1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (C) 2018 Oracle. All Rights Reserved. 4 * Author: Darrick J. Wong <darrick.wong@oracle.com> 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_trans_resv.h" 11 #include "xfs_mount.h" 12 #include "xfs_btree.h" 13 #include "xfs_log_format.h" 14 #include "xfs_trans.h" 15 #include "xfs_sb.h" 16 #include "xfs_inode.h" 17 #include "xfs_alloc.h" 18 #include "xfs_alloc_btree.h" 19 #include "xfs_ialloc.h" 20 #include "xfs_ialloc_btree.h" 21 #include "xfs_rmap.h" 22 #include "xfs_rmap_btree.h" 23 #include "xfs_refcount_btree.h" 24 #include "xfs_extent_busy.h" 25 #include "xfs_ag.h" 26 #include "xfs_ag_resv.h" 27 #include "xfs_quota.h" 28 #include "scrub/scrub.h" 29 #include "scrub/common.h" 30 #include "scrub/trace.h" 31 #include "scrub/repair.h" 32 #include "scrub/bitmap.h" 33 34 /* 35 * Attempt to repair some metadata, if the metadata is corrupt and userspace 36 * told us to fix it. This function returns -EAGAIN to mean "re-run scrub", 37 * and will set *fixed to true if it thinks it repaired anything. 38 */ 39 int 40 xrep_attempt( 41 struct xfs_scrub *sc) 42 { 43 int error = 0; 44 45 trace_xrep_attempt(XFS_I(file_inode(sc->file)), sc->sm, error); 46 47 xchk_ag_btcur_free(&sc->sa); 48 49 /* Repair whatever's broken. */ 50 ASSERT(sc->ops->repair); 51 error = sc->ops->repair(sc); 52 trace_xrep_done(XFS_I(file_inode(sc->file)), sc->sm, error); 53 switch (error) { 54 case 0: 55 /* 56 * Repair succeeded. Commit the fixes and perform a second 57 * scrub so that we can tell userspace if we fixed the problem. 58 */ 59 sc->sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT; 60 sc->flags |= XREP_ALREADY_FIXED; 61 return -EAGAIN; 62 case -EDEADLOCK: 63 case -EAGAIN: 64 /* Tell the caller to try again having grabbed all the locks. */ 65 if (!(sc->flags & XCHK_TRY_HARDER)) { 66 sc->flags |= XCHK_TRY_HARDER; 67 return -EAGAIN; 68 } 69 /* 70 * We tried harder but still couldn't grab all the resources 71 * we needed to fix it. The corruption has not been fixed, 72 * so report back to userspace. 73 */ 74 return -EFSCORRUPTED; 75 default: 76 return error; 77 } 78 } 79 80 /* 81 * Complain about unfixable problems in the filesystem. We don't log 82 * corruptions when IFLAG_REPAIR wasn't set on the assumption that the driver 83 * program is xfs_scrub, which will call back with IFLAG_REPAIR set if the 84 * administrator isn't running xfs_scrub in no-repairs mode. 85 * 86 * Use this helper function because _ratelimited silently declares a static 87 * structure to track rate limiting information. 88 */ 89 void 90 xrep_failure( 91 struct xfs_mount *mp) 92 { 93 xfs_alert_ratelimited(mp, 94 "Corruption not fixed during online repair. Unmount and run xfs_repair."); 95 } 96 97 /* 98 * Repair probe -- userspace uses this to probe if we're willing to repair a 99 * given mountpoint. 100 */ 101 int 102 xrep_probe( 103 struct xfs_scrub *sc) 104 { 105 int error = 0; 106 107 if (xchk_should_terminate(sc, &error)) 108 return error; 109 110 return 0; 111 } 112 113 /* 114 * Roll a transaction, keeping the AG headers locked and reinitializing 115 * the btree cursors. 116 */ 117 int 118 xrep_roll_ag_trans( 119 struct xfs_scrub *sc) 120 { 121 int error; 122 123 /* Keep the AG header buffers locked so we can keep going. */ 124 if (sc->sa.agi_bp) 125 xfs_trans_bhold(sc->tp, sc->sa.agi_bp); 126 if (sc->sa.agf_bp) 127 xfs_trans_bhold(sc->tp, sc->sa.agf_bp); 128 if (sc->sa.agfl_bp) 129 xfs_trans_bhold(sc->tp, sc->sa.agfl_bp); 130 131 /* 132 * Roll the transaction. We still own the buffer and the buffer lock 133 * regardless of whether or not the roll succeeds. If the roll fails, 134 * the buffers will be released during teardown on our way out of the 135 * kernel. If it succeeds, we join them to the new transaction and 136 * move on. 137 */ 138 error = xfs_trans_roll(&sc->tp); 139 if (error) 140 return error; 141 142 /* Join AG headers to the new transaction. */ 143 if (sc->sa.agi_bp) 144 xfs_trans_bjoin(sc->tp, sc->sa.agi_bp); 145 if (sc->sa.agf_bp) 146 xfs_trans_bjoin(sc->tp, sc->sa.agf_bp); 147 if (sc->sa.agfl_bp) 148 xfs_trans_bjoin(sc->tp, sc->sa.agfl_bp); 149 150 return 0; 151 } 152 153 /* 154 * Does the given AG have enough space to rebuild a btree? Neither AG 155 * reservation can be critical, and we must have enough space (factoring 156 * in AG reservations) to construct a whole btree. 157 */ 158 bool 159 xrep_ag_has_space( 160 struct xfs_perag *pag, 161 xfs_extlen_t nr_blocks, 162 enum xfs_ag_resv_type type) 163 { 164 return !xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) && 165 !xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA) && 166 pag->pagf_freeblks > xfs_ag_resv_needed(pag, type) + nr_blocks; 167 } 168 169 /* 170 * Figure out how many blocks to reserve for an AG repair. We calculate the 171 * worst case estimate for the number of blocks we'd need to rebuild one of 172 * any type of per-AG btree. 173 */ 174 xfs_extlen_t 175 xrep_calc_ag_resblks( 176 struct xfs_scrub *sc) 177 { 178 struct xfs_mount *mp = sc->mp; 179 struct xfs_scrub_metadata *sm = sc->sm; 180 struct xfs_perag *pag; 181 struct xfs_buf *bp; 182 xfs_agino_t icount = NULLAGINO; 183 xfs_extlen_t aglen = NULLAGBLOCK; 184 xfs_extlen_t usedlen; 185 xfs_extlen_t freelen; 186 xfs_extlen_t bnobt_sz; 187 xfs_extlen_t inobt_sz; 188 xfs_extlen_t rmapbt_sz; 189 xfs_extlen_t refcbt_sz; 190 int error; 191 192 if (!(sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR)) 193 return 0; 194 195 pag = xfs_perag_get(mp, sm->sm_agno); 196 if (pag->pagi_init) { 197 /* Use in-core icount if possible. */ 198 icount = pag->pagi_count; 199 } else { 200 /* Try to get the actual counters from disk. */ 201 error = xfs_ialloc_read_agi(mp, NULL, sm->sm_agno, &bp); 202 if (!error) { 203 icount = pag->pagi_count; 204 xfs_buf_relse(bp); 205 } 206 } 207 208 /* Now grab the block counters from the AGF. */ 209 error = xfs_alloc_read_agf(mp, NULL, sm->sm_agno, 0, &bp); 210 if (error) { 211 aglen = xfs_ag_block_count(mp, sm->sm_agno); 212 freelen = aglen; 213 usedlen = aglen; 214 } else { 215 struct xfs_agf *agf = bp->b_addr; 216 217 aglen = be32_to_cpu(agf->agf_length); 218 freelen = be32_to_cpu(agf->agf_freeblks); 219 usedlen = aglen - freelen; 220 xfs_buf_relse(bp); 221 } 222 xfs_perag_put(pag); 223 224 /* If the icount is impossible, make some worst-case assumptions. */ 225 if (icount == NULLAGINO || 226 !xfs_verify_agino(mp, sm->sm_agno, icount)) { 227 xfs_agino_t first, last; 228 229 xfs_agino_range(mp, sm->sm_agno, &first, &last); 230 icount = last - first + 1; 231 } 232 233 /* If the block counts are impossible, make worst-case assumptions. */ 234 if (aglen == NULLAGBLOCK || 235 aglen != xfs_ag_block_count(mp, sm->sm_agno) || 236 freelen >= aglen) { 237 aglen = xfs_ag_block_count(mp, sm->sm_agno); 238 freelen = aglen; 239 usedlen = aglen; 240 } 241 242 trace_xrep_calc_ag_resblks(mp, sm->sm_agno, icount, aglen, 243 freelen, usedlen); 244 245 /* 246 * Figure out how many blocks we'd need worst case to rebuild 247 * each type of btree. Note that we can only rebuild the 248 * bnobt/cntbt or inobt/finobt as pairs. 249 */ 250 bnobt_sz = 2 * xfs_allocbt_calc_size(mp, freelen); 251 if (xfs_has_sparseinodes(mp)) 252 inobt_sz = xfs_iallocbt_calc_size(mp, icount / 253 XFS_INODES_PER_HOLEMASK_BIT); 254 else 255 inobt_sz = xfs_iallocbt_calc_size(mp, icount / 256 XFS_INODES_PER_CHUNK); 257 if (xfs_has_finobt(mp)) 258 inobt_sz *= 2; 259 if (xfs_has_reflink(mp)) 260 refcbt_sz = xfs_refcountbt_calc_size(mp, usedlen); 261 else 262 refcbt_sz = 0; 263 if (xfs_has_rmapbt(mp)) { 264 /* 265 * Guess how many blocks we need to rebuild the rmapbt. 266 * For non-reflink filesystems we can't have more records than 267 * used blocks. However, with reflink it's possible to have 268 * more than one rmap record per AG block. We don't know how 269 * many rmaps there could be in the AG, so we start off with 270 * what we hope is an generous over-estimation. 271 */ 272 if (xfs_has_reflink(mp)) 273 rmapbt_sz = xfs_rmapbt_calc_size(mp, 274 (unsigned long long)aglen * 2); 275 else 276 rmapbt_sz = xfs_rmapbt_calc_size(mp, usedlen); 277 } else { 278 rmapbt_sz = 0; 279 } 280 281 trace_xrep_calc_ag_resblks_btsize(mp, sm->sm_agno, bnobt_sz, 282 inobt_sz, rmapbt_sz, refcbt_sz); 283 284 return max(max(bnobt_sz, inobt_sz), max(rmapbt_sz, refcbt_sz)); 285 } 286 287 /* Allocate a block in an AG. */ 288 int 289 xrep_alloc_ag_block( 290 struct xfs_scrub *sc, 291 const struct xfs_owner_info *oinfo, 292 xfs_fsblock_t *fsbno, 293 enum xfs_ag_resv_type resv) 294 { 295 struct xfs_alloc_arg args = {0}; 296 xfs_agblock_t bno; 297 int error; 298 299 switch (resv) { 300 case XFS_AG_RESV_AGFL: 301 case XFS_AG_RESV_RMAPBT: 302 error = xfs_alloc_get_freelist(sc->tp, sc->sa.agf_bp, &bno, 1); 303 if (error) 304 return error; 305 if (bno == NULLAGBLOCK) 306 return -ENOSPC; 307 xfs_extent_busy_reuse(sc->mp, sc->sa.pag, bno, 308 1, false); 309 *fsbno = XFS_AGB_TO_FSB(sc->mp, sc->sa.pag->pag_agno, bno); 310 if (resv == XFS_AG_RESV_RMAPBT) 311 xfs_ag_resv_rmapbt_alloc(sc->mp, sc->sa.pag->pag_agno); 312 return 0; 313 default: 314 break; 315 } 316 317 args.tp = sc->tp; 318 args.mp = sc->mp; 319 args.oinfo = *oinfo; 320 args.fsbno = XFS_AGB_TO_FSB(args.mp, sc->sa.pag->pag_agno, 0); 321 args.minlen = 1; 322 args.maxlen = 1; 323 args.prod = 1; 324 args.type = XFS_ALLOCTYPE_THIS_AG; 325 args.resv = resv; 326 327 error = xfs_alloc_vextent(&args); 328 if (error) 329 return error; 330 if (args.fsbno == NULLFSBLOCK) 331 return -ENOSPC; 332 ASSERT(args.len == 1); 333 *fsbno = args.fsbno; 334 335 return 0; 336 } 337 338 /* Initialize a new AG btree root block with zero entries. */ 339 int 340 xrep_init_btblock( 341 struct xfs_scrub *sc, 342 xfs_fsblock_t fsb, 343 struct xfs_buf **bpp, 344 xfs_btnum_t btnum, 345 const struct xfs_buf_ops *ops) 346 { 347 struct xfs_trans *tp = sc->tp; 348 struct xfs_mount *mp = sc->mp; 349 struct xfs_buf *bp; 350 int error; 351 352 trace_xrep_init_btblock(mp, XFS_FSB_TO_AGNO(mp, fsb), 353 XFS_FSB_TO_AGBNO(mp, fsb), btnum); 354 355 ASSERT(XFS_FSB_TO_AGNO(mp, fsb) == sc->sa.pag->pag_agno); 356 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, 357 XFS_FSB_TO_DADDR(mp, fsb), XFS_FSB_TO_BB(mp, 1), 0, 358 &bp); 359 if (error) 360 return error; 361 xfs_buf_zero(bp, 0, BBTOB(bp->b_length)); 362 xfs_btree_init_block(mp, bp, btnum, 0, 0, sc->sa.pag->pag_agno); 363 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_BTREE_BUF); 364 xfs_trans_log_buf(tp, bp, 0, BBTOB(bp->b_length) - 1); 365 bp->b_ops = ops; 366 *bpp = bp; 367 368 return 0; 369 } 370 371 /* 372 * Reconstructing per-AG Btrees 373 * 374 * When a space btree is corrupt, we don't bother trying to fix it. Instead, 375 * we scan secondary space metadata to derive the records that should be in 376 * the damaged btree, initialize a fresh btree root, and insert the records. 377 * Note that for rebuilding the rmapbt we scan all the primary data to 378 * generate the new records. 379 * 380 * However, that leaves the matter of removing all the metadata describing the 381 * old broken structure. For primary metadata we use the rmap data to collect 382 * every extent with a matching rmap owner (bitmap); we then iterate all other 383 * metadata structures with the same rmap owner to collect the extents that 384 * cannot be removed (sublist). We then subtract sublist from bitmap to 385 * derive the blocks that were used by the old btree. These blocks can be 386 * reaped. 387 * 388 * For rmapbt reconstructions we must use different tactics for extent 389 * collection. First we iterate all primary metadata (this excludes the old 390 * rmapbt, obviously) to generate new rmap records. The gaps in the rmap 391 * records are collected as bitmap. The bnobt records are collected as 392 * sublist. As with the other btrees we subtract sublist from bitmap, and the 393 * result (since the rmapbt lives in the free space) are the blocks from the 394 * old rmapbt. 395 * 396 * Disposal of Blocks from Old per-AG Btrees 397 * 398 * Now that we've constructed a new btree to replace the damaged one, we want 399 * to dispose of the blocks that (we think) the old btree was using. 400 * Previously, we used the rmapbt to collect the extents (bitmap) with the 401 * rmap owner corresponding to the tree we rebuilt, collected extents for any 402 * blocks with the same rmap owner that are owned by another data structure 403 * (sublist), and subtracted sublist from bitmap. In theory the extents 404 * remaining in bitmap are the old btree's blocks. 405 * 406 * Unfortunately, it's possible that the btree was crosslinked with other 407 * blocks on disk. The rmap data can tell us if there are multiple owners, so 408 * if the rmapbt says there is an owner of this block other than @oinfo, then 409 * the block is crosslinked. Remove the reverse mapping and continue. 410 * 411 * If there is one rmap record, we can free the block, which removes the 412 * reverse mapping but doesn't add the block to the free space. Our repair 413 * strategy is to hope the other metadata objects crosslinked on this block 414 * will be rebuilt (atop different blocks), thereby removing all the cross 415 * links. 416 * 417 * If there are no rmap records at all, we also free the block. If the btree 418 * being rebuilt lives in the free space (bnobt/cntbt/rmapbt) then there isn't 419 * supposed to be a rmap record and everything is ok. For other btrees there 420 * had to have been an rmap entry for the block to have ended up on @bitmap, 421 * so if it's gone now there's something wrong and the fs will shut down. 422 * 423 * Note: If there are multiple rmap records with only the same rmap owner as 424 * the btree we're trying to rebuild and the block is indeed owned by another 425 * data structure with the same rmap owner, then the block will be in sublist 426 * and therefore doesn't need disposal. If there are multiple rmap records 427 * with only the same rmap owner but the block is not owned by something with 428 * the same rmap owner, the block will be freed. 429 * 430 * The caller is responsible for locking the AG headers for the entire rebuild 431 * operation so that nothing else can sneak in and change the AG state while 432 * we're not looking. We also assume that the caller already invalidated any 433 * buffers associated with @bitmap. 434 */ 435 436 /* 437 * Invalidate buffers for per-AG btree blocks we're dumping. This function 438 * is not intended for use with file data repairs; we have bunmapi for that. 439 */ 440 int 441 xrep_invalidate_blocks( 442 struct xfs_scrub *sc, 443 struct xbitmap *bitmap) 444 { 445 struct xbitmap_range *bmr; 446 struct xbitmap_range *n; 447 struct xfs_buf *bp; 448 xfs_fsblock_t fsbno; 449 450 /* 451 * For each block in each extent, see if there's an incore buffer for 452 * exactly that block; if so, invalidate it. The buffer cache only 453 * lets us look for one buffer at a time, so we have to look one block 454 * at a time. Avoid invalidating AG headers and post-EOFS blocks 455 * because we never own those; and if we can't TRYLOCK the buffer we 456 * assume it's owned by someone else. 457 */ 458 for_each_xbitmap_block(fsbno, bmr, n, bitmap) { 459 /* Skip AG headers and post-EOFS blocks */ 460 if (!xfs_verify_fsbno(sc->mp, fsbno)) 461 continue; 462 bp = xfs_buf_incore(sc->mp->m_ddev_targp, 463 XFS_FSB_TO_DADDR(sc->mp, fsbno), 464 XFS_FSB_TO_BB(sc->mp, 1), XBF_TRYLOCK); 465 if (bp) { 466 xfs_trans_bjoin(sc->tp, bp); 467 xfs_trans_binval(sc->tp, bp); 468 } 469 } 470 471 return 0; 472 } 473 474 /* Ensure the freelist is the correct size. */ 475 int 476 xrep_fix_freelist( 477 struct xfs_scrub *sc, 478 bool can_shrink) 479 { 480 struct xfs_alloc_arg args = {0}; 481 482 args.mp = sc->mp; 483 args.tp = sc->tp; 484 args.agno = sc->sa.pag->pag_agno; 485 args.alignment = 1; 486 args.pag = sc->sa.pag; 487 488 return xfs_alloc_fix_freelist(&args, 489 can_shrink ? 0 : XFS_ALLOC_FLAG_NOSHRINK); 490 } 491 492 /* 493 * Put a block back on the AGFL. 494 */ 495 STATIC int 496 xrep_put_freelist( 497 struct xfs_scrub *sc, 498 xfs_agblock_t agbno) 499 { 500 int error; 501 502 /* Make sure there's space on the freelist. */ 503 error = xrep_fix_freelist(sc, true); 504 if (error) 505 return error; 506 507 /* 508 * Since we're "freeing" a lost block onto the AGFL, we have to 509 * create an rmap for the block prior to merging it or else other 510 * parts will break. 511 */ 512 error = xfs_rmap_alloc(sc->tp, sc->sa.agf_bp, sc->sa.pag, agbno, 1, 513 &XFS_RMAP_OINFO_AG); 514 if (error) 515 return error; 516 517 /* Put the block on the AGFL. */ 518 error = xfs_alloc_put_freelist(sc->tp, sc->sa.agf_bp, sc->sa.agfl_bp, 519 agbno, 0); 520 if (error) 521 return error; 522 xfs_extent_busy_insert(sc->tp, sc->sa.pag, agbno, 1, 523 XFS_EXTENT_BUSY_SKIP_DISCARD); 524 525 return 0; 526 } 527 528 /* Dispose of a single block. */ 529 STATIC int 530 xrep_reap_block( 531 struct xfs_scrub *sc, 532 xfs_fsblock_t fsbno, 533 const struct xfs_owner_info *oinfo, 534 enum xfs_ag_resv_type resv) 535 { 536 struct xfs_btree_cur *cur; 537 struct xfs_buf *agf_bp = NULL; 538 xfs_agnumber_t agno; 539 xfs_agblock_t agbno; 540 bool has_other_rmap; 541 int error; 542 543 agno = XFS_FSB_TO_AGNO(sc->mp, fsbno); 544 agbno = XFS_FSB_TO_AGBNO(sc->mp, fsbno); 545 546 /* 547 * If we are repairing per-inode metadata, we need to read in the AGF 548 * buffer. Otherwise, we're repairing a per-AG structure, so reuse 549 * the AGF buffer that the setup functions already grabbed. 550 */ 551 if (sc->ip) { 552 error = xfs_alloc_read_agf(sc->mp, sc->tp, agno, 0, &agf_bp); 553 if (error) 554 return error; 555 } else { 556 agf_bp = sc->sa.agf_bp; 557 } 558 cur = xfs_rmapbt_init_cursor(sc->mp, sc->tp, agf_bp, sc->sa.pag); 559 560 /* Can we find any other rmappings? */ 561 error = xfs_rmap_has_other_keys(cur, agbno, 1, oinfo, &has_other_rmap); 562 xfs_btree_del_cursor(cur, error); 563 if (error) 564 goto out_free; 565 566 /* 567 * If there are other rmappings, this block is cross linked and must 568 * not be freed. Remove the reverse mapping and move on. Otherwise, 569 * we were the only owner of the block, so free the extent, which will 570 * also remove the rmap. 571 * 572 * XXX: XFS doesn't support detecting the case where a single block 573 * metadata structure is crosslinked with a multi-block structure 574 * because the buffer cache doesn't detect aliasing problems, so we 575 * can't fix 100% of crosslinking problems (yet). The verifiers will 576 * blow on writeout, the filesystem will shut down, and the admin gets 577 * to run xfs_repair. 578 */ 579 if (has_other_rmap) 580 error = xfs_rmap_free(sc->tp, agf_bp, sc->sa.pag, agbno, 581 1, oinfo); 582 else if (resv == XFS_AG_RESV_AGFL) 583 error = xrep_put_freelist(sc, agbno); 584 else 585 error = xfs_free_extent(sc->tp, fsbno, 1, oinfo, resv); 586 if (agf_bp != sc->sa.agf_bp) 587 xfs_trans_brelse(sc->tp, agf_bp); 588 if (error) 589 return error; 590 591 if (sc->ip) 592 return xfs_trans_roll_inode(&sc->tp, sc->ip); 593 return xrep_roll_ag_trans(sc); 594 595 out_free: 596 if (agf_bp != sc->sa.agf_bp) 597 xfs_trans_brelse(sc->tp, agf_bp); 598 return error; 599 } 600 601 /* Dispose of every block of every extent in the bitmap. */ 602 int 603 xrep_reap_extents( 604 struct xfs_scrub *sc, 605 struct xbitmap *bitmap, 606 const struct xfs_owner_info *oinfo, 607 enum xfs_ag_resv_type type) 608 { 609 struct xbitmap_range *bmr; 610 struct xbitmap_range *n; 611 xfs_fsblock_t fsbno; 612 int error = 0; 613 614 ASSERT(xfs_has_rmapbt(sc->mp)); 615 616 for_each_xbitmap_block(fsbno, bmr, n, bitmap) { 617 ASSERT(sc->ip != NULL || 618 XFS_FSB_TO_AGNO(sc->mp, fsbno) == sc->sa.pag->pag_agno); 619 trace_xrep_dispose_btree_extent(sc->mp, 620 XFS_FSB_TO_AGNO(sc->mp, fsbno), 621 XFS_FSB_TO_AGBNO(sc->mp, fsbno), 1); 622 623 error = xrep_reap_block(sc, fsbno, oinfo, type); 624 if (error) 625 break; 626 } 627 628 return error; 629 } 630 631 /* 632 * Finding per-AG Btree Roots for AGF/AGI Reconstruction 633 * 634 * If the AGF or AGI become slightly corrupted, it may be necessary to rebuild 635 * the AG headers by using the rmap data to rummage through the AG looking for 636 * btree roots. This is not guaranteed to work if the AG is heavily damaged 637 * or the rmap data are corrupt. 638 * 639 * Callers of xrep_find_ag_btree_roots must lock the AGF and AGFL 640 * buffers if the AGF is being rebuilt; or the AGF and AGI buffers if the 641 * AGI is being rebuilt. It must maintain these locks until it's safe for 642 * other threads to change the btrees' shapes. The caller provides 643 * information about the btrees to look for by passing in an array of 644 * xrep_find_ag_btree with the (rmap owner, buf_ops, magic) fields set. 645 * The (root, height) fields will be set on return if anything is found. The 646 * last element of the array should have a NULL buf_ops to mark the end of the 647 * array. 648 * 649 * For every rmapbt record matching any of the rmap owners in btree_info, 650 * read each block referenced by the rmap record. If the block is a btree 651 * block from this filesystem matching any of the magic numbers and has a 652 * level higher than what we've already seen, remember the block and the 653 * height of the tree required to have such a block. When the call completes, 654 * we return the highest block we've found for each btree description; those 655 * should be the roots. 656 */ 657 658 struct xrep_findroot { 659 struct xfs_scrub *sc; 660 struct xfs_buf *agfl_bp; 661 struct xfs_agf *agf; 662 struct xrep_find_ag_btree *btree_info; 663 }; 664 665 /* See if our block is in the AGFL. */ 666 STATIC int 667 xrep_findroot_agfl_walk( 668 struct xfs_mount *mp, 669 xfs_agblock_t bno, 670 void *priv) 671 { 672 xfs_agblock_t *agbno = priv; 673 674 return (*agbno == bno) ? -ECANCELED : 0; 675 } 676 677 /* Does this block match the btree information passed in? */ 678 STATIC int 679 xrep_findroot_block( 680 struct xrep_findroot *ri, 681 struct xrep_find_ag_btree *fab, 682 uint64_t owner, 683 xfs_agblock_t agbno, 684 bool *done_with_block) 685 { 686 struct xfs_mount *mp = ri->sc->mp; 687 struct xfs_buf *bp; 688 struct xfs_btree_block *btblock; 689 xfs_daddr_t daddr; 690 int block_level; 691 int error = 0; 692 693 daddr = XFS_AGB_TO_DADDR(mp, ri->sc->sa.pag->pag_agno, agbno); 694 695 /* 696 * Blocks in the AGFL have stale contents that might just happen to 697 * have a matching magic and uuid. We don't want to pull these blocks 698 * in as part of a tree root, so we have to filter out the AGFL stuff 699 * here. If the AGFL looks insane we'll just refuse to repair. 700 */ 701 if (owner == XFS_RMAP_OWN_AG) { 702 error = xfs_agfl_walk(mp, ri->agf, ri->agfl_bp, 703 xrep_findroot_agfl_walk, &agbno); 704 if (error == -ECANCELED) 705 return 0; 706 if (error) 707 return error; 708 } 709 710 /* 711 * Read the buffer into memory so that we can see if it's a match for 712 * our btree type. We have no clue if it is beforehand, and we want to 713 * avoid xfs_trans_read_buf's behavior of dumping the DONE state (which 714 * will cause needless disk reads in subsequent calls to this function) 715 * and logging metadata verifier failures. 716 * 717 * Therefore, pass in NULL buffer ops. If the buffer was already in 718 * memory from some other caller it will already have b_ops assigned. 719 * If it was in memory from a previous unsuccessful findroot_block 720 * call, the buffer won't have b_ops but it should be clean and ready 721 * for us to try to verify if the read call succeeds. The same applies 722 * if the buffer wasn't in memory at all. 723 * 724 * Note: If we never match a btree type with this buffer, it will be 725 * left in memory with NULL b_ops. This shouldn't be a problem unless 726 * the buffer gets written. 727 */ 728 error = xfs_trans_read_buf(mp, ri->sc->tp, mp->m_ddev_targp, daddr, 729 mp->m_bsize, 0, &bp, NULL); 730 if (error) 731 return error; 732 733 /* Ensure the block magic matches the btree type we're looking for. */ 734 btblock = XFS_BUF_TO_BLOCK(bp); 735 ASSERT(fab->buf_ops->magic[1] != 0); 736 if (btblock->bb_magic != fab->buf_ops->magic[1]) 737 goto out; 738 739 /* 740 * If the buffer already has ops applied and they're not the ones for 741 * this btree type, we know this block doesn't match the btree and we 742 * can bail out. 743 * 744 * If the buffer ops match ours, someone else has already validated 745 * the block for us, so we can move on to checking if this is a root 746 * block candidate. 747 * 748 * If the buffer does not have ops, nobody has successfully validated 749 * the contents and the buffer cannot be dirty. If the magic, uuid, 750 * and structure match this btree type then we'll move on to checking 751 * if it's a root block candidate. If there is no match, bail out. 752 */ 753 if (bp->b_ops) { 754 if (bp->b_ops != fab->buf_ops) 755 goto out; 756 } else { 757 ASSERT(!xfs_trans_buf_is_dirty(bp)); 758 if (!uuid_equal(&btblock->bb_u.s.bb_uuid, 759 &mp->m_sb.sb_meta_uuid)) 760 goto out; 761 /* 762 * Read verifiers can reference b_ops, so we set the pointer 763 * here. If the verifier fails we'll reset the buffer state 764 * to what it was before we touched the buffer. 765 */ 766 bp->b_ops = fab->buf_ops; 767 fab->buf_ops->verify_read(bp); 768 if (bp->b_error) { 769 bp->b_ops = NULL; 770 bp->b_error = 0; 771 goto out; 772 } 773 774 /* 775 * Some read verifiers will (re)set b_ops, so we must be 776 * careful not to change b_ops after running the verifier. 777 */ 778 } 779 780 /* 781 * This block passes the magic/uuid and verifier tests for this btree 782 * type. We don't need the caller to try the other tree types. 783 */ 784 *done_with_block = true; 785 786 /* 787 * Compare this btree block's level to the height of the current 788 * candidate root block. 789 * 790 * If the level matches the root we found previously, throw away both 791 * blocks because there can't be two candidate roots. 792 * 793 * If level is lower in the tree than the root we found previously, 794 * ignore this block. 795 */ 796 block_level = xfs_btree_get_level(btblock); 797 if (block_level + 1 == fab->height) { 798 fab->root = NULLAGBLOCK; 799 goto out; 800 } else if (block_level < fab->height) { 801 goto out; 802 } 803 804 /* 805 * This is the highest block in the tree that we've found so far. 806 * Update the btree height to reflect what we've learned from this 807 * block. 808 */ 809 fab->height = block_level + 1; 810 811 /* 812 * If this block doesn't have sibling pointers, then it's the new root 813 * block candidate. Otherwise, the root will be found farther up the 814 * tree. 815 */ 816 if (btblock->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK) && 817 btblock->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK)) 818 fab->root = agbno; 819 else 820 fab->root = NULLAGBLOCK; 821 822 trace_xrep_findroot_block(mp, ri->sc->sa.pag->pag_agno, agbno, 823 be32_to_cpu(btblock->bb_magic), fab->height - 1); 824 out: 825 xfs_trans_brelse(ri->sc->tp, bp); 826 return error; 827 } 828 829 /* 830 * Do any of the blocks in this rmap record match one of the btrees we're 831 * looking for? 832 */ 833 STATIC int 834 xrep_findroot_rmap( 835 struct xfs_btree_cur *cur, 836 const struct xfs_rmap_irec *rec, 837 void *priv) 838 { 839 struct xrep_findroot *ri = priv; 840 struct xrep_find_ag_btree *fab; 841 xfs_agblock_t b; 842 bool done; 843 int error = 0; 844 845 /* Ignore anything that isn't AG metadata. */ 846 if (!XFS_RMAP_NON_INODE_OWNER(rec->rm_owner)) 847 return 0; 848 849 /* Otherwise scan each block + btree type. */ 850 for (b = 0; b < rec->rm_blockcount; b++) { 851 done = false; 852 for (fab = ri->btree_info; fab->buf_ops; fab++) { 853 if (rec->rm_owner != fab->rmap_owner) 854 continue; 855 error = xrep_findroot_block(ri, fab, 856 rec->rm_owner, rec->rm_startblock + b, 857 &done); 858 if (error) 859 return error; 860 if (done) 861 break; 862 } 863 } 864 865 return 0; 866 } 867 868 /* Find the roots of the per-AG btrees described in btree_info. */ 869 int 870 xrep_find_ag_btree_roots( 871 struct xfs_scrub *sc, 872 struct xfs_buf *agf_bp, 873 struct xrep_find_ag_btree *btree_info, 874 struct xfs_buf *agfl_bp) 875 { 876 struct xfs_mount *mp = sc->mp; 877 struct xrep_findroot ri; 878 struct xrep_find_ag_btree *fab; 879 struct xfs_btree_cur *cur; 880 int error; 881 882 ASSERT(xfs_buf_islocked(agf_bp)); 883 ASSERT(agfl_bp == NULL || xfs_buf_islocked(agfl_bp)); 884 885 ri.sc = sc; 886 ri.btree_info = btree_info; 887 ri.agf = agf_bp->b_addr; 888 ri.agfl_bp = agfl_bp; 889 for (fab = btree_info; fab->buf_ops; fab++) { 890 ASSERT(agfl_bp || fab->rmap_owner != XFS_RMAP_OWN_AG); 891 ASSERT(XFS_RMAP_NON_INODE_OWNER(fab->rmap_owner)); 892 fab->root = NULLAGBLOCK; 893 fab->height = 0; 894 } 895 896 cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.pag); 897 error = xfs_rmap_query_all(cur, xrep_findroot_rmap, &ri); 898 xfs_btree_del_cursor(cur, error); 899 900 return error; 901 } 902 903 /* Force a quotacheck the next time we mount. */ 904 void 905 xrep_force_quotacheck( 906 struct xfs_scrub *sc, 907 xfs_dqtype_t type) 908 { 909 uint flag; 910 911 flag = xfs_quota_chkd_flag(type); 912 if (!(flag & sc->mp->m_qflags)) 913 return; 914 915 sc->mp->m_qflags &= ~flag; 916 spin_lock(&sc->mp->m_sb_lock); 917 sc->mp->m_sb.sb_qflags &= ~flag; 918 spin_unlock(&sc->mp->m_sb_lock); 919 xfs_log_sb(sc->tp); 920 } 921 922 /* 923 * Attach dquots to this inode, or schedule quotacheck to fix them. 924 * 925 * This function ensures that the appropriate dquots are attached to an inode. 926 * We cannot allow the dquot code to allocate an on-disk dquot block here 927 * because we're already in transaction context with the inode locked. The 928 * on-disk dquot should already exist anyway. If the quota code signals 929 * corruption or missing quota information, schedule quotacheck, which will 930 * repair corruptions in the quota metadata. 931 */ 932 int 933 xrep_ino_dqattach( 934 struct xfs_scrub *sc) 935 { 936 int error; 937 938 error = xfs_qm_dqattach_locked(sc->ip, false); 939 switch (error) { 940 case -EFSBADCRC: 941 case -EFSCORRUPTED: 942 case -ENOENT: 943 xfs_err_ratelimited(sc->mp, 944 "inode %llu repair encountered quota error %d, quotacheck forced.", 945 (unsigned long long)sc->ip->i_ino, error); 946 if (XFS_IS_UQUOTA_ON(sc->mp) && !sc->ip->i_udquot) 947 xrep_force_quotacheck(sc, XFS_DQTYPE_USER); 948 if (XFS_IS_GQUOTA_ON(sc->mp) && !sc->ip->i_gdquot) 949 xrep_force_quotacheck(sc, XFS_DQTYPE_GROUP); 950 if (XFS_IS_PQUOTA_ON(sc->mp) && !sc->ip->i_pdquot) 951 xrep_force_quotacheck(sc, XFS_DQTYPE_PROJ); 952 fallthrough; 953 case -ESRCH: 954 error = 0; 955 break; 956 default: 957 break; 958 } 959 960 return error; 961 } 962