xref: /linux/fs/xfs/scrub/repair.c (revision 1517d90cfafe0f95fd7863d04e1596f7beb7dfa8)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2018 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_mount.h"
12 #include "xfs_btree.h"
13 #include "xfs_log_format.h"
14 #include "xfs_trans.h"
15 #include "xfs_sb.h"
16 #include "xfs_inode.h"
17 #include "xfs_alloc.h"
18 #include "xfs_alloc_btree.h"
19 #include "xfs_ialloc.h"
20 #include "xfs_ialloc_btree.h"
21 #include "xfs_rmap.h"
22 #include "xfs_rmap_btree.h"
23 #include "xfs_refcount_btree.h"
24 #include "xfs_extent_busy.h"
25 #include "xfs_ag_resv.h"
26 #include "xfs_quota.h"
27 #include "scrub/scrub.h"
28 #include "scrub/common.h"
29 #include "scrub/trace.h"
30 #include "scrub/repair.h"
31 #include "scrub/bitmap.h"
32 
33 /*
34  * Attempt to repair some metadata, if the metadata is corrupt and userspace
35  * told us to fix it.  This function returns -EAGAIN to mean "re-run scrub",
36  * and will set *fixed to true if it thinks it repaired anything.
37  */
38 int
39 xrep_attempt(
40 	struct xfs_inode	*ip,
41 	struct xfs_scrub	*sc)
42 {
43 	int			error = 0;
44 
45 	trace_xrep_attempt(ip, sc->sm, error);
46 
47 	xchk_ag_btcur_free(&sc->sa);
48 
49 	/* Repair whatever's broken. */
50 	ASSERT(sc->ops->repair);
51 	error = sc->ops->repair(sc);
52 	trace_xrep_done(ip, sc->sm, error);
53 	switch (error) {
54 	case 0:
55 		/*
56 		 * Repair succeeded.  Commit the fixes and perform a second
57 		 * scrub so that we can tell userspace if we fixed the problem.
58 		 */
59 		sc->sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
60 		sc->flags |= XREP_ALREADY_FIXED;
61 		return -EAGAIN;
62 	case -EDEADLOCK:
63 	case -EAGAIN:
64 		/* Tell the caller to try again having grabbed all the locks. */
65 		if (!(sc->flags & XCHK_TRY_HARDER)) {
66 			sc->flags |= XCHK_TRY_HARDER;
67 			return -EAGAIN;
68 		}
69 		/*
70 		 * We tried harder but still couldn't grab all the resources
71 		 * we needed to fix it.  The corruption has not been fixed,
72 		 * so report back to userspace.
73 		 */
74 		return -EFSCORRUPTED;
75 	default:
76 		return error;
77 	}
78 }
79 
80 /*
81  * Complain about unfixable problems in the filesystem.  We don't log
82  * corruptions when IFLAG_REPAIR wasn't set on the assumption that the driver
83  * program is xfs_scrub, which will call back with IFLAG_REPAIR set if the
84  * administrator isn't running xfs_scrub in no-repairs mode.
85  *
86  * Use this helper function because _ratelimited silently declares a static
87  * structure to track rate limiting information.
88  */
89 void
90 xrep_failure(
91 	struct xfs_mount	*mp)
92 {
93 	xfs_alert_ratelimited(mp,
94 "Corruption not fixed during online repair.  Unmount and run xfs_repair.");
95 }
96 
97 /*
98  * Repair probe -- userspace uses this to probe if we're willing to repair a
99  * given mountpoint.
100  */
101 int
102 xrep_probe(
103 	struct xfs_scrub	*sc)
104 {
105 	int			error = 0;
106 
107 	if (xchk_should_terminate(sc, &error))
108 		return error;
109 
110 	return 0;
111 }
112 
113 /*
114  * Roll a transaction, keeping the AG headers locked and reinitializing
115  * the btree cursors.
116  */
117 int
118 xrep_roll_ag_trans(
119 	struct xfs_scrub	*sc)
120 {
121 	int			error;
122 
123 	/* Keep the AG header buffers locked so we can keep going. */
124 	if (sc->sa.agi_bp)
125 		xfs_trans_bhold(sc->tp, sc->sa.agi_bp);
126 	if (sc->sa.agf_bp)
127 		xfs_trans_bhold(sc->tp, sc->sa.agf_bp);
128 	if (sc->sa.agfl_bp)
129 		xfs_trans_bhold(sc->tp, sc->sa.agfl_bp);
130 
131 	/*
132 	 * Roll the transaction.  We still own the buffer and the buffer lock
133 	 * regardless of whether or not the roll succeeds.  If the roll fails,
134 	 * the buffers will be released during teardown on our way out of the
135 	 * kernel.  If it succeeds, we join them to the new transaction and
136 	 * move on.
137 	 */
138 	error = xfs_trans_roll(&sc->tp);
139 	if (error)
140 		return error;
141 
142 	/* Join AG headers to the new transaction. */
143 	if (sc->sa.agi_bp)
144 		xfs_trans_bjoin(sc->tp, sc->sa.agi_bp);
145 	if (sc->sa.agf_bp)
146 		xfs_trans_bjoin(sc->tp, sc->sa.agf_bp);
147 	if (sc->sa.agfl_bp)
148 		xfs_trans_bjoin(sc->tp, sc->sa.agfl_bp);
149 
150 	return 0;
151 }
152 
153 /*
154  * Does the given AG have enough space to rebuild a btree?  Neither AG
155  * reservation can be critical, and we must have enough space (factoring
156  * in AG reservations) to construct a whole btree.
157  */
158 bool
159 xrep_ag_has_space(
160 	struct xfs_perag	*pag,
161 	xfs_extlen_t		nr_blocks,
162 	enum xfs_ag_resv_type	type)
163 {
164 	return  !xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) &&
165 		!xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA) &&
166 		pag->pagf_freeblks > xfs_ag_resv_needed(pag, type) + nr_blocks;
167 }
168 
169 /*
170  * Figure out how many blocks to reserve for an AG repair.  We calculate the
171  * worst case estimate for the number of blocks we'd need to rebuild one of
172  * any type of per-AG btree.
173  */
174 xfs_extlen_t
175 xrep_calc_ag_resblks(
176 	struct xfs_scrub		*sc)
177 {
178 	struct xfs_mount		*mp = sc->mp;
179 	struct xfs_scrub_metadata	*sm = sc->sm;
180 	struct xfs_perag		*pag;
181 	struct xfs_buf			*bp;
182 	xfs_agino_t			icount = NULLAGINO;
183 	xfs_extlen_t			aglen = NULLAGBLOCK;
184 	xfs_extlen_t			usedlen;
185 	xfs_extlen_t			freelen;
186 	xfs_extlen_t			bnobt_sz;
187 	xfs_extlen_t			inobt_sz;
188 	xfs_extlen_t			rmapbt_sz;
189 	xfs_extlen_t			refcbt_sz;
190 	int				error;
191 
192 	if (!(sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR))
193 		return 0;
194 
195 	pag = xfs_perag_get(mp, sm->sm_agno);
196 	if (pag->pagi_init) {
197 		/* Use in-core icount if possible. */
198 		icount = pag->pagi_count;
199 	} else {
200 		/* Try to get the actual counters from disk. */
201 		error = xfs_ialloc_read_agi(mp, NULL, sm->sm_agno, &bp);
202 		if (!error) {
203 			icount = pag->pagi_count;
204 			xfs_buf_relse(bp);
205 		}
206 	}
207 
208 	/* Now grab the block counters from the AGF. */
209 	error = xfs_alloc_read_agf(mp, NULL, sm->sm_agno, 0, &bp);
210 	if (!error) {
211 		aglen = be32_to_cpu(XFS_BUF_TO_AGF(bp)->agf_length);
212 		freelen = be32_to_cpu(XFS_BUF_TO_AGF(bp)->agf_freeblks);
213 		usedlen = aglen - freelen;
214 		xfs_buf_relse(bp);
215 	}
216 	xfs_perag_put(pag);
217 
218 	/* If the icount is impossible, make some worst-case assumptions. */
219 	if (icount == NULLAGINO ||
220 	    !xfs_verify_agino(mp, sm->sm_agno, icount)) {
221 		xfs_agino_t	first, last;
222 
223 		xfs_agino_range(mp, sm->sm_agno, &first, &last);
224 		icount = last - first + 1;
225 	}
226 
227 	/* If the block counts are impossible, make worst-case assumptions. */
228 	if (aglen == NULLAGBLOCK ||
229 	    aglen != xfs_ag_block_count(mp, sm->sm_agno) ||
230 	    freelen >= aglen) {
231 		aglen = xfs_ag_block_count(mp, sm->sm_agno);
232 		freelen = aglen;
233 		usedlen = aglen;
234 	}
235 
236 	trace_xrep_calc_ag_resblks(mp, sm->sm_agno, icount, aglen,
237 			freelen, usedlen);
238 
239 	/*
240 	 * Figure out how many blocks we'd need worst case to rebuild
241 	 * each type of btree.  Note that we can only rebuild the
242 	 * bnobt/cntbt or inobt/finobt as pairs.
243 	 */
244 	bnobt_sz = 2 * xfs_allocbt_calc_size(mp, freelen);
245 	if (xfs_sb_version_hassparseinodes(&mp->m_sb))
246 		inobt_sz = xfs_iallocbt_calc_size(mp, icount /
247 				XFS_INODES_PER_HOLEMASK_BIT);
248 	else
249 		inobt_sz = xfs_iallocbt_calc_size(mp, icount /
250 				XFS_INODES_PER_CHUNK);
251 	if (xfs_sb_version_hasfinobt(&mp->m_sb))
252 		inobt_sz *= 2;
253 	if (xfs_sb_version_hasreflink(&mp->m_sb))
254 		refcbt_sz = xfs_refcountbt_calc_size(mp, usedlen);
255 	else
256 		refcbt_sz = 0;
257 	if (xfs_sb_version_hasrmapbt(&mp->m_sb)) {
258 		/*
259 		 * Guess how many blocks we need to rebuild the rmapbt.
260 		 * For non-reflink filesystems we can't have more records than
261 		 * used blocks.  However, with reflink it's possible to have
262 		 * more than one rmap record per AG block.  We don't know how
263 		 * many rmaps there could be in the AG, so we start off with
264 		 * what we hope is an generous over-estimation.
265 		 */
266 		if (xfs_sb_version_hasreflink(&mp->m_sb))
267 			rmapbt_sz = xfs_rmapbt_calc_size(mp,
268 					(unsigned long long)aglen * 2);
269 		else
270 			rmapbt_sz = xfs_rmapbt_calc_size(mp, usedlen);
271 	} else {
272 		rmapbt_sz = 0;
273 	}
274 
275 	trace_xrep_calc_ag_resblks_btsize(mp, sm->sm_agno, bnobt_sz,
276 			inobt_sz, rmapbt_sz, refcbt_sz);
277 
278 	return max(max(bnobt_sz, inobt_sz), max(rmapbt_sz, refcbt_sz));
279 }
280 
281 /* Allocate a block in an AG. */
282 int
283 xrep_alloc_ag_block(
284 	struct xfs_scrub		*sc,
285 	const struct xfs_owner_info	*oinfo,
286 	xfs_fsblock_t			*fsbno,
287 	enum xfs_ag_resv_type		resv)
288 {
289 	struct xfs_alloc_arg		args = {0};
290 	xfs_agblock_t			bno;
291 	int				error;
292 
293 	switch (resv) {
294 	case XFS_AG_RESV_AGFL:
295 	case XFS_AG_RESV_RMAPBT:
296 		error = xfs_alloc_get_freelist(sc->tp, sc->sa.agf_bp, &bno, 1);
297 		if (error)
298 			return error;
299 		if (bno == NULLAGBLOCK)
300 			return -ENOSPC;
301 		xfs_extent_busy_reuse(sc->mp, sc->sa.agno, bno,
302 				1, false);
303 		*fsbno = XFS_AGB_TO_FSB(sc->mp, sc->sa.agno, bno);
304 		if (resv == XFS_AG_RESV_RMAPBT)
305 			xfs_ag_resv_rmapbt_alloc(sc->mp, sc->sa.agno);
306 		return 0;
307 	default:
308 		break;
309 	}
310 
311 	args.tp = sc->tp;
312 	args.mp = sc->mp;
313 	args.oinfo = *oinfo;
314 	args.fsbno = XFS_AGB_TO_FSB(args.mp, sc->sa.agno, 0);
315 	args.minlen = 1;
316 	args.maxlen = 1;
317 	args.prod = 1;
318 	args.type = XFS_ALLOCTYPE_THIS_AG;
319 	args.resv = resv;
320 
321 	error = xfs_alloc_vextent(&args);
322 	if (error)
323 		return error;
324 	if (args.fsbno == NULLFSBLOCK)
325 		return -ENOSPC;
326 	ASSERT(args.len == 1);
327 	*fsbno = args.fsbno;
328 
329 	return 0;
330 }
331 
332 /* Initialize a new AG btree root block with zero entries. */
333 int
334 xrep_init_btblock(
335 	struct xfs_scrub		*sc,
336 	xfs_fsblock_t			fsb,
337 	struct xfs_buf			**bpp,
338 	xfs_btnum_t			btnum,
339 	const struct xfs_buf_ops	*ops)
340 {
341 	struct xfs_trans		*tp = sc->tp;
342 	struct xfs_mount		*mp = sc->mp;
343 	struct xfs_buf			*bp;
344 
345 	trace_xrep_init_btblock(mp, XFS_FSB_TO_AGNO(mp, fsb),
346 			XFS_FSB_TO_AGBNO(mp, fsb), btnum);
347 
348 	ASSERT(XFS_FSB_TO_AGNO(mp, fsb) == sc->sa.agno);
349 	bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, XFS_FSB_TO_DADDR(mp, fsb),
350 			XFS_FSB_TO_BB(mp, 1), 0);
351 	xfs_buf_zero(bp, 0, BBTOB(bp->b_length));
352 	xfs_btree_init_block(mp, bp, btnum, 0, 0, sc->sa.agno);
353 	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_BTREE_BUF);
354 	xfs_trans_log_buf(tp, bp, 0, BBTOB(bp->b_length) - 1);
355 	bp->b_ops = ops;
356 	*bpp = bp;
357 
358 	return 0;
359 }
360 
361 /*
362  * Reconstructing per-AG Btrees
363  *
364  * When a space btree is corrupt, we don't bother trying to fix it.  Instead,
365  * we scan secondary space metadata to derive the records that should be in
366  * the damaged btree, initialize a fresh btree root, and insert the records.
367  * Note that for rebuilding the rmapbt we scan all the primary data to
368  * generate the new records.
369  *
370  * However, that leaves the matter of removing all the metadata describing the
371  * old broken structure.  For primary metadata we use the rmap data to collect
372  * every extent with a matching rmap owner (bitmap); we then iterate all other
373  * metadata structures with the same rmap owner to collect the extents that
374  * cannot be removed (sublist).  We then subtract sublist from bitmap to
375  * derive the blocks that were used by the old btree.  These blocks can be
376  * reaped.
377  *
378  * For rmapbt reconstructions we must use different tactics for extent
379  * collection.  First we iterate all primary metadata (this excludes the old
380  * rmapbt, obviously) to generate new rmap records.  The gaps in the rmap
381  * records are collected as bitmap.  The bnobt records are collected as
382  * sublist.  As with the other btrees we subtract sublist from bitmap, and the
383  * result (since the rmapbt lives in the free space) are the blocks from the
384  * old rmapbt.
385  *
386  * Disposal of Blocks from Old per-AG Btrees
387  *
388  * Now that we've constructed a new btree to replace the damaged one, we want
389  * to dispose of the blocks that (we think) the old btree was using.
390  * Previously, we used the rmapbt to collect the extents (bitmap) with the
391  * rmap owner corresponding to the tree we rebuilt, collected extents for any
392  * blocks with the same rmap owner that are owned by another data structure
393  * (sublist), and subtracted sublist from bitmap.  In theory the extents
394  * remaining in bitmap are the old btree's blocks.
395  *
396  * Unfortunately, it's possible that the btree was crosslinked with other
397  * blocks on disk.  The rmap data can tell us if there are multiple owners, so
398  * if the rmapbt says there is an owner of this block other than @oinfo, then
399  * the block is crosslinked.  Remove the reverse mapping and continue.
400  *
401  * If there is one rmap record, we can free the block, which removes the
402  * reverse mapping but doesn't add the block to the free space.  Our repair
403  * strategy is to hope the other metadata objects crosslinked on this block
404  * will be rebuilt (atop different blocks), thereby removing all the cross
405  * links.
406  *
407  * If there are no rmap records at all, we also free the block.  If the btree
408  * being rebuilt lives in the free space (bnobt/cntbt/rmapbt) then there isn't
409  * supposed to be a rmap record and everything is ok.  For other btrees there
410  * had to have been an rmap entry for the block to have ended up on @bitmap,
411  * so if it's gone now there's something wrong and the fs will shut down.
412  *
413  * Note: If there are multiple rmap records with only the same rmap owner as
414  * the btree we're trying to rebuild and the block is indeed owned by another
415  * data structure with the same rmap owner, then the block will be in sublist
416  * and therefore doesn't need disposal.  If there are multiple rmap records
417  * with only the same rmap owner but the block is not owned by something with
418  * the same rmap owner, the block will be freed.
419  *
420  * The caller is responsible for locking the AG headers for the entire rebuild
421  * operation so that nothing else can sneak in and change the AG state while
422  * we're not looking.  We also assume that the caller already invalidated any
423  * buffers associated with @bitmap.
424  */
425 
426 /*
427  * Invalidate buffers for per-AG btree blocks we're dumping.  This function
428  * is not intended for use with file data repairs; we have bunmapi for that.
429  */
430 int
431 xrep_invalidate_blocks(
432 	struct xfs_scrub	*sc,
433 	struct xfs_bitmap	*bitmap)
434 {
435 	struct xfs_bitmap_range	*bmr;
436 	struct xfs_bitmap_range	*n;
437 	struct xfs_buf		*bp;
438 	xfs_fsblock_t		fsbno;
439 
440 	/*
441 	 * For each block in each extent, see if there's an incore buffer for
442 	 * exactly that block; if so, invalidate it.  The buffer cache only
443 	 * lets us look for one buffer at a time, so we have to look one block
444 	 * at a time.  Avoid invalidating AG headers and post-EOFS blocks
445 	 * because we never own those; and if we can't TRYLOCK the buffer we
446 	 * assume it's owned by someone else.
447 	 */
448 	for_each_xfs_bitmap_block(fsbno, bmr, n, bitmap) {
449 		/* Skip AG headers and post-EOFS blocks */
450 		if (!xfs_verify_fsbno(sc->mp, fsbno))
451 			continue;
452 		bp = xfs_buf_incore(sc->mp->m_ddev_targp,
453 				XFS_FSB_TO_DADDR(sc->mp, fsbno),
454 				XFS_FSB_TO_BB(sc->mp, 1), XBF_TRYLOCK);
455 		if (bp) {
456 			xfs_trans_bjoin(sc->tp, bp);
457 			xfs_trans_binval(sc->tp, bp);
458 		}
459 	}
460 
461 	return 0;
462 }
463 
464 /* Ensure the freelist is the correct size. */
465 int
466 xrep_fix_freelist(
467 	struct xfs_scrub	*sc,
468 	bool			can_shrink)
469 {
470 	struct xfs_alloc_arg	args = {0};
471 
472 	args.mp = sc->mp;
473 	args.tp = sc->tp;
474 	args.agno = sc->sa.agno;
475 	args.alignment = 1;
476 	args.pag = sc->sa.pag;
477 
478 	return xfs_alloc_fix_freelist(&args,
479 			can_shrink ? 0 : XFS_ALLOC_FLAG_NOSHRINK);
480 }
481 
482 /*
483  * Put a block back on the AGFL.
484  */
485 STATIC int
486 xrep_put_freelist(
487 	struct xfs_scrub	*sc,
488 	xfs_agblock_t		agbno)
489 {
490 	int			error;
491 
492 	/* Make sure there's space on the freelist. */
493 	error = xrep_fix_freelist(sc, true);
494 	if (error)
495 		return error;
496 
497 	/*
498 	 * Since we're "freeing" a lost block onto the AGFL, we have to
499 	 * create an rmap for the block prior to merging it or else other
500 	 * parts will break.
501 	 */
502 	error = xfs_rmap_alloc(sc->tp, sc->sa.agf_bp, sc->sa.agno, agbno, 1,
503 			&XFS_RMAP_OINFO_AG);
504 	if (error)
505 		return error;
506 
507 	/* Put the block on the AGFL. */
508 	error = xfs_alloc_put_freelist(sc->tp, sc->sa.agf_bp, sc->sa.agfl_bp,
509 			agbno, 0);
510 	if (error)
511 		return error;
512 	xfs_extent_busy_insert(sc->tp, sc->sa.agno, agbno, 1,
513 			XFS_EXTENT_BUSY_SKIP_DISCARD);
514 
515 	return 0;
516 }
517 
518 /* Dispose of a single block. */
519 STATIC int
520 xrep_reap_block(
521 	struct xfs_scrub		*sc,
522 	xfs_fsblock_t			fsbno,
523 	const struct xfs_owner_info	*oinfo,
524 	enum xfs_ag_resv_type		resv)
525 {
526 	struct xfs_btree_cur		*cur;
527 	struct xfs_buf			*agf_bp = NULL;
528 	xfs_agnumber_t			agno;
529 	xfs_agblock_t			agbno;
530 	bool				has_other_rmap;
531 	int				error;
532 
533 	agno = XFS_FSB_TO_AGNO(sc->mp, fsbno);
534 	agbno = XFS_FSB_TO_AGBNO(sc->mp, fsbno);
535 
536 	/*
537 	 * If we are repairing per-inode metadata, we need to read in the AGF
538 	 * buffer.  Otherwise, we're repairing a per-AG structure, so reuse
539 	 * the AGF buffer that the setup functions already grabbed.
540 	 */
541 	if (sc->ip) {
542 		error = xfs_alloc_read_agf(sc->mp, sc->tp, agno, 0, &agf_bp);
543 		if (error)
544 			return error;
545 		if (!agf_bp)
546 			return -ENOMEM;
547 	} else {
548 		agf_bp = sc->sa.agf_bp;
549 	}
550 	cur = xfs_rmapbt_init_cursor(sc->mp, sc->tp, agf_bp, agno);
551 
552 	/* Can we find any other rmappings? */
553 	error = xfs_rmap_has_other_keys(cur, agbno, 1, oinfo, &has_other_rmap);
554 	xfs_btree_del_cursor(cur, error);
555 	if (error)
556 		goto out_free;
557 
558 	/*
559 	 * If there are other rmappings, this block is cross linked and must
560 	 * not be freed.  Remove the reverse mapping and move on.  Otherwise,
561 	 * we were the only owner of the block, so free the extent, which will
562 	 * also remove the rmap.
563 	 *
564 	 * XXX: XFS doesn't support detecting the case where a single block
565 	 * metadata structure is crosslinked with a multi-block structure
566 	 * because the buffer cache doesn't detect aliasing problems, so we
567 	 * can't fix 100% of crosslinking problems (yet).  The verifiers will
568 	 * blow on writeout, the filesystem will shut down, and the admin gets
569 	 * to run xfs_repair.
570 	 */
571 	if (has_other_rmap)
572 		error = xfs_rmap_free(sc->tp, agf_bp, agno, agbno, 1, oinfo);
573 	else if (resv == XFS_AG_RESV_AGFL)
574 		error = xrep_put_freelist(sc, agbno);
575 	else
576 		error = xfs_free_extent(sc->tp, fsbno, 1, oinfo, resv);
577 	if (agf_bp != sc->sa.agf_bp)
578 		xfs_trans_brelse(sc->tp, agf_bp);
579 	if (error)
580 		return error;
581 
582 	if (sc->ip)
583 		return xfs_trans_roll_inode(&sc->tp, sc->ip);
584 	return xrep_roll_ag_trans(sc);
585 
586 out_free:
587 	if (agf_bp != sc->sa.agf_bp)
588 		xfs_trans_brelse(sc->tp, agf_bp);
589 	return error;
590 }
591 
592 /* Dispose of every block of every extent in the bitmap. */
593 int
594 xrep_reap_extents(
595 	struct xfs_scrub		*sc,
596 	struct xfs_bitmap		*bitmap,
597 	const struct xfs_owner_info	*oinfo,
598 	enum xfs_ag_resv_type		type)
599 {
600 	struct xfs_bitmap_range		*bmr;
601 	struct xfs_bitmap_range		*n;
602 	xfs_fsblock_t			fsbno;
603 	int				error = 0;
604 
605 	ASSERT(xfs_sb_version_hasrmapbt(&sc->mp->m_sb));
606 
607 	for_each_xfs_bitmap_block(fsbno, bmr, n, bitmap) {
608 		ASSERT(sc->ip != NULL ||
609 		       XFS_FSB_TO_AGNO(sc->mp, fsbno) == sc->sa.agno);
610 		trace_xrep_dispose_btree_extent(sc->mp,
611 				XFS_FSB_TO_AGNO(sc->mp, fsbno),
612 				XFS_FSB_TO_AGBNO(sc->mp, fsbno), 1);
613 
614 		error = xrep_reap_block(sc, fsbno, oinfo, type);
615 		if (error)
616 			goto out;
617 	}
618 
619 out:
620 	xfs_bitmap_destroy(bitmap);
621 	return error;
622 }
623 
624 /*
625  * Finding per-AG Btree Roots for AGF/AGI Reconstruction
626  *
627  * If the AGF or AGI become slightly corrupted, it may be necessary to rebuild
628  * the AG headers by using the rmap data to rummage through the AG looking for
629  * btree roots.  This is not guaranteed to work if the AG is heavily damaged
630  * or the rmap data are corrupt.
631  *
632  * Callers of xrep_find_ag_btree_roots must lock the AGF and AGFL
633  * buffers if the AGF is being rebuilt; or the AGF and AGI buffers if the
634  * AGI is being rebuilt.  It must maintain these locks until it's safe for
635  * other threads to change the btrees' shapes.  The caller provides
636  * information about the btrees to look for by passing in an array of
637  * xrep_find_ag_btree with the (rmap owner, buf_ops, magic) fields set.
638  * The (root, height) fields will be set on return if anything is found.  The
639  * last element of the array should have a NULL buf_ops to mark the end of the
640  * array.
641  *
642  * For every rmapbt record matching any of the rmap owners in btree_info,
643  * read each block referenced by the rmap record.  If the block is a btree
644  * block from this filesystem matching any of the magic numbers and has a
645  * level higher than what we've already seen, remember the block and the
646  * height of the tree required to have such a block.  When the call completes,
647  * we return the highest block we've found for each btree description; those
648  * should be the roots.
649  */
650 
651 struct xrep_findroot {
652 	struct xfs_scrub		*sc;
653 	struct xfs_buf			*agfl_bp;
654 	struct xfs_agf			*agf;
655 	struct xrep_find_ag_btree	*btree_info;
656 };
657 
658 /* See if our block is in the AGFL. */
659 STATIC int
660 xrep_findroot_agfl_walk(
661 	struct xfs_mount	*mp,
662 	xfs_agblock_t		bno,
663 	void			*priv)
664 {
665 	xfs_agblock_t		*agbno = priv;
666 
667 	return (*agbno == bno) ? -ECANCELED : 0;
668 }
669 
670 /* Does this block match the btree information passed in? */
671 STATIC int
672 xrep_findroot_block(
673 	struct xrep_findroot		*ri,
674 	struct xrep_find_ag_btree	*fab,
675 	uint64_t			owner,
676 	xfs_agblock_t			agbno,
677 	bool				*done_with_block)
678 {
679 	struct xfs_mount		*mp = ri->sc->mp;
680 	struct xfs_buf			*bp;
681 	struct xfs_btree_block		*btblock;
682 	xfs_daddr_t			daddr;
683 	int				block_level;
684 	int				error = 0;
685 
686 	daddr = XFS_AGB_TO_DADDR(mp, ri->sc->sa.agno, agbno);
687 
688 	/*
689 	 * Blocks in the AGFL have stale contents that might just happen to
690 	 * have a matching magic and uuid.  We don't want to pull these blocks
691 	 * in as part of a tree root, so we have to filter out the AGFL stuff
692 	 * here.  If the AGFL looks insane we'll just refuse to repair.
693 	 */
694 	if (owner == XFS_RMAP_OWN_AG) {
695 		error = xfs_agfl_walk(mp, ri->agf, ri->agfl_bp,
696 				xrep_findroot_agfl_walk, &agbno);
697 		if (error == -ECANCELED)
698 			return 0;
699 		if (error)
700 			return error;
701 	}
702 
703 	/*
704 	 * Read the buffer into memory so that we can see if it's a match for
705 	 * our btree type.  We have no clue if it is beforehand, and we want to
706 	 * avoid xfs_trans_read_buf's behavior of dumping the DONE state (which
707 	 * will cause needless disk reads in subsequent calls to this function)
708 	 * and logging metadata verifier failures.
709 	 *
710 	 * Therefore, pass in NULL buffer ops.  If the buffer was already in
711 	 * memory from some other caller it will already have b_ops assigned.
712 	 * If it was in memory from a previous unsuccessful findroot_block
713 	 * call, the buffer won't have b_ops but it should be clean and ready
714 	 * for us to try to verify if the read call succeeds.  The same applies
715 	 * if the buffer wasn't in memory at all.
716 	 *
717 	 * Note: If we never match a btree type with this buffer, it will be
718 	 * left in memory with NULL b_ops.  This shouldn't be a problem unless
719 	 * the buffer gets written.
720 	 */
721 	error = xfs_trans_read_buf(mp, ri->sc->tp, mp->m_ddev_targp, daddr,
722 			mp->m_bsize, 0, &bp, NULL);
723 	if (error)
724 		return error;
725 
726 	/* Ensure the block magic matches the btree type we're looking for. */
727 	btblock = XFS_BUF_TO_BLOCK(bp);
728 	ASSERT(fab->buf_ops->magic[1] != 0);
729 	if (btblock->bb_magic != fab->buf_ops->magic[1])
730 		goto out;
731 
732 	/*
733 	 * If the buffer already has ops applied and they're not the ones for
734 	 * this btree type, we know this block doesn't match the btree and we
735 	 * can bail out.
736 	 *
737 	 * If the buffer ops match ours, someone else has already validated
738 	 * the block for us, so we can move on to checking if this is a root
739 	 * block candidate.
740 	 *
741 	 * If the buffer does not have ops, nobody has successfully validated
742 	 * the contents and the buffer cannot be dirty.  If the magic, uuid,
743 	 * and structure match this btree type then we'll move on to checking
744 	 * if it's a root block candidate.  If there is no match, bail out.
745 	 */
746 	if (bp->b_ops) {
747 		if (bp->b_ops != fab->buf_ops)
748 			goto out;
749 	} else {
750 		ASSERT(!xfs_trans_buf_is_dirty(bp));
751 		if (!uuid_equal(&btblock->bb_u.s.bb_uuid,
752 				&mp->m_sb.sb_meta_uuid))
753 			goto out;
754 		/*
755 		 * Read verifiers can reference b_ops, so we set the pointer
756 		 * here.  If the verifier fails we'll reset the buffer state
757 		 * to what it was before we touched the buffer.
758 		 */
759 		bp->b_ops = fab->buf_ops;
760 		fab->buf_ops->verify_read(bp);
761 		if (bp->b_error) {
762 			bp->b_ops = NULL;
763 			bp->b_error = 0;
764 			goto out;
765 		}
766 
767 		/*
768 		 * Some read verifiers will (re)set b_ops, so we must be
769 		 * careful not to change b_ops after running the verifier.
770 		 */
771 	}
772 
773 	/*
774 	 * This block passes the magic/uuid and verifier tests for this btree
775 	 * type.  We don't need the caller to try the other tree types.
776 	 */
777 	*done_with_block = true;
778 
779 	/*
780 	 * Compare this btree block's level to the height of the current
781 	 * candidate root block.
782 	 *
783 	 * If the level matches the root we found previously, throw away both
784 	 * blocks because there can't be two candidate roots.
785 	 *
786 	 * If level is lower in the tree than the root we found previously,
787 	 * ignore this block.
788 	 */
789 	block_level = xfs_btree_get_level(btblock);
790 	if (block_level + 1 == fab->height) {
791 		fab->root = NULLAGBLOCK;
792 		goto out;
793 	} else if (block_level < fab->height) {
794 		goto out;
795 	}
796 
797 	/*
798 	 * This is the highest block in the tree that we've found so far.
799 	 * Update the btree height to reflect what we've learned from this
800 	 * block.
801 	 */
802 	fab->height = block_level + 1;
803 
804 	/*
805 	 * If this block doesn't have sibling pointers, then it's the new root
806 	 * block candidate.  Otherwise, the root will be found farther up the
807 	 * tree.
808 	 */
809 	if (btblock->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK) &&
810 	    btblock->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
811 		fab->root = agbno;
812 	else
813 		fab->root = NULLAGBLOCK;
814 
815 	trace_xrep_findroot_block(mp, ri->sc->sa.agno, agbno,
816 			be32_to_cpu(btblock->bb_magic), fab->height - 1);
817 out:
818 	xfs_trans_brelse(ri->sc->tp, bp);
819 	return error;
820 }
821 
822 /*
823  * Do any of the blocks in this rmap record match one of the btrees we're
824  * looking for?
825  */
826 STATIC int
827 xrep_findroot_rmap(
828 	struct xfs_btree_cur		*cur,
829 	struct xfs_rmap_irec		*rec,
830 	void				*priv)
831 {
832 	struct xrep_findroot		*ri = priv;
833 	struct xrep_find_ag_btree	*fab;
834 	xfs_agblock_t			b;
835 	bool				done;
836 	int				error = 0;
837 
838 	/* Ignore anything that isn't AG metadata. */
839 	if (!XFS_RMAP_NON_INODE_OWNER(rec->rm_owner))
840 		return 0;
841 
842 	/* Otherwise scan each block + btree type. */
843 	for (b = 0; b < rec->rm_blockcount; b++) {
844 		done = false;
845 		for (fab = ri->btree_info; fab->buf_ops; fab++) {
846 			if (rec->rm_owner != fab->rmap_owner)
847 				continue;
848 			error = xrep_findroot_block(ri, fab,
849 					rec->rm_owner, rec->rm_startblock + b,
850 					&done);
851 			if (error)
852 				return error;
853 			if (done)
854 				break;
855 		}
856 	}
857 
858 	return 0;
859 }
860 
861 /* Find the roots of the per-AG btrees described in btree_info. */
862 int
863 xrep_find_ag_btree_roots(
864 	struct xfs_scrub		*sc,
865 	struct xfs_buf			*agf_bp,
866 	struct xrep_find_ag_btree	*btree_info,
867 	struct xfs_buf			*agfl_bp)
868 {
869 	struct xfs_mount		*mp = sc->mp;
870 	struct xrep_findroot		ri;
871 	struct xrep_find_ag_btree	*fab;
872 	struct xfs_btree_cur		*cur;
873 	int				error;
874 
875 	ASSERT(xfs_buf_islocked(agf_bp));
876 	ASSERT(agfl_bp == NULL || xfs_buf_islocked(agfl_bp));
877 
878 	ri.sc = sc;
879 	ri.btree_info = btree_info;
880 	ri.agf = XFS_BUF_TO_AGF(agf_bp);
881 	ri.agfl_bp = agfl_bp;
882 	for (fab = btree_info; fab->buf_ops; fab++) {
883 		ASSERT(agfl_bp || fab->rmap_owner != XFS_RMAP_OWN_AG);
884 		ASSERT(XFS_RMAP_NON_INODE_OWNER(fab->rmap_owner));
885 		fab->root = NULLAGBLOCK;
886 		fab->height = 0;
887 	}
888 
889 	cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.agno);
890 	error = xfs_rmap_query_all(cur, xrep_findroot_rmap, &ri);
891 	xfs_btree_del_cursor(cur, error);
892 
893 	return error;
894 }
895 
896 /* Force a quotacheck the next time we mount. */
897 void
898 xrep_force_quotacheck(
899 	struct xfs_scrub	*sc,
900 	uint			dqtype)
901 {
902 	uint			flag;
903 
904 	flag = xfs_quota_chkd_flag(dqtype);
905 	if (!(flag & sc->mp->m_qflags))
906 		return;
907 
908 	sc->mp->m_qflags &= ~flag;
909 	spin_lock(&sc->mp->m_sb_lock);
910 	sc->mp->m_sb.sb_qflags &= ~flag;
911 	spin_unlock(&sc->mp->m_sb_lock);
912 	xfs_log_sb(sc->tp);
913 }
914 
915 /*
916  * Attach dquots to this inode, or schedule quotacheck to fix them.
917  *
918  * This function ensures that the appropriate dquots are attached to an inode.
919  * We cannot allow the dquot code to allocate an on-disk dquot block here
920  * because we're already in transaction context with the inode locked.  The
921  * on-disk dquot should already exist anyway.  If the quota code signals
922  * corruption or missing quota information, schedule quotacheck, which will
923  * repair corruptions in the quota metadata.
924  */
925 int
926 xrep_ino_dqattach(
927 	struct xfs_scrub	*sc)
928 {
929 	int			error;
930 
931 	error = xfs_qm_dqattach_locked(sc->ip, false);
932 	switch (error) {
933 	case -EFSBADCRC:
934 	case -EFSCORRUPTED:
935 	case -ENOENT:
936 		xfs_err_ratelimited(sc->mp,
937 "inode %llu repair encountered quota error %d, quotacheck forced.",
938 				(unsigned long long)sc->ip->i_ino, error);
939 		if (XFS_IS_UQUOTA_ON(sc->mp) && !sc->ip->i_udquot)
940 			xrep_force_quotacheck(sc, XFS_DQ_USER);
941 		if (XFS_IS_GQUOTA_ON(sc->mp) && !sc->ip->i_gdquot)
942 			xrep_force_quotacheck(sc, XFS_DQ_GROUP);
943 		if (XFS_IS_PQUOTA_ON(sc->mp) && !sc->ip->i_pdquot)
944 			xrep_force_quotacheck(sc, XFS_DQ_PROJ);
945 		/* fall through */
946 	case -ESRCH:
947 		error = 0;
948 		break;
949 	default:
950 		break;
951 	}
952 
953 	return error;
954 }
955