xref: /linux/fs/xfs/scrub/repair.c (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2018-2023 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <djwong@kernel.org>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_mount.h"
12 #include "xfs_btree.h"
13 #include "xfs_log_format.h"
14 #include "xfs_trans.h"
15 #include "xfs_sb.h"
16 #include "xfs_inode.h"
17 #include "xfs_alloc.h"
18 #include "xfs_alloc_btree.h"
19 #include "xfs_ialloc.h"
20 #include "xfs_ialloc_btree.h"
21 #include "xfs_rmap.h"
22 #include "xfs_rmap_btree.h"
23 #include "xfs_refcount_btree.h"
24 #include "xfs_extent_busy.h"
25 #include "xfs_ag.h"
26 #include "xfs_ag_resv.h"
27 #include "xfs_quota.h"
28 #include "xfs_qm.h"
29 #include "xfs_defer.h"
30 #include "xfs_errortag.h"
31 #include "xfs_error.h"
32 #include "xfs_reflink.h"
33 #include "xfs_health.h"
34 #include "xfs_buf_mem.h"
35 #include "xfs_da_format.h"
36 #include "xfs_da_btree.h"
37 #include "xfs_attr.h"
38 #include "xfs_dir2.h"
39 #include "scrub/scrub.h"
40 #include "scrub/common.h"
41 #include "scrub/trace.h"
42 #include "scrub/repair.h"
43 #include "scrub/bitmap.h"
44 #include "scrub/stats.h"
45 #include "scrub/xfile.h"
46 #include "scrub/attr_repair.h"
47 
48 /*
49  * Attempt to repair some metadata, if the metadata is corrupt and userspace
50  * told us to fix it.  This function returns -EAGAIN to mean "re-run scrub",
51  * and will set *fixed to true if it thinks it repaired anything.
52  */
53 int
54 xrep_attempt(
55 	struct xfs_scrub	*sc,
56 	struct xchk_stats_run	*run)
57 {
58 	u64			repair_start;
59 	int			error = 0;
60 
61 	trace_xrep_attempt(XFS_I(file_inode(sc->file)), sc->sm, error);
62 
63 	xchk_ag_btcur_free(&sc->sa);
64 
65 	/* Repair whatever's broken. */
66 	ASSERT(sc->ops->repair);
67 	run->repair_attempted = true;
68 	repair_start = xchk_stats_now();
69 	error = sc->ops->repair(sc);
70 	trace_xrep_done(XFS_I(file_inode(sc->file)), sc->sm, error);
71 	run->repair_ns += xchk_stats_elapsed_ns(repair_start);
72 	switch (error) {
73 	case 0:
74 		/*
75 		 * Repair succeeded.  Commit the fixes and perform a second
76 		 * scrub so that we can tell userspace if we fixed the problem.
77 		 */
78 		sc->sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
79 		sc->flags |= XREP_ALREADY_FIXED;
80 		run->repair_succeeded = true;
81 		return -EAGAIN;
82 	case -ECHRNG:
83 		sc->flags |= XCHK_NEED_DRAIN;
84 		run->retries++;
85 		return -EAGAIN;
86 	case -EDEADLOCK:
87 		/* Tell the caller to try again having grabbed all the locks. */
88 		if (!(sc->flags & XCHK_TRY_HARDER)) {
89 			sc->flags |= XCHK_TRY_HARDER;
90 			run->retries++;
91 			return -EAGAIN;
92 		}
93 		/*
94 		 * We tried harder but still couldn't grab all the resources
95 		 * we needed to fix it.  The corruption has not been fixed,
96 		 * so exit to userspace with the scan's output flags unchanged.
97 		 */
98 		return 0;
99 	default:
100 		/*
101 		 * EAGAIN tells the caller to re-scrub, so we cannot return
102 		 * that here.
103 		 */
104 		ASSERT(error != -EAGAIN);
105 		return error;
106 	}
107 }
108 
109 /*
110  * Complain about unfixable problems in the filesystem.  We don't log
111  * corruptions when IFLAG_REPAIR wasn't set on the assumption that the driver
112  * program is xfs_scrub, which will call back with IFLAG_REPAIR set if the
113  * administrator isn't running xfs_scrub in no-repairs mode.
114  *
115  * Use this helper function because _ratelimited silently declares a static
116  * structure to track rate limiting information.
117  */
118 void
119 xrep_failure(
120 	struct xfs_mount	*mp)
121 {
122 	xfs_alert_ratelimited(mp,
123 "Corruption not fixed during online repair.  Unmount and run xfs_repair.");
124 }
125 
126 /*
127  * Repair probe -- userspace uses this to probe if we're willing to repair a
128  * given mountpoint.
129  */
130 int
131 xrep_probe(
132 	struct xfs_scrub	*sc)
133 {
134 	int			error = 0;
135 
136 	if (xchk_should_terminate(sc, &error))
137 		return error;
138 
139 	return 0;
140 }
141 
142 /*
143  * Roll a transaction, keeping the AG headers locked and reinitializing
144  * the btree cursors.
145  */
146 int
147 xrep_roll_ag_trans(
148 	struct xfs_scrub	*sc)
149 {
150 	int			error;
151 
152 	/*
153 	 * Keep the AG header buffers locked while we roll the transaction.
154 	 * Ensure that both AG buffers are dirty and held when we roll the
155 	 * transaction so that they move forward in the log without losing the
156 	 * bli (and hence the bli type) when the transaction commits.
157 	 *
158 	 * Normal code would never hold clean buffers across a roll, but repair
159 	 * needs both buffers to maintain a total lock on the AG.
160 	 */
161 	if (sc->sa.agi_bp) {
162 		xfs_ialloc_log_agi(sc->tp, sc->sa.agi_bp, XFS_AGI_MAGICNUM);
163 		xfs_trans_bhold(sc->tp, sc->sa.agi_bp);
164 	}
165 
166 	if (sc->sa.agf_bp) {
167 		xfs_alloc_log_agf(sc->tp, sc->sa.agf_bp, XFS_AGF_MAGICNUM);
168 		xfs_trans_bhold(sc->tp, sc->sa.agf_bp);
169 	}
170 
171 	/*
172 	 * Roll the transaction.  We still hold the AG header buffers locked
173 	 * regardless of whether or not that succeeds.  On failure, the buffers
174 	 * will be released during teardown on our way out of the kernel.  If
175 	 * successful, join the buffers to the new transaction and move on.
176 	 */
177 	error = xfs_trans_roll(&sc->tp);
178 	if (error)
179 		return error;
180 
181 	/* Join the AG headers to the new transaction. */
182 	if (sc->sa.agi_bp)
183 		xfs_trans_bjoin(sc->tp, sc->sa.agi_bp);
184 	if (sc->sa.agf_bp)
185 		xfs_trans_bjoin(sc->tp, sc->sa.agf_bp);
186 
187 	return 0;
188 }
189 
190 /* Roll the scrub transaction, holding the primary metadata locked. */
191 int
192 xrep_roll_trans(
193 	struct xfs_scrub	*sc)
194 {
195 	if (!sc->ip)
196 		return xrep_roll_ag_trans(sc);
197 	return xfs_trans_roll_inode(&sc->tp, sc->ip);
198 }
199 
200 /* Finish all deferred work attached to the repair transaction. */
201 int
202 xrep_defer_finish(
203 	struct xfs_scrub	*sc)
204 {
205 	int			error;
206 
207 	/*
208 	 * Keep the AG header buffers locked while we complete deferred work
209 	 * items.  Ensure that both AG buffers are dirty and held when we roll
210 	 * the transaction so that they move forward in the log without losing
211 	 * the bli (and hence the bli type) when the transaction commits.
212 	 *
213 	 * Normal code would never hold clean buffers across a roll, but repair
214 	 * needs both buffers to maintain a total lock on the AG.
215 	 */
216 	if (sc->sa.agi_bp) {
217 		xfs_ialloc_log_agi(sc->tp, sc->sa.agi_bp, XFS_AGI_MAGICNUM);
218 		xfs_trans_bhold(sc->tp, sc->sa.agi_bp);
219 	}
220 
221 	if (sc->sa.agf_bp) {
222 		xfs_alloc_log_agf(sc->tp, sc->sa.agf_bp, XFS_AGF_MAGICNUM);
223 		xfs_trans_bhold(sc->tp, sc->sa.agf_bp);
224 	}
225 
226 	/*
227 	 * Finish all deferred work items.  We still hold the AG header buffers
228 	 * locked regardless of whether or not that succeeds.  On failure, the
229 	 * buffers will be released during teardown on our way out of the
230 	 * kernel.  If successful, join the buffers to the new transaction
231 	 * and move on.
232 	 */
233 	error = xfs_defer_finish(&sc->tp);
234 	if (error)
235 		return error;
236 
237 	/*
238 	 * Release the hold that we set above because defer_finish won't do
239 	 * that for us.  The defer roll code redirties held buffers after each
240 	 * roll, so the AG header buffers should be ready for logging.
241 	 */
242 	if (sc->sa.agi_bp)
243 		xfs_trans_bhold_release(sc->tp, sc->sa.agi_bp);
244 	if (sc->sa.agf_bp)
245 		xfs_trans_bhold_release(sc->tp, sc->sa.agf_bp);
246 
247 	return 0;
248 }
249 
250 /*
251  * Does the given AG have enough space to rebuild a btree?  Neither AG
252  * reservation can be critical, and we must have enough space (factoring
253  * in AG reservations) to construct a whole btree.
254  */
255 bool
256 xrep_ag_has_space(
257 	struct xfs_perag	*pag,
258 	xfs_extlen_t		nr_blocks,
259 	enum xfs_ag_resv_type	type)
260 {
261 	return  !xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) &&
262 		!xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA) &&
263 		pag->pagf_freeblks > xfs_ag_resv_needed(pag, type) + nr_blocks;
264 }
265 
266 /*
267  * Figure out how many blocks to reserve for an AG repair.  We calculate the
268  * worst case estimate for the number of blocks we'd need to rebuild one of
269  * any type of per-AG btree.
270  */
271 xfs_extlen_t
272 xrep_calc_ag_resblks(
273 	struct xfs_scrub		*sc)
274 {
275 	struct xfs_mount		*mp = sc->mp;
276 	struct xfs_scrub_metadata	*sm = sc->sm;
277 	struct xfs_perag		*pag;
278 	struct xfs_buf			*bp;
279 	xfs_agino_t			icount = NULLAGINO;
280 	xfs_extlen_t			aglen = NULLAGBLOCK;
281 	xfs_extlen_t			usedlen;
282 	xfs_extlen_t			freelen;
283 	xfs_extlen_t			bnobt_sz;
284 	xfs_extlen_t			inobt_sz;
285 	xfs_extlen_t			rmapbt_sz;
286 	xfs_extlen_t			refcbt_sz;
287 	int				error;
288 
289 	if (!(sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR))
290 		return 0;
291 
292 	pag = xfs_perag_get(mp, sm->sm_agno);
293 	if (xfs_perag_initialised_agi(pag)) {
294 		/* Use in-core icount if possible. */
295 		icount = pag->pagi_count;
296 	} else {
297 		/* Try to get the actual counters from disk. */
298 		error = xfs_ialloc_read_agi(pag, NULL, 0, &bp);
299 		if (!error) {
300 			icount = pag->pagi_count;
301 			xfs_buf_relse(bp);
302 		}
303 	}
304 
305 	/* Now grab the block counters from the AGF. */
306 	error = xfs_alloc_read_agf(pag, NULL, 0, &bp);
307 	if (error) {
308 		aglen = pag->block_count;
309 		freelen = aglen;
310 		usedlen = aglen;
311 	} else {
312 		struct xfs_agf	*agf = bp->b_addr;
313 
314 		aglen = be32_to_cpu(agf->agf_length);
315 		freelen = be32_to_cpu(agf->agf_freeblks);
316 		usedlen = aglen - freelen;
317 		xfs_buf_relse(bp);
318 	}
319 
320 	/* If the icount is impossible, make some worst-case assumptions. */
321 	if (icount == NULLAGINO ||
322 	    !xfs_verify_agino(pag, icount)) {
323 		icount = pag->agino_max - pag->agino_min + 1;
324 	}
325 
326 	/* If the block counts are impossible, make worst-case assumptions. */
327 	if (aglen == NULLAGBLOCK ||
328 	    aglen != pag->block_count ||
329 	    freelen >= aglen) {
330 		aglen = pag->block_count;
331 		freelen = aglen;
332 		usedlen = aglen;
333 	}
334 	xfs_perag_put(pag);
335 
336 	trace_xrep_calc_ag_resblks(mp, sm->sm_agno, icount, aglen,
337 			freelen, usedlen);
338 
339 	/*
340 	 * Figure out how many blocks we'd need worst case to rebuild
341 	 * each type of btree.  Note that we can only rebuild the
342 	 * bnobt/cntbt or inobt/finobt as pairs.
343 	 */
344 	bnobt_sz = 2 * xfs_allocbt_calc_size(mp, freelen);
345 	if (xfs_has_sparseinodes(mp))
346 		inobt_sz = xfs_iallocbt_calc_size(mp, icount /
347 				XFS_INODES_PER_HOLEMASK_BIT);
348 	else
349 		inobt_sz = xfs_iallocbt_calc_size(mp, icount /
350 				XFS_INODES_PER_CHUNK);
351 	if (xfs_has_finobt(mp))
352 		inobt_sz *= 2;
353 	if (xfs_has_reflink(mp))
354 		refcbt_sz = xfs_refcountbt_calc_size(mp, usedlen);
355 	else
356 		refcbt_sz = 0;
357 	if (xfs_has_rmapbt(mp)) {
358 		/*
359 		 * Guess how many blocks we need to rebuild the rmapbt.
360 		 * For non-reflink filesystems we can't have more records than
361 		 * used blocks.  However, with reflink it's possible to have
362 		 * more than one rmap record per AG block.  We don't know how
363 		 * many rmaps there could be in the AG, so we start off with
364 		 * what we hope is an generous over-estimation.
365 		 */
366 		if (xfs_has_reflink(mp))
367 			rmapbt_sz = xfs_rmapbt_calc_size(mp,
368 					(unsigned long long)aglen * 2);
369 		else
370 			rmapbt_sz = xfs_rmapbt_calc_size(mp, usedlen);
371 	} else {
372 		rmapbt_sz = 0;
373 	}
374 
375 	trace_xrep_calc_ag_resblks_btsize(mp, sm->sm_agno, bnobt_sz,
376 			inobt_sz, rmapbt_sz, refcbt_sz);
377 
378 	return max(max(bnobt_sz, inobt_sz), max(rmapbt_sz, refcbt_sz));
379 }
380 
381 /*
382  * Reconstructing per-AG Btrees
383  *
384  * When a space btree is corrupt, we don't bother trying to fix it.  Instead,
385  * we scan secondary space metadata to derive the records that should be in
386  * the damaged btree, initialize a fresh btree root, and insert the records.
387  * Note that for rebuilding the rmapbt we scan all the primary data to
388  * generate the new records.
389  *
390  * However, that leaves the matter of removing all the metadata describing the
391  * old broken structure.  For primary metadata we use the rmap data to collect
392  * every extent with a matching rmap owner (bitmap); we then iterate all other
393  * metadata structures with the same rmap owner to collect the extents that
394  * cannot be removed (sublist).  We then subtract sublist from bitmap to
395  * derive the blocks that were used by the old btree.  These blocks can be
396  * reaped.
397  *
398  * For rmapbt reconstructions we must use different tactics for extent
399  * collection.  First we iterate all primary metadata (this excludes the old
400  * rmapbt, obviously) to generate new rmap records.  The gaps in the rmap
401  * records are collected as bitmap.  The bnobt records are collected as
402  * sublist.  As with the other btrees we subtract sublist from bitmap, and the
403  * result (since the rmapbt lives in the free space) are the blocks from the
404  * old rmapbt.
405  */
406 
407 /* Ensure the freelist is the correct size. */
408 int
409 xrep_fix_freelist(
410 	struct xfs_scrub	*sc,
411 	int			alloc_flags)
412 {
413 	struct xfs_alloc_arg	args = {0};
414 
415 	args.mp = sc->mp;
416 	args.tp = sc->tp;
417 	args.agno = sc->sa.pag->pag_agno;
418 	args.alignment = 1;
419 	args.pag = sc->sa.pag;
420 
421 	return xfs_alloc_fix_freelist(&args, alloc_flags);
422 }
423 
424 /*
425  * Finding per-AG Btree Roots for AGF/AGI Reconstruction
426  *
427  * If the AGF or AGI become slightly corrupted, it may be necessary to rebuild
428  * the AG headers by using the rmap data to rummage through the AG looking for
429  * btree roots.  This is not guaranteed to work if the AG is heavily damaged
430  * or the rmap data are corrupt.
431  *
432  * Callers of xrep_find_ag_btree_roots must lock the AGF and AGFL
433  * buffers if the AGF is being rebuilt; or the AGF and AGI buffers if the
434  * AGI is being rebuilt.  It must maintain these locks until it's safe for
435  * other threads to change the btrees' shapes.  The caller provides
436  * information about the btrees to look for by passing in an array of
437  * xrep_find_ag_btree with the (rmap owner, buf_ops, magic) fields set.
438  * The (root, height) fields will be set on return if anything is found.  The
439  * last element of the array should have a NULL buf_ops to mark the end of the
440  * array.
441  *
442  * For every rmapbt record matching any of the rmap owners in btree_info,
443  * read each block referenced by the rmap record.  If the block is a btree
444  * block from this filesystem matching any of the magic numbers and has a
445  * level higher than what we've already seen, remember the block and the
446  * height of the tree required to have such a block.  When the call completes,
447  * we return the highest block we've found for each btree description; those
448  * should be the roots.
449  */
450 
451 struct xrep_findroot {
452 	struct xfs_scrub		*sc;
453 	struct xfs_buf			*agfl_bp;
454 	struct xfs_agf			*agf;
455 	struct xrep_find_ag_btree	*btree_info;
456 };
457 
458 /* See if our block is in the AGFL. */
459 STATIC int
460 xrep_findroot_agfl_walk(
461 	struct xfs_mount	*mp,
462 	xfs_agblock_t		bno,
463 	void			*priv)
464 {
465 	xfs_agblock_t		*agbno = priv;
466 
467 	return (*agbno == bno) ? -ECANCELED : 0;
468 }
469 
470 /* Does this block match the btree information passed in? */
471 STATIC int
472 xrep_findroot_block(
473 	struct xrep_findroot		*ri,
474 	struct xrep_find_ag_btree	*fab,
475 	uint64_t			owner,
476 	xfs_agblock_t			agbno,
477 	bool				*done_with_block)
478 {
479 	struct xfs_mount		*mp = ri->sc->mp;
480 	struct xfs_buf			*bp;
481 	struct xfs_btree_block		*btblock;
482 	xfs_daddr_t			daddr;
483 	int				block_level;
484 	int				error = 0;
485 
486 	daddr = XFS_AGB_TO_DADDR(mp, ri->sc->sa.pag->pag_agno, agbno);
487 
488 	/*
489 	 * Blocks in the AGFL have stale contents that might just happen to
490 	 * have a matching magic and uuid.  We don't want to pull these blocks
491 	 * in as part of a tree root, so we have to filter out the AGFL stuff
492 	 * here.  If the AGFL looks insane we'll just refuse to repair.
493 	 */
494 	if (owner == XFS_RMAP_OWN_AG) {
495 		error = xfs_agfl_walk(mp, ri->agf, ri->agfl_bp,
496 				xrep_findroot_agfl_walk, &agbno);
497 		if (error == -ECANCELED)
498 			return 0;
499 		if (error)
500 			return error;
501 	}
502 
503 	/*
504 	 * Read the buffer into memory so that we can see if it's a match for
505 	 * our btree type.  We have no clue if it is beforehand, and we want to
506 	 * avoid xfs_trans_read_buf's behavior of dumping the DONE state (which
507 	 * will cause needless disk reads in subsequent calls to this function)
508 	 * and logging metadata verifier failures.
509 	 *
510 	 * Therefore, pass in NULL buffer ops.  If the buffer was already in
511 	 * memory from some other caller it will already have b_ops assigned.
512 	 * If it was in memory from a previous unsuccessful findroot_block
513 	 * call, the buffer won't have b_ops but it should be clean and ready
514 	 * for us to try to verify if the read call succeeds.  The same applies
515 	 * if the buffer wasn't in memory at all.
516 	 *
517 	 * Note: If we never match a btree type with this buffer, it will be
518 	 * left in memory with NULL b_ops.  This shouldn't be a problem unless
519 	 * the buffer gets written.
520 	 */
521 	error = xfs_trans_read_buf(mp, ri->sc->tp, mp->m_ddev_targp, daddr,
522 			mp->m_bsize, 0, &bp, NULL);
523 	if (error)
524 		return error;
525 
526 	/* Ensure the block magic matches the btree type we're looking for. */
527 	btblock = XFS_BUF_TO_BLOCK(bp);
528 	ASSERT(fab->buf_ops->magic[1] != 0);
529 	if (btblock->bb_magic != fab->buf_ops->magic[1])
530 		goto out;
531 
532 	/*
533 	 * If the buffer already has ops applied and they're not the ones for
534 	 * this btree type, we know this block doesn't match the btree and we
535 	 * can bail out.
536 	 *
537 	 * If the buffer ops match ours, someone else has already validated
538 	 * the block for us, so we can move on to checking if this is a root
539 	 * block candidate.
540 	 *
541 	 * If the buffer does not have ops, nobody has successfully validated
542 	 * the contents and the buffer cannot be dirty.  If the magic, uuid,
543 	 * and structure match this btree type then we'll move on to checking
544 	 * if it's a root block candidate.  If there is no match, bail out.
545 	 */
546 	if (bp->b_ops) {
547 		if (bp->b_ops != fab->buf_ops)
548 			goto out;
549 	} else {
550 		ASSERT(!xfs_trans_buf_is_dirty(bp));
551 		if (!uuid_equal(&btblock->bb_u.s.bb_uuid,
552 				&mp->m_sb.sb_meta_uuid))
553 			goto out;
554 		/*
555 		 * Read verifiers can reference b_ops, so we set the pointer
556 		 * here.  If the verifier fails we'll reset the buffer state
557 		 * to what it was before we touched the buffer.
558 		 */
559 		bp->b_ops = fab->buf_ops;
560 		fab->buf_ops->verify_read(bp);
561 		if (bp->b_error) {
562 			bp->b_ops = NULL;
563 			bp->b_error = 0;
564 			goto out;
565 		}
566 
567 		/*
568 		 * Some read verifiers will (re)set b_ops, so we must be
569 		 * careful not to change b_ops after running the verifier.
570 		 */
571 	}
572 
573 	/*
574 	 * This block passes the magic/uuid and verifier tests for this btree
575 	 * type.  We don't need the caller to try the other tree types.
576 	 */
577 	*done_with_block = true;
578 
579 	/*
580 	 * Compare this btree block's level to the height of the current
581 	 * candidate root block.
582 	 *
583 	 * If the level matches the root we found previously, throw away both
584 	 * blocks because there can't be two candidate roots.
585 	 *
586 	 * If level is lower in the tree than the root we found previously,
587 	 * ignore this block.
588 	 */
589 	block_level = xfs_btree_get_level(btblock);
590 	if (block_level + 1 == fab->height) {
591 		fab->root = NULLAGBLOCK;
592 		goto out;
593 	} else if (block_level < fab->height) {
594 		goto out;
595 	}
596 
597 	/*
598 	 * This is the highest block in the tree that we've found so far.
599 	 * Update the btree height to reflect what we've learned from this
600 	 * block.
601 	 */
602 	fab->height = block_level + 1;
603 
604 	/*
605 	 * If this block doesn't have sibling pointers, then it's the new root
606 	 * block candidate.  Otherwise, the root will be found farther up the
607 	 * tree.
608 	 */
609 	if (btblock->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK) &&
610 	    btblock->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
611 		fab->root = agbno;
612 	else
613 		fab->root = NULLAGBLOCK;
614 
615 	trace_xrep_findroot_block(mp, ri->sc->sa.pag->pag_agno, agbno,
616 			be32_to_cpu(btblock->bb_magic), fab->height - 1);
617 out:
618 	xfs_trans_brelse(ri->sc->tp, bp);
619 	return error;
620 }
621 
622 /*
623  * Do any of the blocks in this rmap record match one of the btrees we're
624  * looking for?
625  */
626 STATIC int
627 xrep_findroot_rmap(
628 	struct xfs_btree_cur		*cur,
629 	const struct xfs_rmap_irec	*rec,
630 	void				*priv)
631 {
632 	struct xrep_findroot		*ri = priv;
633 	struct xrep_find_ag_btree	*fab;
634 	xfs_agblock_t			b;
635 	bool				done;
636 	int				error = 0;
637 
638 	/* Ignore anything that isn't AG metadata. */
639 	if (!XFS_RMAP_NON_INODE_OWNER(rec->rm_owner))
640 		return 0;
641 
642 	/* Otherwise scan each block + btree type. */
643 	for (b = 0; b < rec->rm_blockcount; b++) {
644 		done = false;
645 		for (fab = ri->btree_info; fab->buf_ops; fab++) {
646 			if (rec->rm_owner != fab->rmap_owner)
647 				continue;
648 			error = xrep_findroot_block(ri, fab,
649 					rec->rm_owner, rec->rm_startblock + b,
650 					&done);
651 			if (error)
652 				return error;
653 			if (done)
654 				break;
655 		}
656 	}
657 
658 	return 0;
659 }
660 
661 /* Find the roots of the per-AG btrees described in btree_info. */
662 int
663 xrep_find_ag_btree_roots(
664 	struct xfs_scrub		*sc,
665 	struct xfs_buf			*agf_bp,
666 	struct xrep_find_ag_btree	*btree_info,
667 	struct xfs_buf			*agfl_bp)
668 {
669 	struct xfs_mount		*mp = sc->mp;
670 	struct xrep_findroot		ri;
671 	struct xrep_find_ag_btree	*fab;
672 	struct xfs_btree_cur		*cur;
673 	int				error;
674 
675 	ASSERT(xfs_buf_islocked(agf_bp));
676 	ASSERT(agfl_bp == NULL || xfs_buf_islocked(agfl_bp));
677 
678 	ri.sc = sc;
679 	ri.btree_info = btree_info;
680 	ri.agf = agf_bp->b_addr;
681 	ri.agfl_bp = agfl_bp;
682 	for (fab = btree_info; fab->buf_ops; fab++) {
683 		ASSERT(agfl_bp || fab->rmap_owner != XFS_RMAP_OWN_AG);
684 		ASSERT(XFS_RMAP_NON_INODE_OWNER(fab->rmap_owner));
685 		fab->root = NULLAGBLOCK;
686 		fab->height = 0;
687 	}
688 
689 	cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.pag);
690 	error = xfs_rmap_query_all(cur, xrep_findroot_rmap, &ri);
691 	xfs_btree_del_cursor(cur, error);
692 
693 	return error;
694 }
695 
696 #ifdef CONFIG_XFS_QUOTA
697 /* Update some quota flags in the superblock. */
698 void
699 xrep_update_qflags(
700 	struct xfs_scrub	*sc,
701 	unsigned int		clear_flags,
702 	unsigned int		set_flags)
703 {
704 	struct xfs_mount	*mp = sc->mp;
705 	struct xfs_buf		*bp;
706 
707 	mutex_lock(&mp->m_quotainfo->qi_quotaofflock);
708 	if ((mp->m_qflags & clear_flags) == 0 &&
709 	    (mp->m_qflags & set_flags) == set_flags)
710 		goto no_update;
711 
712 	mp->m_qflags &= ~clear_flags;
713 	mp->m_qflags |= set_flags;
714 
715 	spin_lock(&mp->m_sb_lock);
716 	mp->m_sb.sb_qflags &= ~clear_flags;
717 	mp->m_sb.sb_qflags |= set_flags;
718 	spin_unlock(&mp->m_sb_lock);
719 
720 	/*
721 	 * Update the quota flags in the ondisk superblock without touching
722 	 * the summary counters.  We have not quiesced inode chunk allocation,
723 	 * so we cannot coordinate with updates to the icount and ifree percpu
724 	 * counters.
725 	 */
726 	bp = xfs_trans_getsb(sc->tp);
727 	xfs_sb_to_disk(bp->b_addr, &mp->m_sb);
728 	xfs_trans_buf_set_type(sc->tp, bp, XFS_BLFT_SB_BUF);
729 	xfs_trans_log_buf(sc->tp, bp, 0, sizeof(struct xfs_dsb) - 1);
730 
731 no_update:
732 	mutex_unlock(&mp->m_quotainfo->qi_quotaofflock);
733 }
734 
735 /* Force a quotacheck the next time we mount. */
736 void
737 xrep_force_quotacheck(
738 	struct xfs_scrub	*sc,
739 	xfs_dqtype_t		type)
740 {
741 	uint			flag;
742 
743 	flag = xfs_quota_chkd_flag(type);
744 	if (!(flag & sc->mp->m_qflags))
745 		return;
746 
747 	xrep_update_qflags(sc, flag, 0);
748 }
749 
750 /*
751  * Attach dquots to this inode, or schedule quotacheck to fix them.
752  *
753  * This function ensures that the appropriate dquots are attached to an inode.
754  * We cannot allow the dquot code to allocate an on-disk dquot block here
755  * because we're already in transaction context.  The on-disk dquot should
756  * already exist anyway.  If the quota code signals corruption or missing quota
757  * information, schedule quotacheck, which will repair corruptions in the quota
758  * metadata.
759  */
760 int
761 xrep_ino_dqattach(
762 	struct xfs_scrub	*sc)
763 {
764 	int			error;
765 
766 	ASSERT(sc->tp != NULL);
767 	ASSERT(sc->ip != NULL);
768 
769 	error = xfs_qm_dqattach(sc->ip);
770 	switch (error) {
771 	case -EFSBADCRC:
772 	case -EFSCORRUPTED:
773 	case -ENOENT:
774 		xfs_err_ratelimited(sc->mp,
775 "inode %llu repair encountered quota error %d, quotacheck forced.",
776 				(unsigned long long)sc->ip->i_ino, error);
777 		if (XFS_IS_UQUOTA_ON(sc->mp) && !sc->ip->i_udquot)
778 			xrep_force_quotacheck(sc, XFS_DQTYPE_USER);
779 		if (XFS_IS_GQUOTA_ON(sc->mp) && !sc->ip->i_gdquot)
780 			xrep_force_quotacheck(sc, XFS_DQTYPE_GROUP);
781 		if (XFS_IS_PQUOTA_ON(sc->mp) && !sc->ip->i_pdquot)
782 			xrep_force_quotacheck(sc, XFS_DQTYPE_PROJ);
783 		fallthrough;
784 	case -ESRCH:
785 		error = 0;
786 		break;
787 	default:
788 		break;
789 	}
790 
791 	return error;
792 }
793 #endif /* CONFIG_XFS_QUOTA */
794 
795 /*
796  * Ensure that the inode being repaired is ready to handle a certain number of
797  * extents, or return EFSCORRUPTED.  Caller must hold the ILOCK of the inode
798  * being repaired and have joined it to the scrub transaction.
799  */
800 int
801 xrep_ino_ensure_extent_count(
802 	struct xfs_scrub	*sc,
803 	int			whichfork,
804 	xfs_extnum_t		nextents)
805 {
806 	xfs_extnum_t		max_extents;
807 	bool			inode_has_nrext64;
808 
809 	inode_has_nrext64 = xfs_inode_has_large_extent_counts(sc->ip);
810 	max_extents = xfs_iext_max_nextents(inode_has_nrext64, whichfork);
811 	if (nextents <= max_extents)
812 		return 0;
813 	if (inode_has_nrext64)
814 		return -EFSCORRUPTED;
815 	if (!xfs_has_large_extent_counts(sc->mp))
816 		return -EFSCORRUPTED;
817 
818 	max_extents = xfs_iext_max_nextents(true, whichfork);
819 	if (nextents > max_extents)
820 		return -EFSCORRUPTED;
821 
822 	sc->ip->i_diflags2 |= XFS_DIFLAG2_NREXT64;
823 	xfs_trans_log_inode(sc->tp, sc->ip, XFS_ILOG_CORE);
824 	return 0;
825 }
826 
827 /*
828  * Initialize all the btree cursors for an AG repair except for the btree that
829  * we're rebuilding.
830  */
831 void
832 xrep_ag_btcur_init(
833 	struct xfs_scrub	*sc,
834 	struct xchk_ag		*sa)
835 {
836 	struct xfs_mount	*mp = sc->mp;
837 
838 	/* Set up a bnobt cursor for cross-referencing. */
839 	if (sc->sm->sm_type != XFS_SCRUB_TYPE_BNOBT &&
840 	    sc->sm->sm_type != XFS_SCRUB_TYPE_CNTBT) {
841 		sa->bno_cur = xfs_bnobt_init_cursor(mp, sc->tp, sa->agf_bp,
842 				sc->sa.pag);
843 		sa->cnt_cur = xfs_cntbt_init_cursor(mp, sc->tp, sa->agf_bp,
844 				sc->sa.pag);
845 	}
846 
847 	/* Set up a inobt cursor for cross-referencing. */
848 	if (sc->sm->sm_type != XFS_SCRUB_TYPE_INOBT &&
849 	    sc->sm->sm_type != XFS_SCRUB_TYPE_FINOBT) {
850 		sa->ino_cur = xfs_inobt_init_cursor(sc->sa.pag, sc->tp,
851 				sa->agi_bp);
852 		if (xfs_has_finobt(mp))
853 			sa->fino_cur = xfs_finobt_init_cursor(sc->sa.pag,
854 					sc->tp, sa->agi_bp);
855 	}
856 
857 	/* Set up a rmapbt cursor for cross-referencing. */
858 	if (sc->sm->sm_type != XFS_SCRUB_TYPE_RMAPBT &&
859 	    xfs_has_rmapbt(mp))
860 		sa->rmap_cur = xfs_rmapbt_init_cursor(mp, sc->tp, sa->agf_bp,
861 				sc->sa.pag);
862 
863 	/* Set up a refcountbt cursor for cross-referencing. */
864 	if (sc->sm->sm_type != XFS_SCRUB_TYPE_REFCNTBT &&
865 	    xfs_has_reflink(mp))
866 		sa->refc_cur = xfs_refcountbt_init_cursor(mp, sc->tp,
867 				sa->agf_bp, sc->sa.pag);
868 }
869 
870 /*
871  * Reinitialize the in-core AG state after a repair by rereading the AGF
872  * buffer.  We had better get the same AGF buffer as the one that's attached
873  * to the scrub context.
874  */
875 int
876 xrep_reinit_pagf(
877 	struct xfs_scrub	*sc)
878 {
879 	struct xfs_perag	*pag = sc->sa.pag;
880 	struct xfs_buf		*bp;
881 	int			error;
882 
883 	ASSERT(pag);
884 	ASSERT(xfs_perag_initialised_agf(pag));
885 
886 	clear_bit(XFS_AGSTATE_AGF_INIT, &pag->pag_opstate);
887 	error = xfs_alloc_read_agf(pag, sc->tp, 0, &bp);
888 	if (error)
889 		return error;
890 
891 	if (bp != sc->sa.agf_bp) {
892 		ASSERT(bp == sc->sa.agf_bp);
893 		return -EFSCORRUPTED;
894 	}
895 
896 	return 0;
897 }
898 
899 /*
900  * Reinitialize the in-core AG state after a repair by rereading the AGI
901  * buffer.  We had better get the same AGI buffer as the one that's attached
902  * to the scrub context.
903  */
904 int
905 xrep_reinit_pagi(
906 	struct xfs_scrub	*sc)
907 {
908 	struct xfs_perag	*pag = sc->sa.pag;
909 	struct xfs_buf		*bp;
910 	int			error;
911 
912 	ASSERT(pag);
913 	ASSERT(xfs_perag_initialised_agi(pag));
914 
915 	clear_bit(XFS_AGSTATE_AGI_INIT, &pag->pag_opstate);
916 	error = xfs_ialloc_read_agi(pag, sc->tp, 0, &bp);
917 	if (error)
918 		return error;
919 
920 	if (bp != sc->sa.agi_bp) {
921 		ASSERT(bp == sc->sa.agi_bp);
922 		return -EFSCORRUPTED;
923 	}
924 
925 	return 0;
926 }
927 
928 /*
929  * Given an active reference to a perag structure, load AG headers and cursors.
930  * This should only be called to scan an AG while repairing file-based metadata.
931  */
932 int
933 xrep_ag_init(
934 	struct xfs_scrub	*sc,
935 	struct xfs_perag	*pag,
936 	struct xchk_ag		*sa)
937 {
938 	int			error;
939 
940 	ASSERT(!sa->pag);
941 
942 	error = xfs_ialloc_read_agi(pag, sc->tp, 0, &sa->agi_bp);
943 	if (error)
944 		return error;
945 
946 	error = xfs_alloc_read_agf(pag, sc->tp, 0, &sa->agf_bp);
947 	if (error)
948 		return error;
949 
950 	/* Grab our own passive reference from the caller's ref. */
951 	sa->pag = xfs_perag_hold(pag);
952 	xrep_ag_btcur_init(sc, sa);
953 	return 0;
954 }
955 
956 /* Reinitialize the per-AG block reservation for the AG we just fixed. */
957 int
958 xrep_reset_perag_resv(
959 	struct xfs_scrub	*sc)
960 {
961 	int			error;
962 
963 	if (!(sc->flags & XREP_RESET_PERAG_RESV))
964 		return 0;
965 
966 	ASSERT(sc->sa.pag != NULL);
967 	ASSERT(sc->ops->type == ST_PERAG);
968 	ASSERT(sc->tp);
969 
970 	sc->flags &= ~XREP_RESET_PERAG_RESV;
971 	xfs_ag_resv_free(sc->sa.pag);
972 	error = xfs_ag_resv_init(sc->sa.pag, sc->tp);
973 	if (error == -ENOSPC) {
974 		xfs_err(sc->mp,
975 "Insufficient free space to reset per-AG reservation for AG %u after repair.",
976 				sc->sa.pag->pag_agno);
977 		error = 0;
978 	}
979 
980 	return error;
981 }
982 
983 /* Decide if we are going to call the repair function for a scrub type. */
984 bool
985 xrep_will_attempt(
986 	struct xfs_scrub	*sc)
987 {
988 	/* Userspace asked us to rebuild the structure regardless. */
989 	if (sc->sm->sm_flags & XFS_SCRUB_IFLAG_FORCE_REBUILD)
990 		return true;
991 
992 	/* Let debug users force us into the repair routines. */
993 	if (XFS_TEST_ERROR(false, sc->mp, XFS_ERRTAG_FORCE_SCRUB_REPAIR))
994 		return true;
995 
996 	/* Metadata is corrupt or failed cross-referencing. */
997 	if (xchk_needs_repair(sc->sm))
998 		return true;
999 
1000 	return false;
1001 }
1002 
1003 /* Try to fix some part of a metadata inode by calling another scrubber. */
1004 STATIC int
1005 xrep_metadata_inode_subtype(
1006 	struct xfs_scrub	*sc,
1007 	unsigned int		scrub_type)
1008 {
1009 	struct xfs_scrub_subord	*sub;
1010 	int			error;
1011 
1012 	/*
1013 	 * Let's see if the inode needs repair.  Use a subordinate scrub context
1014 	 * to call the scrub and repair functions so that we can hang on to the
1015 	 * resources that we already acquired instead of using the standard
1016 	 * setup/teardown routines.
1017 	 */
1018 	sub = xchk_scrub_create_subord(sc, scrub_type);
1019 	error = sub->sc.ops->scrub(&sub->sc);
1020 	if (error)
1021 		goto out;
1022 	if (!xrep_will_attempt(&sub->sc))
1023 		goto out;
1024 
1025 	/*
1026 	 * Repair some part of the inode.  This will potentially join the inode
1027 	 * to the transaction.
1028 	 */
1029 	error = sub->sc.ops->repair(&sub->sc);
1030 	if (error)
1031 		goto out;
1032 
1033 	/*
1034 	 * Finish all deferred intent items and then roll the transaction so
1035 	 * that the inode will not be joined to the transaction when we exit
1036 	 * the function.
1037 	 */
1038 	error = xfs_defer_finish(&sub->sc.tp);
1039 	if (error)
1040 		goto out;
1041 	error = xfs_trans_roll(&sub->sc.tp);
1042 	if (error)
1043 		goto out;
1044 
1045 	/*
1046 	 * Clear the corruption flags and re-check the metadata that we just
1047 	 * repaired.
1048 	 */
1049 	sub->sc.sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
1050 	error = sub->sc.ops->scrub(&sub->sc);
1051 	if (error)
1052 		goto out;
1053 
1054 	/* If corruption persists, the repair has failed. */
1055 	if (xchk_needs_repair(sub->sc.sm)) {
1056 		error = -EFSCORRUPTED;
1057 		goto out;
1058 	}
1059 out:
1060 	xchk_scrub_free_subord(sub);
1061 	return error;
1062 }
1063 
1064 /*
1065  * Repair the ondisk forks of a metadata inode.  The caller must ensure that
1066  * sc->ip points to the metadata inode and the ILOCK is held on that inode.
1067  * The inode must not be joined to the transaction before the call, and will
1068  * not be afterwards.
1069  */
1070 int
1071 xrep_metadata_inode_forks(
1072 	struct xfs_scrub	*sc)
1073 {
1074 	bool			dirty = false;
1075 	int			error;
1076 
1077 	/* Repair the inode record and the data fork. */
1078 	error = xrep_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_INODE);
1079 	if (error)
1080 		return error;
1081 
1082 	error = xrep_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_BMBTD);
1083 	if (error)
1084 		return error;
1085 
1086 	/* Make sure the attr fork looks ok before we delete it. */
1087 	error = xrep_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_BMBTA);
1088 	if (error)
1089 		return error;
1090 
1091 	/* Clear the reflink flag since metadata never shares. */
1092 	if (xfs_is_reflink_inode(sc->ip)) {
1093 		dirty = true;
1094 		xfs_trans_ijoin(sc->tp, sc->ip, 0);
1095 		error = xfs_reflink_clear_inode_flag(sc->ip, &sc->tp);
1096 		if (error)
1097 			return error;
1098 	}
1099 
1100 	/* Clear the attr forks since metadata shouldn't have that. */
1101 	if (xfs_inode_hasattr(sc->ip)) {
1102 		if (!dirty) {
1103 			dirty = true;
1104 			xfs_trans_ijoin(sc->tp, sc->ip, 0);
1105 		}
1106 		error = xrep_xattr_reset_fork(sc);
1107 		if (error)
1108 			return error;
1109 	}
1110 
1111 	/*
1112 	 * If we modified the inode, roll the transaction but don't rejoin the
1113 	 * inode to the new transaction because xrep_bmap_data can do that.
1114 	 */
1115 	if (dirty) {
1116 		error = xfs_trans_roll(&sc->tp);
1117 		if (error)
1118 			return error;
1119 		dirty = false;
1120 	}
1121 
1122 	return 0;
1123 }
1124 
1125 /*
1126  * Set up an in-memory buffer cache so that we can use the xfbtree.  Allocating
1127  * a shmem file might take loks, so we cannot be in transaction context.  Park
1128  * our resources in the scrub context and let the teardown function take care
1129  * of them at the right time.
1130  */
1131 int
1132 xrep_setup_xfbtree(
1133 	struct xfs_scrub	*sc,
1134 	const char		*descr)
1135 {
1136 	ASSERT(sc->tp == NULL);
1137 
1138 	return xmbuf_alloc(sc->mp, descr, &sc->xmbtp);
1139 }
1140 
1141 /*
1142  * Create a dummy transaction for use in a live update hook function.  This
1143  * function MUST NOT be called from regular repair code because the current
1144  * process' transaction is saved via the cookie.
1145  */
1146 int
1147 xrep_trans_alloc_hook_dummy(
1148 	struct xfs_mount	*mp,
1149 	void			**cookiep,
1150 	struct xfs_trans	**tpp)
1151 {
1152 	int			error;
1153 
1154 	*cookiep = current->journal_info;
1155 	current->journal_info = NULL;
1156 
1157 	error = xfs_trans_alloc_empty(mp, tpp);
1158 	if (!error)
1159 		return 0;
1160 
1161 	current->journal_info = *cookiep;
1162 	*cookiep = NULL;
1163 	return error;
1164 }
1165 
1166 /* Cancel a dummy transaction used by a live update hook function. */
1167 void
1168 xrep_trans_cancel_hook_dummy(
1169 	void			**cookiep,
1170 	struct xfs_trans	*tp)
1171 {
1172 	xfs_trans_cancel(tp);
1173 	current->journal_info = *cookiep;
1174 	*cookiep = NULL;
1175 }
1176 
1177 /*
1178  * See if this buffer can pass the given ->verify_struct() function.
1179  *
1180  * If the buffer already has ops attached and they're not the ones that were
1181  * passed in, we reject the buffer.  Otherwise, we perform the structure test
1182  * (note that we do not check CRCs) and return the outcome of the test.  The
1183  * buffer ops and error state are left unchanged.
1184  */
1185 bool
1186 xrep_buf_verify_struct(
1187 	struct xfs_buf			*bp,
1188 	const struct xfs_buf_ops	*ops)
1189 {
1190 	const struct xfs_buf_ops	*old_ops = bp->b_ops;
1191 	xfs_failaddr_t			fa;
1192 	int				old_error;
1193 
1194 	if (old_ops) {
1195 		if (old_ops != ops)
1196 			return false;
1197 	}
1198 
1199 	old_error = bp->b_error;
1200 	bp->b_ops = ops;
1201 	fa = bp->b_ops->verify_struct(bp);
1202 	bp->b_ops = old_ops;
1203 	bp->b_error = old_error;
1204 
1205 	return fa == NULL;
1206 }
1207