 /* 1059 * Finish all deferred intent items and then roll the transaction so 1060 * that the inode will not be joined to the transaction when we exit 1061 * the function. 1062 */ 1063 error = xfs_defer_finish(&sc->tp); 1064 if (error) 1065 goto out; 1066 error = xfs_trans_roll(&sc->tp); 1067 if (error) 1068 goto out; 1069 1070 /* 1071 * Clear the corruption flags and re-check the metadata that we just 1072 * repaired. 1073 */ 1074 sc->sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT; 1075 1076 switch (scrub_type) { 1077 case XFS_SCRUB_TYPE_INODE: 1078 error = xchk_inode(sc); 1079 break; 1080 case XFS_SCRUB_TYPE_BMBTD: 1081 error = xchk_bmap_data(sc); 1082 break; 1083 case XFS_SCRUB_TYPE_BMBTA: 1084 error = xchk_bmap_attr(sc); 1085 break; 1086 } 1087 if (error) 1088 goto out; 1089 1090 /* If corruption persists, the repair has failed. */ 1091 if (xchk_needs_repair(sc->sm)) { 1092 error = -EFSCORRUPTED; 1093 goto out; 1094 } 1095 out: 1096 sc->sick_mask = sick_mask; 1097 sc->sm->sm_type = smtype; 1098 sc->sm->sm_flags = smflags; 1099 return error; 1100 } 1101 1102 /* 1103 * Repair the ondisk forks of a metadata inode. The caller must ensure that 1104 * sc->ip points to the metadata inode and the ILOCK is held on that inode. 1105 * The inode must not be joined to the transaction before the call, and will 1106 * not be afterwards. 1107 */ 1108 int 1109 xrep_metadata_inode_forks( 1110 struct xfs_scrub *sc) 1111 { 1112 bool dirty = false; 1113 int error; 1114 1115 /* Repair the inode record and the data fork. */ 1116 error = xrep_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_INODE); 1117 if (error) 1118 return error; 1119 1120 error = xrep_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_BMBTD); 1121 if (error) 1122 return error; 1123 1124 /* Make sure the attr fork looks ok before we delete it. */ 1125 error = xrep_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_BMBTA); 1126 if (error) 1127 return error; 1128 1129 /* Clear the reflink flag since metadata never shares. */ 1130 if (xfs_is_reflink_inode(sc->ip)) { 1131 dirty = true; 1132 xfs_trans_ijoin(sc->tp, sc->ip, 0); 1133 error = xfs_reflink_clear_inode_flag(sc->ip, &sc->tp); 1134 if (error) 1135 return error; 1136 } 1137 1138 /* 1139 * If we modified the inode, roll the transaction but don't rejoin the 1140 * inode to the new transaction because xrep_bmap_data can do that. 1141 */ 1142 if (dirty) { 1143 error = xfs_trans_roll(&sc->tp); 1144 if (error) 1145 return error; 1146 dirty = false; 1147 } 1148 1149 return 0; 1150 } 1151