1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (C) 2018 Oracle. All Rights Reserved. 4 * Author: Darrick J. Wong <darrick.wong@oracle.com> 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_trans_resv.h" 11 #include "xfs_mount.h" 12 #include "xfs_btree.h" 13 #include "xfs_log_format.h" 14 #include "xfs_trans.h" 15 #include "xfs_sb.h" 16 #include "xfs_inode.h" 17 #include "xfs_alloc.h" 18 #include "xfs_alloc_btree.h" 19 #include "xfs_ialloc.h" 20 #include "xfs_ialloc_btree.h" 21 #include "xfs_rmap.h" 22 #include "xfs_rmap_btree.h" 23 #include "xfs_refcount_btree.h" 24 #include "xfs_extent_busy.h" 25 #include "xfs_ag.h" 26 #include "xfs_ag_resv.h" 27 #include "xfs_quota.h" 28 #include "xfs_qm.h" 29 #include "scrub/scrub.h" 30 #include "scrub/common.h" 31 #include "scrub/trace.h" 32 #include "scrub/repair.h" 33 #include "scrub/bitmap.h" 34 35 /* 36 * Attempt to repair some metadata, if the metadata is corrupt and userspace 37 * told us to fix it. This function returns -EAGAIN to mean "re-run scrub", 38 * and will set *fixed to true if it thinks it repaired anything. 39 */ 40 int 41 xrep_attempt( 42 struct xfs_scrub *sc) 43 { 44 int error = 0; 45 46 trace_xrep_attempt(XFS_I(file_inode(sc->file)), sc->sm, error); 47 48 xchk_ag_btcur_free(&sc->sa); 49 50 /* Repair whatever's broken. */ 51 ASSERT(sc->ops->repair); 52 error = sc->ops->repair(sc); 53 trace_xrep_done(XFS_I(file_inode(sc->file)), sc->sm, error); 54 switch (error) { 55 case 0: 56 /* 57 * Repair succeeded. Commit the fixes and perform a second 58 * scrub so that we can tell userspace if we fixed the problem. 59 */ 60 sc->sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT; 61 sc->flags |= XREP_ALREADY_FIXED; 62 return -EAGAIN; 63 case -EDEADLOCK: 64 /* Tell the caller to try again having grabbed all the locks. */ 65 if (!(sc->flags & XCHK_TRY_HARDER)) { 66 sc->flags |= XCHK_TRY_HARDER; 67 return -EAGAIN; 68 } 69 /* 70 * We tried harder but still couldn't grab all the resources 71 * we needed to fix it. The corruption has not been fixed, 72 * so exit to userspace with the scan's output flags unchanged. 73 */ 74 return 0; 75 default: 76 /* 77 * EAGAIN tells the caller to re-scrub, so we cannot return 78 * that here. 79 */ 80 ASSERT(error != -EAGAIN); 81 return error; 82 } 83 } 84 85 /* 86 * Complain about unfixable problems in the filesystem. We don't log 87 * corruptions when IFLAG_REPAIR wasn't set on the assumption that the driver 88 * program is xfs_scrub, which will call back with IFLAG_REPAIR set if the 89 * administrator isn't running xfs_scrub in no-repairs mode. 90 * 91 * Use this helper function because _ratelimited silently declares a static 92 * structure to track rate limiting information. 93 */ 94 void 95 xrep_failure( 96 struct xfs_mount *mp) 97 { 98 xfs_alert_ratelimited(mp, 99 "Corruption not fixed during online repair. Unmount and run xfs_repair."); 100 } 101 102 /* 103 * Repair probe -- userspace uses this to probe if we're willing to repair a 104 * given mountpoint. 105 */ 106 int 107 xrep_probe( 108 struct xfs_scrub *sc) 109 { 110 int error = 0; 111 112 if (xchk_should_terminate(sc, &error)) 113 return error; 114 115 return 0; 116 } 117 118 /* 119 * Roll a transaction, keeping the AG headers locked and reinitializing 120 * the btree cursors. 121 */ 122 int 123 xrep_roll_ag_trans( 124 struct xfs_scrub *sc) 125 { 126 int error; 127 128 /* 129 * Keep the AG header buffers locked while we roll the transaction. 130 * Ensure that both AG buffers are dirty and held when we roll the 131 * transaction so that they move forward in the log without losing the 132 * bli (and hence the bli type) when the transaction commits. 133 * 134 * Normal code would never hold clean buffers across a roll, but repair 135 * needs both buffers to maintain a total lock on the AG. 136 */ 137 if (sc->sa.agi_bp) { 138 xfs_ialloc_log_agi(sc->tp, sc->sa.agi_bp, XFS_AGI_MAGICNUM); 139 xfs_trans_bhold(sc->tp, sc->sa.agi_bp); 140 } 141 142 if (sc->sa.agf_bp) { 143 xfs_alloc_log_agf(sc->tp, sc->sa.agf_bp, XFS_AGF_MAGICNUM); 144 xfs_trans_bhold(sc->tp, sc->sa.agf_bp); 145 } 146 147 /* 148 * Roll the transaction. We still hold the AG header buffers locked 149 * regardless of whether or not that succeeds. On failure, the buffers 150 * will be released during teardown on our way out of the kernel. If 151 * successful, join the buffers to the new transaction and move on. 152 */ 153 error = xfs_trans_roll(&sc->tp); 154 if (error) 155 return error; 156 157 /* Join the AG headers to the new transaction. */ 158 if (sc->sa.agi_bp) 159 xfs_trans_bjoin(sc->tp, sc->sa.agi_bp); 160 if (sc->sa.agf_bp) 161 xfs_trans_bjoin(sc->tp, sc->sa.agf_bp); 162 163 return 0; 164 } 165 166 /* 167 * Does the given AG have enough space to rebuild a btree? Neither AG 168 * reservation can be critical, and we must have enough space (factoring 169 * in AG reservations) to construct a whole btree. 170 */ 171 bool 172 xrep_ag_has_space( 173 struct xfs_perag *pag, 174 xfs_extlen_t nr_blocks, 175 enum xfs_ag_resv_type type) 176 { 177 return !xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) && 178 !xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA) && 179 pag->pagf_freeblks > xfs_ag_resv_needed(pag, type) + nr_blocks; 180 } 181 182 /* 183 * Figure out how many blocks to reserve for an AG repair. We calculate the 184 * worst case estimate for the number of blocks we'd need to rebuild one of 185 * any type of per-AG btree. 186 */ 187 xfs_extlen_t 188 xrep_calc_ag_resblks( 189 struct xfs_scrub *sc) 190 { 191 struct xfs_mount *mp = sc->mp; 192 struct xfs_scrub_metadata *sm = sc->sm; 193 struct xfs_perag *pag; 194 struct xfs_buf *bp; 195 xfs_agino_t icount = NULLAGINO; 196 xfs_extlen_t aglen = NULLAGBLOCK; 197 xfs_extlen_t usedlen; 198 xfs_extlen_t freelen; 199 xfs_extlen_t bnobt_sz; 200 xfs_extlen_t inobt_sz; 201 xfs_extlen_t rmapbt_sz; 202 xfs_extlen_t refcbt_sz; 203 int error; 204 205 if (!(sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR)) 206 return 0; 207 208 pag = xfs_perag_get(mp, sm->sm_agno); 209 if (pag->pagi_init) { 210 /* Use in-core icount if possible. */ 211 icount = pag->pagi_count; 212 } else { 213 /* Try to get the actual counters from disk. */ 214 error = xfs_ialloc_read_agi(pag, NULL, &bp); 215 if (!error) { 216 icount = pag->pagi_count; 217 xfs_buf_relse(bp); 218 } 219 } 220 221 /* Now grab the block counters from the AGF. */ 222 error = xfs_alloc_read_agf(pag, NULL, 0, &bp); 223 if (error) { 224 aglen = pag->block_count; 225 freelen = aglen; 226 usedlen = aglen; 227 } else { 228 struct xfs_agf *agf = bp->b_addr; 229 230 aglen = be32_to_cpu(agf->agf_length); 231 freelen = be32_to_cpu(agf->agf_freeblks); 232 usedlen = aglen - freelen; 233 xfs_buf_relse(bp); 234 } 235 236 /* If the icount is impossible, make some worst-case assumptions. */ 237 if (icount == NULLAGINO || 238 !xfs_verify_agino(pag, icount)) { 239 icount = pag->agino_max - pag->agino_min + 1; 240 } 241 242 /* If the block counts are impossible, make worst-case assumptions. */ 243 if (aglen == NULLAGBLOCK || 244 aglen != pag->block_count || 245 freelen >= aglen) { 246 aglen = pag->block_count; 247 freelen = aglen; 248 usedlen = aglen; 249 } 250 xfs_perag_put(pag); 251 252 trace_xrep_calc_ag_resblks(mp, sm->sm_agno, icount, aglen, 253 freelen, usedlen); 254 255 /* 256 * Figure out how many blocks we'd need worst case to rebuild 257 * each type of btree. Note that we can only rebuild the 258 * bnobt/cntbt or inobt/finobt as pairs. 259 */ 260 bnobt_sz = 2 * xfs_allocbt_calc_size(mp, freelen); 261 if (xfs_has_sparseinodes(mp)) 262 inobt_sz = xfs_iallocbt_calc_size(mp, icount / 263 XFS_INODES_PER_HOLEMASK_BIT); 264 else 265 inobt_sz = xfs_iallocbt_calc_size(mp, icount / 266 XFS_INODES_PER_CHUNK); 267 if (xfs_has_finobt(mp)) 268 inobt_sz *= 2; 269 if (xfs_has_reflink(mp)) 270 refcbt_sz = xfs_refcountbt_calc_size(mp, usedlen); 271 else 272 refcbt_sz = 0; 273 if (xfs_has_rmapbt(mp)) { 274 /* 275 * Guess how many blocks we need to rebuild the rmapbt. 276 * For non-reflink filesystems we can't have more records than 277 * used blocks. However, with reflink it's possible to have 278 * more than one rmap record per AG block. We don't know how 279 * many rmaps there could be in the AG, so we start off with 280 * what we hope is an generous over-estimation. 281 */ 282 if (xfs_has_reflink(mp)) 283 rmapbt_sz = xfs_rmapbt_calc_size(mp, 284 (unsigned long long)aglen * 2); 285 else 286 rmapbt_sz = xfs_rmapbt_calc_size(mp, usedlen); 287 } else { 288 rmapbt_sz = 0; 289 } 290 291 trace_xrep_calc_ag_resblks_btsize(mp, sm->sm_agno, bnobt_sz, 292 inobt_sz, rmapbt_sz, refcbt_sz); 293 294 return max(max(bnobt_sz, inobt_sz), max(rmapbt_sz, refcbt_sz)); 295 } 296 297 /* Allocate a block in an AG. */ 298 int 299 xrep_alloc_ag_block( 300 struct xfs_scrub *sc, 301 const struct xfs_owner_info *oinfo, 302 xfs_fsblock_t *fsbno, 303 enum xfs_ag_resv_type resv) 304 { 305 struct xfs_alloc_arg args = {0}; 306 xfs_agblock_t bno; 307 int error; 308 309 switch (resv) { 310 case XFS_AG_RESV_AGFL: 311 case XFS_AG_RESV_RMAPBT: 312 error = xfs_alloc_get_freelist(sc->sa.pag, sc->tp, 313 sc->sa.agf_bp, &bno, 1); 314 if (error) 315 return error; 316 if (bno == NULLAGBLOCK) 317 return -ENOSPC; 318 xfs_extent_busy_reuse(sc->mp, sc->sa.pag, bno, 1, false); 319 *fsbno = XFS_AGB_TO_FSB(sc->mp, sc->sa.pag->pag_agno, bno); 320 if (resv == XFS_AG_RESV_RMAPBT) 321 xfs_ag_resv_rmapbt_alloc(sc->mp, sc->sa.pag->pag_agno); 322 return 0; 323 default: 324 break; 325 } 326 327 args.tp = sc->tp; 328 args.mp = sc->mp; 329 args.oinfo = *oinfo; 330 args.fsbno = XFS_AGB_TO_FSB(args.mp, sc->sa.pag->pag_agno, 0); 331 args.minlen = 1; 332 args.maxlen = 1; 333 args.prod = 1; 334 args.type = XFS_ALLOCTYPE_THIS_AG; 335 args.resv = resv; 336 337 error = xfs_alloc_vextent(&args); 338 if (error) 339 return error; 340 if (args.fsbno == NULLFSBLOCK) 341 return -ENOSPC; 342 ASSERT(args.len == 1); 343 *fsbno = args.fsbno; 344 345 return 0; 346 } 347 348 /* Initialize a new AG btree root block with zero entries. */ 349 int 350 xrep_init_btblock( 351 struct xfs_scrub *sc, 352 xfs_fsblock_t fsb, 353 struct xfs_buf **bpp, 354 xfs_btnum_t btnum, 355 const struct xfs_buf_ops *ops) 356 { 357 struct xfs_trans *tp = sc->tp; 358 struct xfs_mount *mp = sc->mp; 359 struct xfs_buf *bp; 360 int error; 361 362 trace_xrep_init_btblock(mp, XFS_FSB_TO_AGNO(mp, fsb), 363 XFS_FSB_TO_AGBNO(mp, fsb), btnum); 364 365 ASSERT(XFS_FSB_TO_AGNO(mp, fsb) == sc->sa.pag->pag_agno); 366 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, 367 XFS_FSB_TO_DADDR(mp, fsb), XFS_FSB_TO_BB(mp, 1), 0, 368 &bp); 369 if (error) 370 return error; 371 xfs_buf_zero(bp, 0, BBTOB(bp->b_length)); 372 xfs_btree_init_block(mp, bp, btnum, 0, 0, sc->sa.pag->pag_agno); 373 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_BTREE_BUF); 374 xfs_trans_log_buf(tp, bp, 0, BBTOB(bp->b_length) - 1); 375 bp->b_ops = ops; 376 *bpp = bp; 377 378 return 0; 379 } 380 381 /* 382 * Reconstructing per-AG Btrees 383 * 384 * When a space btree is corrupt, we don't bother trying to fix it. Instead, 385 * we scan secondary space metadata to derive the records that should be in 386 * the damaged btree, initialize a fresh btree root, and insert the records. 387 * Note that for rebuilding the rmapbt we scan all the primary data to 388 * generate the new records. 389 * 390 * However, that leaves the matter of removing all the metadata describing the 391 * old broken structure. For primary metadata we use the rmap data to collect 392 * every extent with a matching rmap owner (bitmap); we then iterate all other 393 * metadata structures with the same rmap owner to collect the extents that 394 * cannot be removed (sublist). We then subtract sublist from bitmap to 395 * derive the blocks that were used by the old btree. These blocks can be 396 * reaped. 397 * 398 * For rmapbt reconstructions we must use different tactics for extent 399 * collection. First we iterate all primary metadata (this excludes the old 400 * rmapbt, obviously) to generate new rmap records. The gaps in the rmap 401 * records are collected as bitmap. The bnobt records are collected as 402 * sublist. As with the other btrees we subtract sublist from bitmap, and the 403 * result (since the rmapbt lives in the free space) are the blocks from the 404 * old rmapbt. 405 * 406 * Disposal of Blocks from Old per-AG Btrees 407 * 408 * Now that we've constructed a new btree to replace the damaged one, we want 409 * to dispose of the blocks that (we think) the old btree was using. 410 * Previously, we used the rmapbt to collect the extents (bitmap) with the 411 * rmap owner corresponding to the tree we rebuilt, collected extents for any 412 * blocks with the same rmap owner that are owned by another data structure 413 * (sublist), and subtracted sublist from bitmap. In theory the extents 414 * remaining in bitmap are the old btree's blocks. 415 * 416 * Unfortunately, it's possible that the btree was crosslinked with other 417 * blocks on disk. The rmap data can tell us if there are multiple owners, so 418 * if the rmapbt says there is an owner of this block other than @oinfo, then 419 * the block is crosslinked. Remove the reverse mapping and continue. 420 * 421 * If there is one rmap record, we can free the block, which removes the 422 * reverse mapping but doesn't add the block to the free space. Our repair 423 * strategy is to hope the other metadata objects crosslinked on this block 424 * will be rebuilt (atop different blocks), thereby removing all the cross 425 * links. 426 * 427 * If there are no rmap records at all, we also free the block. If the btree 428 * being rebuilt lives in the free space (bnobt/cntbt/rmapbt) then there isn't 429 * supposed to be a rmap record and everything is ok. For other btrees there 430 * had to have been an rmap entry for the block to have ended up on @bitmap, 431 * so if it's gone now there's something wrong and the fs will shut down. 432 * 433 * Note: If there are multiple rmap records with only the same rmap owner as 434 * the btree we're trying to rebuild and the block is indeed owned by another 435 * data structure with the same rmap owner, then the block will be in sublist 436 * and therefore doesn't need disposal. If there are multiple rmap records 437 * with only the same rmap owner but the block is not owned by something with 438 * the same rmap owner, the block will be freed. 439 * 440 * The caller is responsible for locking the AG headers for the entire rebuild 441 * operation so that nothing else can sneak in and change the AG state while 442 * we're not looking. We also assume that the caller already invalidated any 443 * buffers associated with @bitmap. 444 */ 445 446 /* 447 * Invalidate buffers for per-AG btree blocks we're dumping. This function 448 * is not intended for use with file data repairs; we have bunmapi for that. 449 */ 450 int 451 xrep_invalidate_blocks( 452 struct xfs_scrub *sc, 453 struct xbitmap *bitmap) 454 { 455 struct xbitmap_range *bmr; 456 struct xbitmap_range *n; 457 struct xfs_buf *bp; 458 xfs_fsblock_t fsbno; 459 460 /* 461 * For each block in each extent, see if there's an incore buffer for 462 * exactly that block; if so, invalidate it. The buffer cache only 463 * lets us look for one buffer at a time, so we have to look one block 464 * at a time. Avoid invalidating AG headers and post-EOFS blocks 465 * because we never own those; and if we can't TRYLOCK the buffer we 466 * assume it's owned by someone else. 467 */ 468 for_each_xbitmap_block(fsbno, bmr, n, bitmap) { 469 int error; 470 471 /* Skip AG headers and post-EOFS blocks */ 472 if (!xfs_verify_fsbno(sc->mp, fsbno)) 473 continue; 474 error = xfs_buf_incore(sc->mp->m_ddev_targp, 475 XFS_FSB_TO_DADDR(sc->mp, fsbno), 476 XFS_FSB_TO_BB(sc->mp, 1), XBF_TRYLOCK, &bp); 477 if (error) 478 continue; 479 480 xfs_trans_bjoin(sc->tp, bp); 481 xfs_trans_binval(sc->tp, bp); 482 } 483 484 return 0; 485 } 486 487 /* Ensure the freelist is the correct size. */ 488 int 489 xrep_fix_freelist( 490 struct xfs_scrub *sc, 491 bool can_shrink) 492 { 493 struct xfs_alloc_arg args = {0}; 494 495 args.mp = sc->mp; 496 args.tp = sc->tp; 497 args.agno = sc->sa.pag->pag_agno; 498 args.alignment = 1; 499 args.pag = sc->sa.pag; 500 501 return xfs_alloc_fix_freelist(&args, 502 can_shrink ? 0 : XFS_ALLOC_FLAG_NOSHRINK); 503 } 504 505 /* 506 * Put a block back on the AGFL. 507 */ 508 STATIC int 509 xrep_put_freelist( 510 struct xfs_scrub *sc, 511 xfs_agblock_t agbno) 512 { 513 struct xfs_buf *agfl_bp; 514 int error; 515 516 /* Make sure there's space on the freelist. */ 517 error = xrep_fix_freelist(sc, true); 518 if (error) 519 return error; 520 521 /* 522 * Since we're "freeing" a lost block onto the AGFL, we have to 523 * create an rmap for the block prior to merging it or else other 524 * parts will break. 525 */ 526 error = xfs_rmap_alloc(sc->tp, sc->sa.agf_bp, sc->sa.pag, agbno, 1, 527 &XFS_RMAP_OINFO_AG); 528 if (error) 529 return error; 530 531 /* Put the block on the AGFL. */ 532 error = xfs_alloc_read_agfl(sc->sa.pag, sc->tp, &agfl_bp); 533 if (error) 534 return error; 535 536 error = xfs_alloc_put_freelist(sc->sa.pag, sc->tp, sc->sa.agf_bp, 537 agfl_bp, agbno, 0); 538 if (error) 539 return error; 540 xfs_extent_busy_insert(sc->tp, sc->sa.pag, agbno, 1, 541 XFS_EXTENT_BUSY_SKIP_DISCARD); 542 543 return 0; 544 } 545 546 /* Dispose of a single block. */ 547 STATIC int 548 xrep_reap_block( 549 struct xfs_scrub *sc, 550 xfs_fsblock_t fsbno, 551 const struct xfs_owner_info *oinfo, 552 enum xfs_ag_resv_type resv) 553 { 554 struct xfs_btree_cur *cur; 555 struct xfs_buf *agf_bp = NULL; 556 xfs_agblock_t agbno; 557 bool has_other_rmap; 558 int error; 559 560 agbno = XFS_FSB_TO_AGBNO(sc->mp, fsbno); 561 ASSERT(XFS_FSB_TO_AGNO(sc->mp, fsbno) == sc->sa.pag->pag_agno); 562 563 /* 564 * If we are repairing per-inode metadata, we need to read in the AGF 565 * buffer. Otherwise, we're repairing a per-AG structure, so reuse 566 * the AGF buffer that the setup functions already grabbed. 567 */ 568 if (sc->ip) { 569 error = xfs_alloc_read_agf(sc->sa.pag, sc->tp, 0, &agf_bp); 570 if (error) 571 return error; 572 } else { 573 agf_bp = sc->sa.agf_bp; 574 } 575 cur = xfs_rmapbt_init_cursor(sc->mp, sc->tp, agf_bp, sc->sa.pag); 576 577 /* Can we find any other rmappings? */ 578 error = xfs_rmap_has_other_keys(cur, agbno, 1, oinfo, &has_other_rmap); 579 xfs_btree_del_cursor(cur, error); 580 if (error) 581 goto out_free; 582 583 /* 584 * If there are other rmappings, this block is cross linked and must 585 * not be freed. Remove the reverse mapping and move on. Otherwise, 586 * we were the only owner of the block, so free the extent, which will 587 * also remove the rmap. 588 * 589 * XXX: XFS doesn't support detecting the case where a single block 590 * metadata structure is crosslinked with a multi-block structure 591 * because the buffer cache doesn't detect aliasing problems, so we 592 * can't fix 100% of crosslinking problems (yet). The verifiers will 593 * blow on writeout, the filesystem will shut down, and the admin gets 594 * to run xfs_repair. 595 */ 596 if (has_other_rmap) 597 error = xfs_rmap_free(sc->tp, agf_bp, sc->sa.pag, agbno, 598 1, oinfo); 599 else if (resv == XFS_AG_RESV_AGFL) 600 error = xrep_put_freelist(sc, agbno); 601 else 602 error = xfs_free_extent(sc->tp, fsbno, 1, oinfo, resv); 603 if (agf_bp != sc->sa.agf_bp) 604 xfs_trans_brelse(sc->tp, agf_bp); 605 if (error) 606 return error; 607 608 if (sc->ip) 609 return xfs_trans_roll_inode(&sc->tp, sc->ip); 610 return xrep_roll_ag_trans(sc); 611 612 out_free: 613 if (agf_bp != sc->sa.agf_bp) 614 xfs_trans_brelse(sc->tp, agf_bp); 615 return error; 616 } 617 618 /* Dispose of every block of every extent in the bitmap. */ 619 int 620 xrep_reap_extents( 621 struct xfs_scrub *sc, 622 struct xbitmap *bitmap, 623 const struct xfs_owner_info *oinfo, 624 enum xfs_ag_resv_type type) 625 { 626 struct xbitmap_range *bmr; 627 struct xbitmap_range *n; 628 xfs_fsblock_t fsbno; 629 int error = 0; 630 631 ASSERT(xfs_has_rmapbt(sc->mp)); 632 633 for_each_xbitmap_block(fsbno, bmr, n, bitmap) { 634 ASSERT(sc->ip != NULL || 635 XFS_FSB_TO_AGNO(sc->mp, fsbno) == sc->sa.pag->pag_agno); 636 trace_xrep_dispose_btree_extent(sc->mp, 637 XFS_FSB_TO_AGNO(sc->mp, fsbno), 638 XFS_FSB_TO_AGBNO(sc->mp, fsbno), 1); 639 640 error = xrep_reap_block(sc, fsbno, oinfo, type); 641 if (error) 642 break; 643 } 644 645 return error; 646 } 647 648 /* 649 * Finding per-AG Btree Roots for AGF/AGI Reconstruction 650 * 651 * If the AGF or AGI become slightly corrupted, it may be necessary to rebuild 652 * the AG headers by using the rmap data to rummage through the AG looking for 653 * btree roots. This is not guaranteed to work if the AG is heavily damaged 654 * or the rmap data are corrupt. 655 * 656 * Callers of xrep_find_ag_btree_roots must lock the AGF and AGFL 657 * buffers if the AGF is being rebuilt; or the AGF and AGI buffers if the 658 * AGI is being rebuilt. It must maintain these locks until it's safe for 659 * other threads to change the btrees' shapes. The caller provides 660 * information about the btrees to look for by passing in an array of 661 * xrep_find_ag_btree with the (rmap owner, buf_ops, magic) fields set. 662 * The (root, height) fields will be set on return if anything is found. The 663 * last element of the array should have a NULL buf_ops to mark the end of the 664 * array. 665 * 666 * For every rmapbt record matching any of the rmap owners in btree_info, 667 * read each block referenced by the rmap record. If the block is a btree 668 * block from this filesystem matching any of the magic numbers and has a 669 * level higher than what we've already seen, remember the block and the 670 * height of the tree required to have such a block. When the call completes, 671 * we return the highest block we've found for each btree description; those 672 * should be the roots. 673 */ 674 675 struct xrep_findroot { 676 struct xfs_scrub *sc; 677 struct xfs_buf *agfl_bp; 678 struct xfs_agf *agf; 679 struct xrep_find_ag_btree *btree_info; 680 }; 681 682 /* See if our block is in the AGFL. */ 683 STATIC int 684 xrep_findroot_agfl_walk( 685 struct xfs_mount *mp, 686 xfs_agblock_t bno, 687 void *priv) 688 { 689 xfs_agblock_t *agbno = priv; 690 691 return (*agbno == bno) ? -ECANCELED : 0; 692 } 693 694 /* Does this block match the btree information passed in? */ 695 STATIC int 696 xrep_findroot_block( 697 struct xrep_findroot *ri, 698 struct xrep_find_ag_btree *fab, 699 uint64_t owner, 700 xfs_agblock_t agbno, 701 bool *done_with_block) 702 { 703 struct xfs_mount *mp = ri->sc->mp; 704 struct xfs_buf *bp; 705 struct xfs_btree_block *btblock; 706 xfs_daddr_t daddr; 707 int block_level; 708 int error = 0; 709 710 daddr = XFS_AGB_TO_DADDR(mp, ri->sc->sa.pag->pag_agno, agbno); 711 712 /* 713 * Blocks in the AGFL have stale contents that might just happen to 714 * have a matching magic and uuid. We don't want to pull these blocks 715 * in as part of a tree root, so we have to filter out the AGFL stuff 716 * here. If the AGFL looks insane we'll just refuse to repair. 717 */ 718 if (owner == XFS_RMAP_OWN_AG) { 719 error = xfs_agfl_walk(mp, ri->agf, ri->agfl_bp, 720 xrep_findroot_agfl_walk, &agbno); 721 if (error == -ECANCELED) 722 return 0; 723 if (error) 724 return error; 725 } 726 727 /* 728 * Read the buffer into memory so that we can see if it's a match for 729 * our btree type. We have no clue if it is beforehand, and we want to 730 * avoid xfs_trans_read_buf's behavior of dumping the DONE state (which 731 * will cause needless disk reads in subsequent calls to this function) 732 * and logging metadata verifier failures. 733 * 734 * Therefore, pass in NULL buffer ops. If the buffer was already in 735 * memory from some other caller it will already have b_ops assigned. 736 * If it was in memory from a previous unsuccessful findroot_block 737 * call, the buffer won't have b_ops but it should be clean and ready 738 * for us to try to verify if the read call succeeds. The same applies 739 * if the buffer wasn't in memory at all. 740 * 741 * Note: If we never match a btree type with this buffer, it will be 742 * left in memory with NULL b_ops. This shouldn't be a problem unless 743 * the buffer gets written. 744 */ 745 error = xfs_trans_read_buf(mp, ri->sc->tp, mp->m_ddev_targp, daddr, 746 mp->m_bsize, 0, &bp, NULL); 747 if (error) 748 return error; 749 750 /* Ensure the block magic matches the btree type we're looking for. */ 751 btblock = XFS_BUF_TO_BLOCK(bp); 752 ASSERT(fab->buf_ops->magic[1] != 0); 753 if (btblock->bb_magic != fab->buf_ops->magic[1]) 754 goto out; 755 756 /* 757 * If the buffer already has ops applied and they're not the ones for 758 * this btree type, we know this block doesn't match the btree and we 759 * can bail out. 760 * 761 * If the buffer ops match ours, someone else has already validated 762 * the block for us, so we can move on to checking if this is a root 763 * block candidate. 764 * 765 * If the buffer does not have ops, nobody has successfully validated 766 * the contents and the buffer cannot be dirty. If the magic, uuid, 767 * and structure match this btree type then we'll move on to checking 768 * if it's a root block candidate. If there is no match, bail out. 769 */ 770 if (bp->b_ops) { 771 if (bp->b_ops != fab->buf_ops) 772 goto out; 773 } else { 774 ASSERT(!xfs_trans_buf_is_dirty(bp)); 775 if (!uuid_equal(&btblock->bb_u.s.bb_uuid, 776 &mp->m_sb.sb_meta_uuid)) 777 goto out; 778 /* 779 * Read verifiers can reference b_ops, so we set the pointer 780 * here. If the verifier fails we'll reset the buffer state 781 * to what it was before we touched the buffer. 782 */ 783 bp->b_ops = fab->buf_ops; 784 fab->buf_ops->verify_read(bp); 785 if (bp->b_error) { 786 bp->b_ops = NULL; 787 bp->b_error = 0; 788 goto out; 789 } 790 791 /* 792 * Some read verifiers will (re)set b_ops, so we must be 793 * careful not to change b_ops after running the verifier. 794 */ 795 } 796 797 /* 798 * This block passes the magic/uuid and verifier tests for this btree 799 * type. We don't need the caller to try the other tree types. 800 */ 801 *done_with_block = true; 802 803 /* 804 * Compare this btree block's level to the height of the current 805 * candidate root block. 806 * 807 * If the level matches the root we found previously, throw away both 808 * blocks because there can't be two candidate roots. 809 * 810 * If level is lower in the tree than the root we found previously, 811 * ignore this block. 812 */ 813 block_level = xfs_btree_get_level(btblock); 814 if (block_level + 1 == fab->height) { 815 fab->root = NULLAGBLOCK; 816 goto out; 817 } else if (block_level < fab->height) { 818 goto out; 819 } 820 821 /* 822 * This is the highest block in the tree that we've found so far. 823 * Update the btree height to reflect what we've learned from this 824 * block. 825 */ 826 fab->height = block_level + 1; 827 828 /* 829 * If this block doesn't have sibling pointers, then it's the new root 830 * block candidate. Otherwise, the root will be found farther up the 831 * tree. 832 */ 833 if (btblock->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK) && 834 btblock->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK)) 835 fab->root = agbno; 836 else 837 fab->root = NULLAGBLOCK; 838 839 trace_xrep_findroot_block(mp, ri->sc->sa.pag->pag_agno, agbno, 840 be32_to_cpu(btblock->bb_magic), fab->height - 1); 841 out: 842 xfs_trans_brelse(ri->sc->tp, bp); 843 return error; 844 } 845 846 /* 847 * Do any of the blocks in this rmap record match one of the btrees we're 848 * looking for? 849 */ 850 STATIC int 851 xrep_findroot_rmap( 852 struct xfs_btree_cur *cur, 853 const struct xfs_rmap_irec *rec, 854 void *priv) 855 { 856 struct xrep_findroot *ri = priv; 857 struct xrep_find_ag_btree *fab; 858 xfs_agblock_t b; 859 bool done; 860 int error = 0; 861 862 /* Ignore anything that isn't AG metadata. */ 863 if (!XFS_RMAP_NON_INODE_OWNER(rec->rm_owner)) 864 return 0; 865 866 /* Otherwise scan each block + btree type. */ 867 for (b = 0; b < rec->rm_blockcount; b++) { 868 done = false; 869 for (fab = ri->btree_info; fab->buf_ops; fab++) { 870 if (rec->rm_owner != fab->rmap_owner) 871 continue; 872 error = xrep_findroot_block(ri, fab, 873 rec->rm_owner, rec->rm_startblock + b, 874 &done); 875 if (error) 876 return error; 877 if (done) 878 break; 879 } 880 } 881 882 return 0; 883 } 884 885 /* Find the roots of the per-AG btrees described in btree_info. */ 886 int 887 xrep_find_ag_btree_roots( 888 struct xfs_scrub *sc, 889 struct xfs_buf *agf_bp, 890 struct xrep_find_ag_btree *btree_info, 891 struct xfs_buf *agfl_bp) 892 { 893 struct xfs_mount *mp = sc->mp; 894 struct xrep_findroot ri; 895 struct xrep_find_ag_btree *fab; 896 struct xfs_btree_cur *cur; 897 int error; 898 899 ASSERT(xfs_buf_islocked(agf_bp)); 900 ASSERT(agfl_bp == NULL || xfs_buf_islocked(agfl_bp)); 901 902 ri.sc = sc; 903 ri.btree_info = btree_info; 904 ri.agf = agf_bp->b_addr; 905 ri.agfl_bp = agfl_bp; 906 for (fab = btree_info; fab->buf_ops; fab++) { 907 ASSERT(agfl_bp || fab->rmap_owner != XFS_RMAP_OWN_AG); 908 ASSERT(XFS_RMAP_NON_INODE_OWNER(fab->rmap_owner)); 909 fab->root = NULLAGBLOCK; 910 fab->height = 0; 911 } 912 913 cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.pag); 914 error = xfs_rmap_query_all(cur, xrep_findroot_rmap, &ri); 915 xfs_btree_del_cursor(cur, error); 916 917 return error; 918 } 919 920 /* Force a quotacheck the next time we mount. */ 921 void 922 xrep_force_quotacheck( 923 struct xfs_scrub *sc, 924 xfs_dqtype_t type) 925 { 926 uint flag; 927 928 flag = xfs_quota_chkd_flag(type); 929 if (!(flag & sc->mp->m_qflags)) 930 return; 931 932 mutex_lock(&sc->mp->m_quotainfo->qi_quotaofflock); 933 sc->mp->m_qflags &= ~flag; 934 spin_lock(&sc->mp->m_sb_lock); 935 sc->mp->m_sb.sb_qflags &= ~flag; 936 spin_unlock(&sc->mp->m_sb_lock); 937 xfs_log_sb(sc->tp); 938 mutex_unlock(&sc->mp->m_quotainfo->qi_quotaofflock); 939 } 940 941 /* 942 * Attach dquots to this inode, or schedule quotacheck to fix them. 943 * 944 * This function ensures that the appropriate dquots are attached to an inode. 945 * We cannot allow the dquot code to allocate an on-disk dquot block here 946 * because we're already in transaction context with the inode locked. The 947 * on-disk dquot should already exist anyway. If the quota code signals 948 * corruption or missing quota information, schedule quotacheck, which will 949 * repair corruptions in the quota metadata. 950 */ 951 int 952 xrep_ino_dqattach( 953 struct xfs_scrub *sc) 954 { 955 int error; 956 957 error = xfs_qm_dqattach_locked(sc->ip, false); 958 switch (error) { 959 case -EFSBADCRC: 960 case -EFSCORRUPTED: 961 case -ENOENT: 962 xfs_err_ratelimited(sc->mp, 963 "inode %llu repair encountered quota error %d, quotacheck forced.", 964 (unsigned long long)sc->ip->i_ino, error); 965 if (XFS_IS_UQUOTA_ON(sc->mp) && !sc->ip->i_udquot) 966 xrep_force_quotacheck(sc, XFS_DQTYPE_USER); 967 if (XFS_IS_GQUOTA_ON(sc->mp) && !sc->ip->i_gdquot) 968 xrep_force_quotacheck(sc, XFS_DQTYPE_GROUP); 969 if (XFS_IS_PQUOTA_ON(sc->mp) && !sc->ip->i_pdquot) 970 xrep_force_quotacheck(sc, XFS_DQTYPE_PROJ); 971 fallthrough; 972 case -ESRCH: 973 error = 0; 974 break; 975 default: 976 break; 977 } 978 979 return error; 980 } 981