1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2018-2023 Oracle. All Rights Reserved. 4 * Author: Darrick J. Wong <djwong@kernel.org> 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_trans_resv.h" 11 #include "xfs_mount.h" 12 #include "xfs_btree.h" 13 #include "xfs_log_format.h" 14 #include "xfs_trans.h" 15 #include "xfs_sb.h" 16 #include "xfs_inode.h" 17 #include "xfs_alloc.h" 18 #include "xfs_alloc_btree.h" 19 #include "xfs_ialloc.h" 20 #include "xfs_ialloc_btree.h" 21 #include "xfs_rmap.h" 22 #include "xfs_rmap_btree.h" 23 #include "xfs_refcount_btree.h" 24 #include "xfs_extent_busy.h" 25 #include "xfs_ag.h" 26 #include "xfs_ag_resv.h" 27 #include "xfs_quota.h" 28 #include "xfs_qm.h" 29 #include "scrub/scrub.h" 30 #include "scrub/common.h" 31 #include "scrub/trace.h" 32 #include "scrub/repair.h" 33 #include "scrub/bitmap.h" 34 35 /* 36 * Attempt to repair some metadata, if the metadata is corrupt and userspace 37 * told us to fix it. This function returns -EAGAIN to mean "re-run scrub", 38 * and will set *fixed to true if it thinks it repaired anything. 39 */ 40 int 41 xrep_attempt( 42 struct xfs_scrub *sc) 43 { 44 int error = 0; 45 46 trace_xrep_attempt(XFS_I(file_inode(sc->file)), sc->sm, error); 47 48 xchk_ag_btcur_free(&sc->sa); 49 50 /* Repair whatever's broken. */ 51 ASSERT(sc->ops->repair); 52 error = sc->ops->repair(sc); 53 trace_xrep_done(XFS_I(file_inode(sc->file)), sc->sm, error); 54 switch (error) { 55 case 0: 56 /* 57 * Repair succeeded. Commit the fixes and perform a second 58 * scrub so that we can tell userspace if we fixed the problem. 59 */ 60 sc->sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT; 61 sc->flags |= XREP_ALREADY_FIXED; 62 return -EAGAIN; 63 case -ECHRNG: 64 sc->flags |= XCHK_NEED_DRAIN; 65 return -EAGAIN; 66 case -EDEADLOCK: 67 /* Tell the caller to try again having grabbed all the locks. */ 68 if (!(sc->flags & XCHK_TRY_HARDER)) { 69 sc->flags |= XCHK_TRY_HARDER; 70 return -EAGAIN; 71 } 72 /* 73 * We tried harder but still couldn't grab all the resources 74 * we needed to fix it. The corruption has not been fixed, 75 * so exit to userspace with the scan's output flags unchanged. 76 */ 77 return 0; 78 default: 79 /* 80 * EAGAIN tells the caller to re-scrub, so we cannot return 81 * that here. 82 */ 83 ASSERT(error != -EAGAIN); 84 return error; 85 } 86 } 87 88 /* 89 * Complain about unfixable problems in the filesystem. We don't log 90 * corruptions when IFLAG_REPAIR wasn't set on the assumption that the driver 91 * program is xfs_scrub, which will call back with IFLAG_REPAIR set if the 92 * administrator isn't running xfs_scrub in no-repairs mode. 93 * 94 * Use this helper function because _ratelimited silently declares a static 95 * structure to track rate limiting information. 96 */ 97 void 98 xrep_failure( 99 struct xfs_mount *mp) 100 { 101 xfs_alert_ratelimited(mp, 102 "Corruption not fixed during online repair. Unmount and run xfs_repair."); 103 } 104 105 /* 106 * Repair probe -- userspace uses this to probe if we're willing to repair a 107 * given mountpoint. 108 */ 109 int 110 xrep_probe( 111 struct xfs_scrub *sc) 112 { 113 int error = 0; 114 115 if (xchk_should_terminate(sc, &error)) 116 return error; 117 118 return 0; 119 } 120 121 /* 122 * Roll a transaction, keeping the AG headers locked and reinitializing 123 * the btree cursors. 124 */ 125 int 126 xrep_roll_ag_trans( 127 struct xfs_scrub *sc) 128 { 129 int error; 130 131 /* 132 * Keep the AG header buffers locked while we roll the transaction. 133 * Ensure that both AG buffers are dirty and held when we roll the 134 * transaction so that they move forward in the log without losing the 135 * bli (and hence the bli type) when the transaction commits. 136 * 137 * Normal code would never hold clean buffers across a roll, but repair 138 * needs both buffers to maintain a total lock on the AG. 139 */ 140 if (sc->sa.agi_bp) { 141 xfs_ialloc_log_agi(sc->tp, sc->sa.agi_bp, XFS_AGI_MAGICNUM); 142 xfs_trans_bhold(sc->tp, sc->sa.agi_bp); 143 } 144 145 if (sc->sa.agf_bp) { 146 xfs_alloc_log_agf(sc->tp, sc->sa.agf_bp, XFS_AGF_MAGICNUM); 147 xfs_trans_bhold(sc->tp, sc->sa.agf_bp); 148 } 149 150 /* 151 * Roll the transaction. We still hold the AG header buffers locked 152 * regardless of whether or not that succeeds. On failure, the buffers 153 * will be released during teardown on our way out of the kernel. If 154 * successful, join the buffers to the new transaction and move on. 155 */ 156 error = xfs_trans_roll(&sc->tp); 157 if (error) 158 return error; 159 160 /* Join the AG headers to the new transaction. */ 161 if (sc->sa.agi_bp) 162 xfs_trans_bjoin(sc->tp, sc->sa.agi_bp); 163 if (sc->sa.agf_bp) 164 xfs_trans_bjoin(sc->tp, sc->sa.agf_bp); 165 166 return 0; 167 } 168 169 /* 170 * Does the given AG have enough space to rebuild a btree? Neither AG 171 * reservation can be critical, and we must have enough space (factoring 172 * in AG reservations) to construct a whole btree. 173 */ 174 bool 175 xrep_ag_has_space( 176 struct xfs_perag *pag, 177 xfs_extlen_t nr_blocks, 178 enum xfs_ag_resv_type type) 179 { 180 return !xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) && 181 !xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA) && 182 pag->pagf_freeblks > xfs_ag_resv_needed(pag, type) + nr_blocks; 183 } 184 185 /* 186 * Figure out how many blocks to reserve for an AG repair. We calculate the 187 * worst case estimate for the number of blocks we'd need to rebuild one of 188 * any type of per-AG btree. 189 */ 190 xfs_extlen_t 191 xrep_calc_ag_resblks( 192 struct xfs_scrub *sc) 193 { 194 struct xfs_mount *mp = sc->mp; 195 struct xfs_scrub_metadata *sm = sc->sm; 196 struct xfs_perag *pag; 197 struct xfs_buf *bp; 198 xfs_agino_t icount = NULLAGINO; 199 xfs_extlen_t aglen = NULLAGBLOCK; 200 xfs_extlen_t usedlen; 201 xfs_extlen_t freelen; 202 xfs_extlen_t bnobt_sz; 203 xfs_extlen_t inobt_sz; 204 xfs_extlen_t rmapbt_sz; 205 xfs_extlen_t refcbt_sz; 206 int error; 207 208 if (!(sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR)) 209 return 0; 210 211 pag = xfs_perag_get(mp, sm->sm_agno); 212 if (xfs_perag_initialised_agi(pag)) { 213 /* Use in-core icount if possible. */ 214 icount = pag->pagi_count; 215 } else { 216 /* Try to get the actual counters from disk. */ 217 error = xfs_ialloc_read_agi(pag, NULL, &bp); 218 if (!error) { 219 icount = pag->pagi_count; 220 xfs_buf_relse(bp); 221 } 222 } 223 224 /* Now grab the block counters from the AGF. */ 225 error = xfs_alloc_read_agf(pag, NULL, 0, &bp); 226 if (error) { 227 aglen = pag->block_count; 228 freelen = aglen; 229 usedlen = aglen; 230 } else { 231 struct xfs_agf *agf = bp->b_addr; 232 233 aglen = be32_to_cpu(agf->agf_length); 234 freelen = be32_to_cpu(agf->agf_freeblks); 235 usedlen = aglen - freelen; 236 xfs_buf_relse(bp); 237 } 238 239 /* If the icount is impossible, make some worst-case assumptions. */ 240 if (icount == NULLAGINO || 241 !xfs_verify_agino(pag, icount)) { 242 icount = pag->agino_max - pag->agino_min + 1; 243 } 244 245 /* If the block counts are impossible, make worst-case assumptions. */ 246 if (aglen == NULLAGBLOCK || 247 aglen != pag->block_count || 248 freelen >= aglen) { 249 aglen = pag->block_count; 250 freelen = aglen; 251 usedlen = aglen; 252 } 253 xfs_perag_put(pag); 254 255 trace_xrep_calc_ag_resblks(mp, sm->sm_agno, icount, aglen, 256 freelen, usedlen); 257 258 /* 259 * Figure out how many blocks we'd need worst case to rebuild 260 * each type of btree. Note that we can only rebuild the 261 * bnobt/cntbt or inobt/finobt as pairs. 262 */ 263 bnobt_sz = 2 * xfs_allocbt_calc_size(mp, freelen); 264 if (xfs_has_sparseinodes(mp)) 265 inobt_sz = xfs_iallocbt_calc_size(mp, icount / 266 XFS_INODES_PER_HOLEMASK_BIT); 267 else 268 inobt_sz = xfs_iallocbt_calc_size(mp, icount / 269 XFS_INODES_PER_CHUNK); 270 if (xfs_has_finobt(mp)) 271 inobt_sz *= 2; 272 if (xfs_has_reflink(mp)) 273 refcbt_sz = xfs_refcountbt_calc_size(mp, usedlen); 274 else 275 refcbt_sz = 0; 276 if (xfs_has_rmapbt(mp)) { 277 /* 278 * Guess how many blocks we need to rebuild the rmapbt. 279 * For non-reflink filesystems we can't have more records than 280 * used blocks. However, with reflink it's possible to have 281 * more than one rmap record per AG block. We don't know how 282 * many rmaps there could be in the AG, so we start off with 283 * what we hope is an generous over-estimation. 284 */ 285 if (xfs_has_reflink(mp)) 286 rmapbt_sz = xfs_rmapbt_calc_size(mp, 287 (unsigned long long)aglen * 2); 288 else 289 rmapbt_sz = xfs_rmapbt_calc_size(mp, usedlen); 290 } else { 291 rmapbt_sz = 0; 292 } 293 294 trace_xrep_calc_ag_resblks_btsize(mp, sm->sm_agno, bnobt_sz, 295 inobt_sz, rmapbt_sz, refcbt_sz); 296 297 return max(max(bnobt_sz, inobt_sz), max(rmapbt_sz, refcbt_sz)); 298 } 299 300 /* Allocate a block in an AG. */ 301 int 302 xrep_alloc_ag_block( 303 struct xfs_scrub *sc, 304 const struct xfs_owner_info *oinfo, 305 xfs_fsblock_t *fsbno, 306 enum xfs_ag_resv_type resv) 307 { 308 struct xfs_alloc_arg args = {0}; 309 xfs_agblock_t bno; 310 int error; 311 312 switch (resv) { 313 case XFS_AG_RESV_AGFL: 314 case XFS_AG_RESV_RMAPBT: 315 error = xfs_alloc_get_freelist(sc->sa.pag, sc->tp, 316 sc->sa.agf_bp, &bno, 1); 317 if (error) 318 return error; 319 if (bno == NULLAGBLOCK) 320 return -ENOSPC; 321 xfs_extent_busy_reuse(sc->mp, sc->sa.pag, bno, 1, false); 322 *fsbno = XFS_AGB_TO_FSB(sc->mp, sc->sa.pag->pag_agno, bno); 323 if (resv == XFS_AG_RESV_RMAPBT) 324 xfs_ag_resv_rmapbt_alloc(sc->mp, sc->sa.pag->pag_agno); 325 return 0; 326 default: 327 break; 328 } 329 330 args.tp = sc->tp; 331 args.mp = sc->mp; 332 args.pag = sc->sa.pag; 333 args.oinfo = *oinfo; 334 args.minlen = 1; 335 args.maxlen = 1; 336 args.prod = 1; 337 args.resv = resv; 338 339 error = xfs_alloc_vextent_this_ag(&args, sc->sa.pag->pag_agno); 340 if (error) 341 return error; 342 if (args.fsbno == NULLFSBLOCK) 343 return -ENOSPC; 344 ASSERT(args.len == 1); 345 *fsbno = args.fsbno; 346 347 return 0; 348 } 349 350 /* Initialize a new AG btree root block with zero entries. */ 351 int 352 xrep_init_btblock( 353 struct xfs_scrub *sc, 354 xfs_fsblock_t fsb, 355 struct xfs_buf **bpp, 356 xfs_btnum_t btnum, 357 const struct xfs_buf_ops *ops) 358 { 359 struct xfs_trans *tp = sc->tp; 360 struct xfs_mount *mp = sc->mp; 361 struct xfs_buf *bp; 362 int error; 363 364 trace_xrep_init_btblock(mp, XFS_FSB_TO_AGNO(mp, fsb), 365 XFS_FSB_TO_AGBNO(mp, fsb), btnum); 366 367 ASSERT(XFS_FSB_TO_AGNO(mp, fsb) == sc->sa.pag->pag_agno); 368 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, 369 XFS_FSB_TO_DADDR(mp, fsb), XFS_FSB_TO_BB(mp, 1), 0, 370 &bp); 371 if (error) 372 return error; 373 xfs_buf_zero(bp, 0, BBTOB(bp->b_length)); 374 xfs_btree_init_block(mp, bp, btnum, 0, 0, sc->sa.pag->pag_agno); 375 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_BTREE_BUF); 376 xfs_trans_log_buf(tp, bp, 0, BBTOB(bp->b_length) - 1); 377 bp->b_ops = ops; 378 *bpp = bp; 379 380 return 0; 381 } 382 383 /* 384 * Reconstructing per-AG Btrees 385 * 386 * When a space btree is corrupt, we don't bother trying to fix it. Instead, 387 * we scan secondary space metadata to derive the records that should be in 388 * the damaged btree, initialize a fresh btree root, and insert the records. 389 * Note that for rebuilding the rmapbt we scan all the primary data to 390 * generate the new records. 391 * 392 * However, that leaves the matter of removing all the metadata describing the 393 * old broken structure. For primary metadata we use the rmap data to collect 394 * every extent with a matching rmap owner (bitmap); we then iterate all other 395 * metadata structures with the same rmap owner to collect the extents that 396 * cannot be removed (sublist). We then subtract sublist from bitmap to 397 * derive the blocks that were used by the old btree. These blocks can be 398 * reaped. 399 * 400 * For rmapbt reconstructions we must use different tactics for extent 401 * collection. First we iterate all primary metadata (this excludes the old 402 * rmapbt, obviously) to generate new rmap records. The gaps in the rmap 403 * records are collected as bitmap. The bnobt records are collected as 404 * sublist. As with the other btrees we subtract sublist from bitmap, and the 405 * result (since the rmapbt lives in the free space) are the blocks from the 406 * old rmapbt. 407 * 408 * Disposal of Blocks from Old per-AG Btrees 409 * 410 * Now that we've constructed a new btree to replace the damaged one, we want 411 * to dispose of the blocks that (we think) the old btree was using. 412 * Previously, we used the rmapbt to collect the extents (bitmap) with the 413 * rmap owner corresponding to the tree we rebuilt, collected extents for any 414 * blocks with the same rmap owner that are owned by another data structure 415 * (sublist), and subtracted sublist from bitmap. In theory the extents 416 * remaining in bitmap are the old btree's blocks. 417 * 418 * Unfortunately, it's possible that the btree was crosslinked with other 419 * blocks on disk. The rmap data can tell us if there are multiple owners, so 420 * if the rmapbt says there is an owner of this block other than @oinfo, then 421 * the block is crosslinked. Remove the reverse mapping and continue. 422 * 423 * If there is one rmap record, we can free the block, which removes the 424 * reverse mapping but doesn't add the block to the free space. Our repair 425 * strategy is to hope the other metadata objects crosslinked on this block 426 * will be rebuilt (atop different blocks), thereby removing all the cross 427 * links. 428 * 429 * If there are no rmap records at all, we also free the block. If the btree 430 * being rebuilt lives in the free space (bnobt/cntbt/rmapbt) then there isn't 431 * supposed to be a rmap record and everything is ok. For other btrees there 432 * had to have been an rmap entry for the block to have ended up on @bitmap, 433 * so if it's gone now there's something wrong and the fs will shut down. 434 * 435 * Note: If there are multiple rmap records with only the same rmap owner as 436 * the btree we're trying to rebuild and the block is indeed owned by another 437 * data structure with the same rmap owner, then the block will be in sublist 438 * and therefore doesn't need disposal. If there are multiple rmap records 439 * with only the same rmap owner but the block is not owned by something with 440 * the same rmap owner, the block will be freed. 441 * 442 * The caller is responsible for locking the AG headers for the entire rebuild 443 * operation so that nothing else can sneak in and change the AG state while 444 * we're not looking. We also assume that the caller already invalidated any 445 * buffers associated with @bitmap. 446 */ 447 448 static int 449 xrep_invalidate_block( 450 uint64_t fsbno, 451 void *priv) 452 { 453 struct xfs_scrub *sc = priv; 454 struct xfs_buf *bp; 455 int error; 456 457 /* Skip AG headers and post-EOFS blocks */ 458 if (!xfs_verify_fsbno(sc->mp, fsbno)) 459 return 0; 460 461 error = xfs_buf_incore(sc->mp->m_ddev_targp, 462 XFS_FSB_TO_DADDR(sc->mp, fsbno), 463 XFS_FSB_TO_BB(sc->mp, 1), XBF_TRYLOCK, &bp); 464 if (error) 465 return 0; 466 467 xfs_trans_bjoin(sc->tp, bp); 468 xfs_trans_binval(sc->tp, bp); 469 return 0; 470 } 471 472 /* 473 * Invalidate buffers for per-AG btree blocks we're dumping. This function 474 * is not intended for use with file data repairs; we have bunmapi for that. 475 */ 476 int 477 xrep_invalidate_blocks( 478 struct xfs_scrub *sc, 479 struct xbitmap *bitmap) 480 { 481 /* 482 * For each block in each extent, see if there's an incore buffer for 483 * exactly that block; if so, invalidate it. The buffer cache only 484 * lets us look for one buffer at a time, so we have to look one block 485 * at a time. Avoid invalidating AG headers and post-EOFS blocks 486 * because we never own those; and if we can't TRYLOCK the buffer we 487 * assume it's owned by someone else. 488 */ 489 return xbitmap_walk_bits(bitmap, xrep_invalidate_block, sc); 490 } 491 492 /* Ensure the freelist is the correct size. */ 493 int 494 xrep_fix_freelist( 495 struct xfs_scrub *sc, 496 bool can_shrink) 497 { 498 struct xfs_alloc_arg args = {0}; 499 500 args.mp = sc->mp; 501 args.tp = sc->tp; 502 args.agno = sc->sa.pag->pag_agno; 503 args.alignment = 1; 504 args.pag = sc->sa.pag; 505 506 return xfs_alloc_fix_freelist(&args, 507 can_shrink ? 0 : XFS_ALLOC_FLAG_NOSHRINK); 508 } 509 510 /* Information about reaping extents after a repair. */ 511 struct xrep_reap_state { 512 struct xfs_scrub *sc; 513 514 /* Reverse mapping owner and metadata reservation type. */ 515 const struct xfs_owner_info *oinfo; 516 enum xfs_ag_resv_type resv; 517 }; 518 519 /* 520 * Put a block back on the AGFL. 521 */ 522 STATIC int 523 xrep_put_freelist( 524 struct xfs_scrub *sc, 525 xfs_agblock_t agbno) 526 { 527 struct xfs_buf *agfl_bp; 528 int error; 529 530 /* Make sure there's space on the freelist. */ 531 error = xrep_fix_freelist(sc, true); 532 if (error) 533 return error; 534 535 /* 536 * Since we're "freeing" a lost block onto the AGFL, we have to 537 * create an rmap for the block prior to merging it or else other 538 * parts will break. 539 */ 540 error = xfs_rmap_alloc(sc->tp, sc->sa.agf_bp, sc->sa.pag, agbno, 1, 541 &XFS_RMAP_OINFO_AG); 542 if (error) 543 return error; 544 545 /* Put the block on the AGFL. */ 546 error = xfs_alloc_read_agfl(sc->sa.pag, sc->tp, &agfl_bp); 547 if (error) 548 return error; 549 550 error = xfs_alloc_put_freelist(sc->sa.pag, sc->tp, sc->sa.agf_bp, 551 agfl_bp, agbno, 0); 552 if (error) 553 return error; 554 xfs_extent_busy_insert(sc->tp, sc->sa.pag, agbno, 1, 555 XFS_EXTENT_BUSY_SKIP_DISCARD); 556 557 return 0; 558 } 559 560 /* Dispose of a single block. */ 561 STATIC int 562 xrep_reap_block( 563 uint64_t fsbno, 564 void *priv) 565 { 566 struct xrep_reap_state *rs = priv; 567 struct xfs_scrub *sc = rs->sc; 568 struct xfs_btree_cur *cur; 569 struct xfs_buf *agf_bp = NULL; 570 xfs_agblock_t agbno; 571 bool has_other_rmap; 572 int error; 573 574 ASSERT(sc->ip != NULL || 575 XFS_FSB_TO_AGNO(sc->mp, fsbno) == sc->sa.pag->pag_agno); 576 trace_xrep_dispose_btree_extent(sc->mp, 577 XFS_FSB_TO_AGNO(sc->mp, fsbno), 578 XFS_FSB_TO_AGBNO(sc->mp, fsbno), 1); 579 580 agbno = XFS_FSB_TO_AGBNO(sc->mp, fsbno); 581 ASSERT(XFS_FSB_TO_AGNO(sc->mp, fsbno) == sc->sa.pag->pag_agno); 582 583 /* 584 * If we are repairing per-inode metadata, we need to read in the AGF 585 * buffer. Otherwise, we're repairing a per-AG structure, so reuse 586 * the AGF buffer that the setup functions already grabbed. 587 */ 588 if (sc->ip) { 589 error = xfs_alloc_read_agf(sc->sa.pag, sc->tp, 0, &agf_bp); 590 if (error) 591 return error; 592 } else { 593 agf_bp = sc->sa.agf_bp; 594 } 595 cur = xfs_rmapbt_init_cursor(sc->mp, sc->tp, agf_bp, sc->sa.pag); 596 597 /* Can we find any other rmappings? */ 598 error = xfs_rmap_has_other_keys(cur, agbno, 1, rs->oinfo, 599 &has_other_rmap); 600 xfs_btree_del_cursor(cur, error); 601 if (error) 602 goto out_free; 603 604 /* 605 * If there are other rmappings, this block is cross linked and must 606 * not be freed. Remove the reverse mapping and move on. Otherwise, 607 * we were the only owner of the block, so free the extent, which will 608 * also remove the rmap. 609 * 610 * XXX: XFS doesn't support detecting the case where a single block 611 * metadata structure is crosslinked with a multi-block structure 612 * because the buffer cache doesn't detect aliasing problems, so we 613 * can't fix 100% of crosslinking problems (yet). The verifiers will 614 * blow on writeout, the filesystem will shut down, and the admin gets 615 * to run xfs_repair. 616 */ 617 if (has_other_rmap) 618 error = xfs_rmap_free(sc->tp, agf_bp, sc->sa.pag, agbno, 619 1, rs->oinfo); 620 else if (rs->resv == XFS_AG_RESV_AGFL) 621 error = xrep_put_freelist(sc, agbno); 622 else 623 error = xfs_free_extent(sc->tp, sc->sa.pag, agbno, 1, rs->oinfo, 624 rs->resv); 625 if (agf_bp != sc->sa.agf_bp) 626 xfs_trans_brelse(sc->tp, agf_bp); 627 if (error) 628 return error; 629 630 if (sc->ip) 631 return xfs_trans_roll_inode(&sc->tp, sc->ip); 632 return xrep_roll_ag_trans(sc); 633 634 out_free: 635 if (agf_bp != sc->sa.agf_bp) 636 xfs_trans_brelse(sc->tp, agf_bp); 637 return error; 638 } 639 640 /* Dispose of every block of every extent in the bitmap. */ 641 int 642 xrep_reap_extents( 643 struct xfs_scrub *sc, 644 struct xbitmap *bitmap, 645 const struct xfs_owner_info *oinfo, 646 enum xfs_ag_resv_type type) 647 { 648 struct xrep_reap_state rs = { 649 .sc = sc, 650 .oinfo = oinfo, 651 .resv = type, 652 }; 653 654 ASSERT(xfs_has_rmapbt(sc->mp)); 655 656 return xbitmap_walk_bits(bitmap, xrep_reap_block, &rs); 657 } 658 659 /* 660 * Finding per-AG Btree Roots for AGF/AGI Reconstruction 661 * 662 * If the AGF or AGI become slightly corrupted, it may be necessary to rebuild 663 * the AG headers by using the rmap data to rummage through the AG looking for 664 * btree roots. This is not guaranteed to work if the AG is heavily damaged 665 * or the rmap data are corrupt. 666 * 667 * Callers of xrep_find_ag_btree_roots must lock the AGF and AGFL 668 * buffers if the AGF is being rebuilt; or the AGF and AGI buffers if the 669 * AGI is being rebuilt. It must maintain these locks until it's safe for 670 * other threads to change the btrees' shapes. The caller provides 671 * information about the btrees to look for by passing in an array of 672 * xrep_find_ag_btree with the (rmap owner, buf_ops, magic) fields set. 673 * The (root, height) fields will be set on return if anything is found. The 674 * last element of the array should have a NULL buf_ops to mark the end of the 675 * array. 676 * 677 * For every rmapbt record matching any of the rmap owners in btree_info, 678 * read each block referenced by the rmap record. If the block is a btree 679 * block from this filesystem matching any of the magic numbers and has a 680 * level higher than what we've already seen, remember the block and the 681 * height of the tree required to have such a block. When the call completes, 682 * we return the highest block we've found for each btree description; those 683 * should be the roots. 684 */ 685 686 struct xrep_findroot { 687 struct xfs_scrub *sc; 688 struct xfs_buf *agfl_bp; 689 struct xfs_agf *agf; 690 struct xrep_find_ag_btree *btree_info; 691 }; 692 693 /* See if our block is in the AGFL. */ 694 STATIC int 695 xrep_findroot_agfl_walk( 696 struct xfs_mount *mp, 697 xfs_agblock_t bno, 698 void *priv) 699 { 700 xfs_agblock_t *agbno = priv; 701 702 return (*agbno == bno) ? -ECANCELED : 0; 703 } 704 705 /* Does this block match the btree information passed in? */ 706 STATIC int 707 xrep_findroot_block( 708 struct xrep_findroot *ri, 709 struct xrep_find_ag_btree *fab, 710 uint64_t owner, 711 xfs_agblock_t agbno, 712 bool *done_with_block) 713 { 714 struct xfs_mount *mp = ri->sc->mp; 715 struct xfs_buf *bp; 716 struct xfs_btree_block *btblock; 717 xfs_daddr_t daddr; 718 int block_level; 719 int error = 0; 720 721 daddr = XFS_AGB_TO_DADDR(mp, ri->sc->sa.pag->pag_agno, agbno); 722 723 /* 724 * Blocks in the AGFL have stale contents that might just happen to 725 * have a matching magic and uuid. We don't want to pull these blocks 726 * in as part of a tree root, so we have to filter out the AGFL stuff 727 * here. If the AGFL looks insane we'll just refuse to repair. 728 */ 729 if (owner == XFS_RMAP_OWN_AG) { 730 error = xfs_agfl_walk(mp, ri->agf, ri->agfl_bp, 731 xrep_findroot_agfl_walk, &agbno); 732 if (error == -ECANCELED) 733 return 0; 734 if (error) 735 return error; 736 } 737 738 /* 739 * Read the buffer into memory so that we can see if it's a match for 740 * our btree type. We have no clue if it is beforehand, and we want to 741 * avoid xfs_trans_read_buf's behavior of dumping the DONE state (which 742 * will cause needless disk reads in subsequent calls to this function) 743 * and logging metadata verifier failures. 744 * 745 * Therefore, pass in NULL buffer ops. If the buffer was already in 746 * memory from some other caller it will already have b_ops assigned. 747 * If it was in memory from a previous unsuccessful findroot_block 748 * call, the buffer won't have b_ops but it should be clean and ready 749 * for us to try to verify if the read call succeeds. The same applies 750 * if the buffer wasn't in memory at all. 751 * 752 * Note: If we never match a btree type with this buffer, it will be 753 * left in memory with NULL b_ops. This shouldn't be a problem unless 754 * the buffer gets written. 755 */ 756 error = xfs_trans_read_buf(mp, ri->sc->tp, mp->m_ddev_targp, daddr, 757 mp->m_bsize, 0, &bp, NULL); 758 if (error) 759 return error; 760 761 /* Ensure the block magic matches the btree type we're looking for. */ 762 btblock = XFS_BUF_TO_BLOCK(bp); 763 ASSERT(fab->buf_ops->magic[1] != 0); 764 if (btblock->bb_magic != fab->buf_ops->magic[1]) 765 goto out; 766 767 /* 768 * If the buffer already has ops applied and they're not the ones for 769 * this btree type, we know this block doesn't match the btree and we 770 * can bail out. 771 * 772 * If the buffer ops match ours, someone else has already validated 773 * the block for us, so we can move on to checking if this is a root 774 * block candidate. 775 * 776 * If the buffer does not have ops, nobody has successfully validated 777 * the contents and the buffer cannot be dirty. If the magic, uuid, 778 * and structure match this btree type then we'll move on to checking 779 * if it's a root block candidate. If there is no match, bail out. 780 */ 781 if (bp->b_ops) { 782 if (bp->b_ops != fab->buf_ops) 783 goto out; 784 } else { 785 ASSERT(!xfs_trans_buf_is_dirty(bp)); 786 if (!uuid_equal(&btblock->bb_u.s.bb_uuid, 787 &mp->m_sb.sb_meta_uuid)) 788 goto out; 789 /* 790 * Read verifiers can reference b_ops, so we set the pointer 791 * here. If the verifier fails we'll reset the buffer state 792 * to what it was before we touched the buffer. 793 */ 794 bp->b_ops = fab->buf_ops; 795 fab->buf_ops->verify_read(bp); 796 if (bp->b_error) { 797 bp->b_ops = NULL; 798 bp->b_error = 0; 799 goto out; 800 } 801 802 /* 803 * Some read verifiers will (re)set b_ops, so we must be 804 * careful not to change b_ops after running the verifier. 805 */ 806 } 807 808 /* 809 * This block passes the magic/uuid and verifier tests for this btree 810 * type. We don't need the caller to try the other tree types. 811 */ 812 *done_with_block = true; 813 814 /* 815 * Compare this btree block's level to the height of the current 816 * candidate root block. 817 * 818 * If the level matches the root we found previously, throw away both 819 * blocks because there can't be two candidate roots. 820 * 821 * If level is lower in the tree than the root we found previously, 822 * ignore this block. 823 */ 824 block_level = xfs_btree_get_level(btblock); 825 if (block_level + 1 == fab->height) { 826 fab->root = NULLAGBLOCK; 827 goto out; 828 } else if (block_level < fab->height) { 829 goto out; 830 } 831 832 /* 833 * This is the highest block in the tree that we've found so far. 834 * Update the btree height to reflect what we've learned from this 835 * block. 836 */ 837 fab->height = block_level + 1; 838 839 /* 840 * If this block doesn't have sibling pointers, then it's the new root 841 * block candidate. Otherwise, the root will be found farther up the 842 * tree. 843 */ 844 if (btblock->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK) && 845 btblock->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK)) 846 fab->root = agbno; 847 else 848 fab->root = NULLAGBLOCK; 849 850 trace_xrep_findroot_block(mp, ri->sc->sa.pag->pag_agno, agbno, 851 be32_to_cpu(btblock->bb_magic), fab->height - 1); 852 out: 853 xfs_trans_brelse(ri->sc->tp, bp); 854 return error; 855 } 856 857 /* 858 * Do any of the blocks in this rmap record match one of the btrees we're 859 * looking for? 860 */ 861 STATIC int 862 xrep_findroot_rmap( 863 struct xfs_btree_cur *cur, 864 const struct xfs_rmap_irec *rec, 865 void *priv) 866 { 867 struct xrep_findroot *ri = priv; 868 struct xrep_find_ag_btree *fab; 869 xfs_agblock_t b; 870 bool done; 871 int error = 0; 872 873 /* Ignore anything that isn't AG metadata. */ 874 if (!XFS_RMAP_NON_INODE_OWNER(rec->rm_owner)) 875 return 0; 876 877 /* Otherwise scan each block + btree type. */ 878 for (b = 0; b < rec->rm_blockcount; b++) { 879 done = false; 880 for (fab = ri->btree_info; fab->buf_ops; fab++) { 881 if (rec->rm_owner != fab->rmap_owner) 882 continue; 883 error = xrep_findroot_block(ri, fab, 884 rec->rm_owner, rec->rm_startblock + b, 885 &done); 886 if (error) 887 return error; 888 if (done) 889 break; 890 } 891 } 892 893 return 0; 894 } 895 896 /* Find the roots of the per-AG btrees described in btree_info. */ 897 int 898 xrep_find_ag_btree_roots( 899 struct xfs_scrub *sc, 900 struct xfs_buf *agf_bp, 901 struct xrep_find_ag_btree *btree_info, 902 struct xfs_buf *agfl_bp) 903 { 904 struct xfs_mount *mp = sc->mp; 905 struct xrep_findroot ri; 906 struct xrep_find_ag_btree *fab; 907 struct xfs_btree_cur *cur; 908 int error; 909 910 ASSERT(xfs_buf_islocked(agf_bp)); 911 ASSERT(agfl_bp == NULL || xfs_buf_islocked(agfl_bp)); 912 913 ri.sc = sc; 914 ri.btree_info = btree_info; 915 ri.agf = agf_bp->b_addr; 916 ri.agfl_bp = agfl_bp; 917 for (fab = btree_info; fab->buf_ops; fab++) { 918 ASSERT(agfl_bp || fab->rmap_owner != XFS_RMAP_OWN_AG); 919 ASSERT(XFS_RMAP_NON_INODE_OWNER(fab->rmap_owner)); 920 fab->root = NULLAGBLOCK; 921 fab->height = 0; 922 } 923 924 cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.pag); 925 error = xfs_rmap_query_all(cur, xrep_findroot_rmap, &ri); 926 xfs_btree_del_cursor(cur, error); 927 928 return error; 929 } 930 931 /* Force a quotacheck the next time we mount. */ 932 void 933 xrep_force_quotacheck( 934 struct xfs_scrub *sc, 935 xfs_dqtype_t type) 936 { 937 uint flag; 938 939 flag = xfs_quota_chkd_flag(type); 940 if (!(flag & sc->mp->m_qflags)) 941 return; 942 943 mutex_lock(&sc->mp->m_quotainfo->qi_quotaofflock); 944 sc->mp->m_qflags &= ~flag; 945 spin_lock(&sc->mp->m_sb_lock); 946 sc->mp->m_sb.sb_qflags &= ~flag; 947 spin_unlock(&sc->mp->m_sb_lock); 948 xfs_log_sb(sc->tp); 949 mutex_unlock(&sc->mp->m_quotainfo->qi_quotaofflock); 950 } 951 952 /* 953 * Attach dquots to this inode, or schedule quotacheck to fix them. 954 * 955 * This function ensures that the appropriate dquots are attached to an inode. 956 * We cannot allow the dquot code to allocate an on-disk dquot block here 957 * because we're already in transaction context with the inode locked. The 958 * on-disk dquot should already exist anyway. If the quota code signals 959 * corruption or missing quota information, schedule quotacheck, which will 960 * repair corruptions in the quota metadata. 961 */ 962 int 963 xrep_ino_dqattach( 964 struct xfs_scrub *sc) 965 { 966 int error; 967 968 error = xfs_qm_dqattach_locked(sc->ip, false); 969 switch (error) { 970 case -EFSBADCRC: 971 case -EFSCORRUPTED: 972 case -ENOENT: 973 xfs_err_ratelimited(sc->mp, 974 "inode %llu repair encountered quota error %d, quotacheck forced.", 975 (unsigned long long)sc->ip->i_ino, error); 976 if (XFS_IS_UQUOTA_ON(sc->mp) && !sc->ip->i_udquot) 977 xrep_force_quotacheck(sc, XFS_DQTYPE_USER); 978 if (XFS_IS_GQUOTA_ON(sc->mp) && !sc->ip->i_gdquot) 979 xrep_force_quotacheck(sc, XFS_DQTYPE_GROUP); 980 if (XFS_IS_PQUOTA_ON(sc->mp) && !sc->ip->i_pdquot) 981 xrep_force_quotacheck(sc, XFS_DQTYPE_PROJ); 982 fallthrough; 983 case -ESRCH: 984 error = 0; 985 break; 986 default: 987 break; 988 } 989 990 return error; 991 } 992