xref: /linux/fs/xfs/scrub/reap.c (revision 594ce0b8a998aa4d05827cd7c0d0dcec9a1e3ae2)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2022-2023 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <djwong@kernel.org>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_mount.h"
12 #include "xfs_btree.h"
13 #include "xfs_log_format.h"
14 #include "xfs_trans.h"
15 #include "xfs_sb.h"
16 #include "xfs_inode.h"
17 #include "xfs_alloc.h"
18 #include "xfs_alloc_btree.h"
19 #include "xfs_ialloc.h"
20 #include "xfs_ialloc_btree.h"
21 #include "xfs_rmap.h"
22 #include "xfs_rmap_btree.h"
23 #include "xfs_refcount.h"
24 #include "xfs_refcount_btree.h"
25 #include "xfs_extent_busy.h"
26 #include "xfs_ag.h"
27 #include "xfs_ag_resv.h"
28 #include "xfs_quota.h"
29 #include "xfs_qm.h"
30 #include "xfs_bmap.h"
31 #include "xfs_da_format.h"
32 #include "xfs_da_btree.h"
33 #include "xfs_attr.h"
34 #include "xfs_attr_remote.h"
35 #include "xfs_defer.h"
36 #include "scrub/scrub.h"
37 #include "scrub/common.h"
38 #include "scrub/trace.h"
39 #include "scrub/repair.h"
40 #include "scrub/bitmap.h"
41 #include "scrub/agb_bitmap.h"
42 #include "scrub/fsb_bitmap.h"
43 #include "scrub/reap.h"
44 
45 /*
46  * Disposal of Blocks from Old Metadata
47  *
48  * Now that we've constructed a new btree to replace the damaged one, we want
49  * to dispose of the blocks that (we think) the old btree was using.
50  * Previously, we used the rmapbt to collect the extents (bitmap) with the
51  * rmap owner corresponding to the tree we rebuilt, collected extents for any
52  * blocks with the same rmap owner that are owned by another data structure
53  * (sublist), and subtracted sublist from bitmap.  In theory the extents
54  * remaining in bitmap are the old btree's blocks.
55  *
56  * Unfortunately, it's possible that the btree was crosslinked with other
57  * blocks on disk.  The rmap data can tell us if there are multiple owners, so
58  * if the rmapbt says there is an owner of this block other than @oinfo, then
59  * the block is crosslinked.  Remove the reverse mapping and continue.
60  *
61  * If there is one rmap record, we can free the block, which removes the
62  * reverse mapping but doesn't add the block to the free space.  Our repair
63  * strategy is to hope the other metadata objects crosslinked on this block
64  * will be rebuilt (atop different blocks), thereby removing all the cross
65  * links.
66  *
67  * If there are no rmap records at all, we also free the block.  If the btree
68  * being rebuilt lives in the free space (bnobt/cntbt/rmapbt) then there isn't
69  * supposed to be a rmap record and everything is ok.  For other btrees there
70  * had to have been an rmap entry for the block to have ended up on @bitmap,
71  * so if it's gone now there's something wrong and the fs will shut down.
72  *
73  * Note: If there are multiple rmap records with only the same rmap owner as
74  * the btree we're trying to rebuild and the block is indeed owned by another
75  * data structure with the same rmap owner, then the block will be in sublist
76  * and therefore doesn't need disposal.  If there are multiple rmap records
77  * with only the same rmap owner but the block is not owned by something with
78  * the same rmap owner, the block will be freed.
79  *
80  * The caller is responsible for locking the AG headers/inode for the entire
81  * rebuild operation so that nothing else can sneak in and change the incore
82  * state while we're not looking.  We must also invalidate any buffers
83  * associated with @bitmap.
84  */
85 
86 /* Information about reaping extents after a repair. */
87 struct xreap_state {
88 	struct xfs_scrub		*sc;
89 
90 	/* Reverse mapping owner and metadata reservation type. */
91 	const struct xfs_owner_info	*oinfo;
92 	enum xfs_ag_resv_type		resv;
93 
94 	/* If true, roll the transaction before reaping the next extent. */
95 	bool				force_roll;
96 
97 	/* Number of deferred reaps attached to the current transaction. */
98 	unsigned int			deferred;
99 
100 	/* Number of invalidated buffers logged to the current transaction. */
101 	unsigned int			invalidated;
102 
103 	/* Number of deferred reaps queued during the whole reap sequence. */
104 	unsigned long long		total_deferred;
105 };
106 
107 /* Put a block back on the AGFL. */
108 STATIC int
109 xreap_put_freelist(
110 	struct xfs_scrub	*sc,
111 	xfs_agblock_t		agbno)
112 {
113 	struct xfs_buf		*agfl_bp;
114 	int			error;
115 
116 	/* Make sure there's space on the freelist. */
117 	error = xrep_fix_freelist(sc, 0);
118 	if (error)
119 		return error;
120 
121 	/*
122 	 * Since we're "freeing" a lost block onto the AGFL, we have to
123 	 * create an rmap for the block prior to merging it or else other
124 	 * parts will break.
125 	 */
126 	error = xfs_rmap_alloc(sc->tp, sc->sa.agf_bp, sc->sa.pag, agbno, 1,
127 			&XFS_RMAP_OINFO_AG);
128 	if (error)
129 		return error;
130 
131 	/* Put the block on the AGFL. */
132 	error = xfs_alloc_read_agfl(sc->sa.pag, sc->tp, &agfl_bp);
133 	if (error)
134 		return error;
135 
136 	error = xfs_alloc_put_freelist(sc->sa.pag, sc->tp, sc->sa.agf_bp,
137 			agfl_bp, agbno, 0);
138 	if (error)
139 		return error;
140 	xfs_extent_busy_insert(sc->tp, sc->sa.pag, agbno, 1,
141 			XFS_EXTENT_BUSY_SKIP_DISCARD);
142 
143 	return 0;
144 }
145 
146 /* Are there any uncommitted reap operations? */
147 static inline bool xreap_dirty(const struct xreap_state *rs)
148 {
149 	if (rs->force_roll)
150 		return true;
151 	if (rs->deferred)
152 		return true;
153 	if (rs->invalidated)
154 		return true;
155 	if (rs->total_deferred)
156 		return true;
157 	return false;
158 }
159 
160 #define XREAP_MAX_BINVAL	(2048)
161 
162 /*
163  * Decide if we want to roll the transaction after reaping an extent.  We don't
164  * want to overrun the transaction reservation, so we prohibit more than
165  * 128 EFIs per transaction.  For the same reason, we limit the number
166  * of buffer invalidations to 2048.
167  */
168 static inline bool xreap_want_roll(const struct xreap_state *rs)
169 {
170 	if (rs->force_roll)
171 		return true;
172 	if (rs->deferred > XREP_MAX_ITRUNCATE_EFIS)
173 		return true;
174 	if (rs->invalidated > XREAP_MAX_BINVAL)
175 		return true;
176 	return false;
177 }
178 
179 static inline void xreap_reset(struct xreap_state *rs)
180 {
181 	rs->total_deferred += rs->deferred;
182 	rs->deferred = 0;
183 	rs->invalidated = 0;
184 	rs->force_roll = false;
185 }
186 
187 #define XREAP_MAX_DEFER_CHAIN		(2048)
188 
189 /*
190  * Decide if we want to finish the deferred ops that are attached to the scrub
191  * transaction.  We don't want to queue huge chains of deferred ops because
192  * that can consume a lot of log space and kernel memory.  Hence we trigger a
193  * xfs_defer_finish if there are more than 2048 deferred reap operations or the
194  * caller did some real work.
195  */
196 static inline bool
197 xreap_want_defer_finish(const struct xreap_state *rs)
198 {
199 	if (rs->force_roll)
200 		return true;
201 	if (rs->total_deferred > XREAP_MAX_DEFER_CHAIN)
202 		return true;
203 	return false;
204 }
205 
206 static inline void xreap_defer_finish_reset(struct xreap_state *rs)
207 {
208 	rs->total_deferred = 0;
209 	rs->deferred = 0;
210 	rs->invalidated = 0;
211 	rs->force_roll = false;
212 }
213 
214 /*
215  * Compute the maximum length of a buffer cache scan (in units of sectors),
216  * given a quantity of fs blocks.
217  */
218 xfs_daddr_t
219 xrep_bufscan_max_sectors(
220 	struct xfs_mount	*mp,
221 	xfs_extlen_t		fsblocks)
222 {
223 	int			max_fsbs;
224 
225 	/* Remote xattr values are the largest buffers that we support. */
226 	max_fsbs = xfs_attr3_max_rmt_blocks(mp);
227 
228 	return XFS_FSB_TO_BB(mp, min_t(xfs_extlen_t, fsblocks, max_fsbs));
229 }
230 
231 /*
232  * Return an incore buffer from a sector scan, or NULL if there are no buffers
233  * left to return.
234  */
235 struct xfs_buf *
236 xrep_bufscan_advance(
237 	struct xfs_mount	*mp,
238 	struct xrep_bufscan	*scan)
239 {
240 	scan->__sector_count += scan->daddr_step;
241 	while (scan->__sector_count <= scan->max_sectors) {
242 		struct xfs_buf	*bp = NULL;
243 		int		error;
244 
245 		error = xfs_buf_incore(mp->m_ddev_targp, scan->daddr,
246 				scan->__sector_count, XBF_LIVESCAN, &bp);
247 		if (!error)
248 			return bp;
249 
250 		scan->__sector_count += scan->daddr_step;
251 	}
252 
253 	return NULL;
254 }
255 
256 /* Try to invalidate the incore buffers for an extent that we're freeing. */
257 STATIC void
258 xreap_agextent_binval(
259 	struct xreap_state	*rs,
260 	xfs_agblock_t		agbno,
261 	xfs_extlen_t		*aglenp)
262 {
263 	struct xfs_scrub	*sc = rs->sc;
264 	struct xfs_perag	*pag = sc->sa.pag;
265 	struct xfs_mount	*mp = sc->mp;
266 	xfs_agnumber_t		agno = sc->sa.pag->pag_agno;
267 	xfs_agblock_t		agbno_next = agbno + *aglenp;
268 	xfs_agblock_t		bno = agbno;
269 
270 	/*
271 	 * Avoid invalidating AG headers and post-EOFS blocks because we never
272 	 * own those.
273 	 */
274 	if (!xfs_verify_agbno(pag, agbno) ||
275 	    !xfs_verify_agbno(pag, agbno_next - 1))
276 		return;
277 
278 	/*
279 	 * If there are incore buffers for these blocks, invalidate them.  We
280 	 * assume that the lack of any other known owners means that the buffer
281 	 * can be locked without risk of deadlocking.  The buffer cache cannot
282 	 * detect aliasing, so employ nested loops to scan for incore buffers
283 	 * of any plausible size.
284 	 */
285 	while (bno < agbno_next) {
286 		struct xrep_bufscan	scan = {
287 			.daddr		= XFS_AGB_TO_DADDR(mp, agno, bno),
288 			.max_sectors	= xrep_bufscan_max_sectors(mp,
289 							agbno_next - bno),
290 			.daddr_step	= XFS_FSB_TO_BB(mp, 1),
291 		};
292 		struct xfs_buf	*bp;
293 
294 		while ((bp = xrep_bufscan_advance(mp, &scan)) != NULL) {
295 			xfs_trans_bjoin(sc->tp, bp);
296 			xfs_trans_binval(sc->tp, bp);
297 			rs->invalidated++;
298 
299 			/*
300 			 * Stop invalidating if we've hit the limit; we should
301 			 * still have enough reservation left to free however
302 			 * far we've gotten.
303 			 */
304 			if (rs->invalidated > XREAP_MAX_BINVAL) {
305 				*aglenp -= agbno_next - bno;
306 				goto out;
307 			}
308 		}
309 
310 		bno++;
311 	}
312 
313 out:
314 	trace_xreap_agextent_binval(sc->sa.pag, agbno, *aglenp);
315 }
316 
317 /*
318  * Figure out the longest run of blocks that we can dispose of with a single
319  * call.  Cross-linked blocks should have their reverse mappings removed, but
320  * single-owner extents can be freed.  AGFL blocks can only be put back one at
321  * a time.
322  */
323 STATIC int
324 xreap_agextent_select(
325 	struct xreap_state	*rs,
326 	xfs_agblock_t		agbno,
327 	xfs_agblock_t		agbno_next,
328 	bool			*crosslinked,
329 	xfs_extlen_t		*aglenp)
330 {
331 	struct xfs_scrub	*sc = rs->sc;
332 	struct xfs_btree_cur	*cur;
333 	xfs_agblock_t		bno = agbno + 1;
334 	xfs_extlen_t		len = 1;
335 	int			error;
336 
337 	/*
338 	 * Determine if there are any other rmap records covering the first
339 	 * block of this extent.  If so, the block is crosslinked.
340 	 */
341 	cur = xfs_rmapbt_init_cursor(sc->mp, sc->tp, sc->sa.agf_bp,
342 			sc->sa.pag);
343 	error = xfs_rmap_has_other_keys(cur, agbno, 1, rs->oinfo,
344 			crosslinked);
345 	if (error)
346 		goto out_cur;
347 
348 	/* AGFL blocks can only be deal with one at a time. */
349 	if (rs->resv == XFS_AG_RESV_AGFL)
350 		goto out_found;
351 
352 	/*
353 	 * Figure out how many of the subsequent blocks have the same crosslink
354 	 * status.
355 	 */
356 	while (bno < agbno_next) {
357 		bool		also_crosslinked;
358 
359 		error = xfs_rmap_has_other_keys(cur, bno, 1, rs->oinfo,
360 				&also_crosslinked);
361 		if (error)
362 			goto out_cur;
363 
364 		if (*crosslinked != also_crosslinked)
365 			break;
366 
367 		len++;
368 		bno++;
369 	}
370 
371 out_found:
372 	*aglenp = len;
373 	trace_xreap_agextent_select(sc->sa.pag, agbno, len, *crosslinked);
374 out_cur:
375 	xfs_btree_del_cursor(cur, error);
376 	return error;
377 }
378 
379 /*
380  * Dispose of as much of the beginning of this AG extent as possible.  The
381  * number of blocks disposed of will be returned in @aglenp.
382  */
383 STATIC int
384 xreap_agextent_iter(
385 	struct xreap_state	*rs,
386 	xfs_agblock_t		agbno,
387 	xfs_extlen_t		*aglenp,
388 	bool			crosslinked)
389 {
390 	struct xfs_scrub	*sc = rs->sc;
391 	xfs_fsblock_t		fsbno;
392 	int			error = 0;
393 
394 	fsbno = XFS_AGB_TO_FSB(sc->mp, sc->sa.pag->pag_agno, agbno);
395 
396 	/*
397 	 * If there are other rmappings, this block is cross linked and must
398 	 * not be freed.  Remove the reverse mapping and move on.  Otherwise,
399 	 * we were the only owner of the block, so free the extent, which will
400 	 * also remove the rmap.
401 	 *
402 	 * XXX: XFS doesn't support detecting the case where a single block
403 	 * metadata structure is crosslinked with a multi-block structure
404 	 * because the buffer cache doesn't detect aliasing problems, so we
405 	 * can't fix 100% of crosslinking problems (yet).  The verifiers will
406 	 * blow on writeout, the filesystem will shut down, and the admin gets
407 	 * to run xfs_repair.
408 	 */
409 	if (crosslinked) {
410 		trace_xreap_dispose_unmap_extent(sc->sa.pag, agbno, *aglenp);
411 
412 		rs->force_roll = true;
413 
414 		if (rs->oinfo == &XFS_RMAP_OINFO_COW) {
415 			/*
416 			 * If we're unmapping CoW staging extents, remove the
417 			 * records from the refcountbt, which will remove the
418 			 * rmap record as well.
419 			 */
420 			xfs_refcount_free_cow_extent(sc->tp, fsbno, *aglenp);
421 			return 0;
422 		}
423 
424 		return xfs_rmap_free(sc->tp, sc->sa.agf_bp, sc->sa.pag, agbno,
425 				*aglenp, rs->oinfo);
426 	}
427 
428 	trace_xreap_dispose_free_extent(sc->sa.pag, agbno, *aglenp);
429 
430 	/*
431 	 * Invalidate as many buffers as we can, starting at agbno.  If this
432 	 * function sets *aglenp to zero, the transaction is full of logged
433 	 * buffer invalidations, so we need to return early so that we can
434 	 * roll and retry.
435 	 */
436 	xreap_agextent_binval(rs, agbno, aglenp);
437 	if (*aglenp == 0) {
438 		ASSERT(xreap_want_roll(rs));
439 		return 0;
440 	}
441 
442 	/*
443 	 * If we're getting rid of CoW staging extents, use deferred work items
444 	 * to remove the refcountbt records (which removes the rmap records)
445 	 * and free the extent.  We're not worried about the system going down
446 	 * here because log recovery walks the refcount btree to clean out the
447 	 * CoW staging extents.
448 	 */
449 	if (rs->oinfo == &XFS_RMAP_OINFO_COW) {
450 		ASSERT(rs->resv == XFS_AG_RESV_NONE);
451 
452 		xfs_refcount_free_cow_extent(sc->tp, fsbno, *aglenp);
453 		error = xfs_free_extent_later(sc->tp, fsbno, *aglenp, NULL,
454 				rs->resv, true);
455 		if (error)
456 			return error;
457 
458 		rs->force_roll = true;
459 		return 0;
460 	}
461 
462 	/* Put blocks back on the AGFL one at a time. */
463 	if (rs->resv == XFS_AG_RESV_AGFL) {
464 		ASSERT(*aglenp == 1);
465 		error = xreap_put_freelist(sc, agbno);
466 		if (error)
467 			return error;
468 
469 		rs->force_roll = true;
470 		return 0;
471 	}
472 
473 	/*
474 	 * Use deferred frees to get rid of the old btree blocks to try to
475 	 * minimize the window in which we could crash and lose the old blocks.
476 	 * Add a defer ops barrier every other extent to avoid stressing the
477 	 * system with large EFIs.
478 	 */
479 	error = xfs_free_extent_later(sc->tp, fsbno, *aglenp, rs->oinfo,
480 			rs->resv, true);
481 	if (error)
482 		return error;
483 
484 	rs->deferred++;
485 	if (rs->deferred % 2 == 0)
486 		xfs_defer_add_barrier(sc->tp);
487 	return 0;
488 }
489 
490 /*
491  * Break an AG metadata extent into sub-extents by fate (crosslinked, not
492  * crosslinked), and dispose of each sub-extent separately.
493  */
494 STATIC int
495 xreap_agmeta_extent(
496 	uint32_t		agbno,
497 	uint32_t		len,
498 	void			*priv)
499 {
500 	struct xreap_state	*rs = priv;
501 	struct xfs_scrub	*sc = rs->sc;
502 	xfs_agblock_t		agbno_next = agbno + len;
503 	int			error = 0;
504 
505 	ASSERT(len <= XFS_MAX_BMBT_EXTLEN);
506 	ASSERT(sc->ip == NULL);
507 
508 	while (agbno < agbno_next) {
509 		xfs_extlen_t	aglen;
510 		bool		crosslinked;
511 
512 		error = xreap_agextent_select(rs, agbno, agbno_next,
513 				&crosslinked, &aglen);
514 		if (error)
515 			return error;
516 
517 		error = xreap_agextent_iter(rs, agbno, &aglen, crosslinked);
518 		if (error)
519 			return error;
520 
521 		if (xreap_want_defer_finish(rs)) {
522 			error = xrep_defer_finish(sc);
523 			if (error)
524 				return error;
525 			xreap_defer_finish_reset(rs);
526 		} else if (xreap_want_roll(rs)) {
527 			error = xrep_roll_ag_trans(sc);
528 			if (error)
529 				return error;
530 			xreap_reset(rs);
531 		}
532 
533 		agbno += aglen;
534 	}
535 
536 	return 0;
537 }
538 
539 /* Dispose of every block of every AG metadata extent in the bitmap. */
540 int
541 xrep_reap_agblocks(
542 	struct xfs_scrub		*sc,
543 	struct xagb_bitmap		*bitmap,
544 	const struct xfs_owner_info	*oinfo,
545 	enum xfs_ag_resv_type		type)
546 {
547 	struct xreap_state		rs = {
548 		.sc			= sc,
549 		.oinfo			= oinfo,
550 		.resv			= type,
551 	};
552 	int				error;
553 
554 	ASSERT(xfs_has_rmapbt(sc->mp));
555 	ASSERT(sc->ip == NULL);
556 
557 	error = xagb_bitmap_walk(bitmap, xreap_agmeta_extent, &rs);
558 	if (error)
559 		return error;
560 
561 	if (xreap_dirty(&rs))
562 		return xrep_defer_finish(sc);
563 
564 	return 0;
565 }
566 
567 /*
568  * Break a file metadata extent into sub-extents by fate (crosslinked, not
569  * crosslinked), and dispose of each sub-extent separately.  The extent must
570  * not cross an AG boundary.
571  */
572 STATIC int
573 xreap_fsmeta_extent(
574 	uint64_t		fsbno,
575 	uint64_t		len,
576 	void			*priv)
577 {
578 	struct xreap_state	*rs = priv;
579 	struct xfs_scrub	*sc = rs->sc;
580 	xfs_agnumber_t		agno = XFS_FSB_TO_AGNO(sc->mp, fsbno);
581 	xfs_agblock_t		agbno = XFS_FSB_TO_AGBNO(sc->mp, fsbno);
582 	xfs_agblock_t		agbno_next = agbno + len;
583 	int			error = 0;
584 
585 	ASSERT(len <= XFS_MAX_BMBT_EXTLEN);
586 	ASSERT(sc->ip != NULL);
587 	ASSERT(!sc->sa.pag);
588 
589 	/*
590 	 * We're reaping blocks after repairing file metadata, which means that
591 	 * we have to init the xchk_ag structure ourselves.
592 	 */
593 	sc->sa.pag = xfs_perag_get(sc->mp, agno);
594 	if (!sc->sa.pag)
595 		return -EFSCORRUPTED;
596 
597 	error = xfs_alloc_read_agf(sc->sa.pag, sc->tp, 0, &sc->sa.agf_bp);
598 	if (error)
599 		goto out_pag;
600 
601 	while (agbno < agbno_next) {
602 		xfs_extlen_t	aglen;
603 		bool		crosslinked;
604 
605 		error = xreap_agextent_select(rs, agbno, agbno_next,
606 				&crosslinked, &aglen);
607 		if (error)
608 			goto out_agf;
609 
610 		error = xreap_agextent_iter(rs, agbno, &aglen, crosslinked);
611 		if (error)
612 			goto out_agf;
613 
614 		if (xreap_want_defer_finish(rs)) {
615 			/*
616 			 * Holds the AGF buffer across the deferred chain
617 			 * processing.
618 			 */
619 			error = xrep_defer_finish(sc);
620 			if (error)
621 				goto out_agf;
622 			xreap_defer_finish_reset(rs);
623 		} else if (xreap_want_roll(rs)) {
624 			/*
625 			 * Hold the AGF buffer across the transaction roll so
626 			 * that we don't have to reattach it to the scrub
627 			 * context.
628 			 */
629 			xfs_trans_bhold(sc->tp, sc->sa.agf_bp);
630 			error = xfs_trans_roll_inode(&sc->tp, sc->ip);
631 			xfs_trans_bjoin(sc->tp, sc->sa.agf_bp);
632 			if (error)
633 				goto out_agf;
634 			xreap_reset(rs);
635 		}
636 
637 		agbno += aglen;
638 	}
639 
640 out_agf:
641 	xfs_trans_brelse(sc->tp, sc->sa.agf_bp);
642 	sc->sa.agf_bp = NULL;
643 out_pag:
644 	xfs_perag_put(sc->sa.pag);
645 	sc->sa.pag = NULL;
646 	return error;
647 }
648 
649 /*
650  * Dispose of every block of every fs metadata extent in the bitmap.
651  * Do not use this to dispose of the mappings in an ondisk inode fork.
652  */
653 int
654 xrep_reap_fsblocks(
655 	struct xfs_scrub		*sc,
656 	struct xfsb_bitmap		*bitmap,
657 	const struct xfs_owner_info	*oinfo)
658 {
659 	struct xreap_state		rs = {
660 		.sc			= sc,
661 		.oinfo			= oinfo,
662 		.resv			= XFS_AG_RESV_NONE,
663 	};
664 	int				error;
665 
666 	ASSERT(xfs_has_rmapbt(sc->mp));
667 	ASSERT(sc->ip != NULL);
668 
669 	error = xfsb_bitmap_walk(bitmap, xreap_fsmeta_extent, &rs);
670 	if (error)
671 		return error;
672 
673 	if (xreap_dirty(&rs))
674 		return xrep_defer_finish(sc);
675 
676 	return 0;
677 }
678 
679 /*
680  * Metadata files are not supposed to share blocks with anything else.
681  * If blocks are shared, we remove the reverse mapping (thus reducing the
682  * crosslink factor); if blocks are not shared, we also need to free them.
683  *
684  * This first step determines the longest subset of the passed-in imap
685  * (starting at its beginning) that is either crosslinked or not crosslinked.
686  * The blockcount will be adjust down as needed.
687  */
688 STATIC int
689 xreap_bmapi_select(
690 	struct xfs_scrub	*sc,
691 	struct xfs_inode	*ip,
692 	int			whichfork,
693 	struct xfs_bmbt_irec	*imap,
694 	bool			*crosslinked)
695 {
696 	struct xfs_owner_info	oinfo;
697 	struct xfs_btree_cur	*cur;
698 	xfs_filblks_t		len = 1;
699 	xfs_agblock_t		bno;
700 	xfs_agblock_t		agbno;
701 	xfs_agblock_t		agbno_next;
702 	int			error;
703 
704 	agbno = XFS_FSB_TO_AGBNO(sc->mp, imap->br_startblock);
705 	agbno_next = agbno + imap->br_blockcount;
706 
707 	cur = xfs_rmapbt_init_cursor(sc->mp, sc->tp, sc->sa.agf_bp,
708 			sc->sa.pag);
709 
710 	xfs_rmap_ino_owner(&oinfo, ip->i_ino, whichfork, imap->br_startoff);
711 	error = xfs_rmap_has_other_keys(cur, agbno, 1, &oinfo, crosslinked);
712 	if (error)
713 		goto out_cur;
714 
715 	bno = agbno + 1;
716 	while (bno < agbno_next) {
717 		bool		also_crosslinked;
718 
719 		oinfo.oi_offset++;
720 		error = xfs_rmap_has_other_keys(cur, bno, 1, &oinfo,
721 				&also_crosslinked);
722 		if (error)
723 			goto out_cur;
724 
725 		if (also_crosslinked != *crosslinked)
726 			break;
727 
728 		len++;
729 		bno++;
730 	}
731 
732 	imap->br_blockcount = len;
733 	trace_xreap_bmapi_select(sc->sa.pag, agbno, len, *crosslinked);
734 out_cur:
735 	xfs_btree_del_cursor(cur, error);
736 	return error;
737 }
738 
739 /*
740  * Decide if this buffer can be joined to a transaction.  This is true for most
741  * buffers, but there are two cases that we want to catch: large remote xattr
742  * value buffers are not logged and can overflow the buffer log item dirty
743  * bitmap size; and oversized cached buffers if things have really gone
744  * haywire.
745  */
746 static inline bool
747 xreap_buf_loggable(
748 	const struct xfs_buf	*bp)
749 {
750 	int			i;
751 
752 	for (i = 0; i < bp->b_map_count; i++) {
753 		int		chunks;
754 		int		map_size;
755 
756 		chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
757 				XFS_BLF_CHUNK);
758 		map_size = DIV_ROUND_UP(chunks, NBWORD);
759 		if (map_size > XFS_BLF_DATAMAP_SIZE)
760 			return false;
761 	}
762 
763 	return true;
764 }
765 
766 /*
767  * Invalidate any buffers for this file mapping.  The @imap blockcount may be
768  * adjusted downward if we need to roll the transaction.
769  */
770 STATIC int
771 xreap_bmapi_binval(
772 	struct xfs_scrub	*sc,
773 	struct xfs_inode	*ip,
774 	int			whichfork,
775 	struct xfs_bmbt_irec	*imap)
776 {
777 	struct xfs_mount	*mp = sc->mp;
778 	struct xfs_perag	*pag = sc->sa.pag;
779 	int			bmap_flags = xfs_bmapi_aflag(whichfork);
780 	xfs_fileoff_t		off;
781 	xfs_fileoff_t		max_off;
782 	xfs_extlen_t		scan_blocks;
783 	xfs_agnumber_t		agno = sc->sa.pag->pag_agno;
784 	xfs_agblock_t		bno;
785 	xfs_agblock_t		agbno;
786 	xfs_agblock_t		agbno_next;
787 	unsigned int		invalidated = 0;
788 	int			error;
789 
790 	/*
791 	 * Avoid invalidating AG headers and post-EOFS blocks because we never
792 	 * own those.
793 	 */
794 	agbno = bno = XFS_FSB_TO_AGBNO(sc->mp, imap->br_startblock);
795 	agbno_next = agbno + imap->br_blockcount;
796 	if (!xfs_verify_agbno(pag, agbno) ||
797 	    !xfs_verify_agbno(pag, agbno_next - 1))
798 		return 0;
799 
800 	/*
801 	 * Buffers for file blocks can span multiple contiguous mappings.  This
802 	 * means that for each block in the mapping, there could exist an
803 	 * xfs_buf indexed by that block with any length up to the maximum
804 	 * buffer size (remote xattr values) or to the next hole in the fork.
805 	 * To set up our binval scan, first we need to figure out the location
806 	 * of the next hole.
807 	 */
808 	off = imap->br_startoff + imap->br_blockcount;
809 	max_off = off + xfs_attr3_max_rmt_blocks(mp);
810 	while (off < max_off) {
811 		struct xfs_bmbt_irec	hmap;
812 		int			nhmaps = 1;
813 
814 		error = xfs_bmapi_read(ip, off, max_off - off, &hmap,
815 				&nhmaps, bmap_flags);
816 		if (error)
817 			return error;
818 		if (nhmaps != 1 || hmap.br_startblock == DELAYSTARTBLOCK) {
819 			ASSERT(0);
820 			return -EFSCORRUPTED;
821 		}
822 
823 		if (!xfs_bmap_is_real_extent(&hmap))
824 			break;
825 
826 		off = hmap.br_startoff + hmap.br_blockcount;
827 	}
828 	scan_blocks = off - imap->br_startoff;
829 
830 	trace_xreap_bmapi_binval_scan(sc, imap, scan_blocks);
831 
832 	/*
833 	 * If there are incore buffers for these blocks, invalidate them.  If
834 	 * we can't (try)lock the buffer we assume it's owned by someone else
835 	 * and leave it alone.  The buffer cache cannot detect aliasing, so
836 	 * employ nested loops to detect incore buffers of any plausible size.
837 	 */
838 	while (bno < agbno_next) {
839 		struct xrep_bufscan	scan = {
840 			.daddr		= XFS_AGB_TO_DADDR(mp, agno, bno),
841 			.max_sectors	= xrep_bufscan_max_sectors(mp,
842 								scan_blocks),
843 			.daddr_step	= XFS_FSB_TO_BB(mp, 1),
844 		};
845 		struct xfs_buf		*bp;
846 
847 		while ((bp = xrep_bufscan_advance(mp, &scan)) != NULL) {
848 			if (xreap_buf_loggable(bp)) {
849 				xfs_trans_bjoin(sc->tp, bp);
850 				xfs_trans_binval(sc->tp, bp);
851 			} else {
852 				xfs_buf_stale(bp);
853 				xfs_buf_relse(bp);
854 			}
855 			invalidated++;
856 
857 			/*
858 			 * Stop invalidating if we've hit the limit; we should
859 			 * still have enough reservation left to free however
860 			 * much of the mapping we've seen so far.
861 			 */
862 			if (invalidated > XREAP_MAX_BINVAL) {
863 				imap->br_blockcount = agbno_next - bno;
864 				goto out;
865 			}
866 		}
867 
868 		bno++;
869 		scan_blocks--;
870 	}
871 
872 out:
873 	trace_xreap_bmapi_binval(sc->sa.pag, agbno, imap->br_blockcount);
874 	return 0;
875 }
876 
877 /*
878  * Dispose of as much of the beginning of this file fork mapping as possible.
879  * The number of blocks disposed of is returned in @imap->br_blockcount.
880  */
881 STATIC int
882 xrep_reap_bmapi_iter(
883 	struct xfs_scrub		*sc,
884 	struct xfs_inode		*ip,
885 	int				whichfork,
886 	struct xfs_bmbt_irec		*imap,
887 	bool				crosslinked)
888 {
889 	int				error;
890 
891 	if (crosslinked) {
892 		/*
893 		 * If there are other rmappings, this block is cross linked and
894 		 * must not be freed.  Remove the reverse mapping, leave the
895 		 * buffer cache in its possibly confused state, and move on.
896 		 * We don't want to risk discarding valid data buffers from
897 		 * anybody else who thinks they own the block, even though that
898 		 * runs the risk of stale buffer warnings in the future.
899 		 */
900 		trace_xreap_dispose_unmap_extent(sc->sa.pag,
901 				XFS_FSB_TO_AGBNO(sc->mp, imap->br_startblock),
902 				imap->br_blockcount);
903 
904 		/*
905 		 * Schedule removal of the mapping from the fork.  We use
906 		 * deferred log intents in this function to control the exact
907 		 * sequence of metadata updates.
908 		 */
909 		xfs_bmap_unmap_extent(sc->tp, ip, whichfork, imap);
910 		xfs_trans_mod_dquot_byino(sc->tp, ip, XFS_TRANS_DQ_BCOUNT,
911 				-(int64_t)imap->br_blockcount);
912 		xfs_rmap_unmap_extent(sc->tp, ip, whichfork, imap);
913 		return 0;
914 	}
915 
916 	/*
917 	 * If the block is not crosslinked, we can invalidate all the incore
918 	 * buffers for the extent, and then free the extent.  This is a bit of
919 	 * a mess since we don't detect discontiguous buffers that are indexed
920 	 * by a block starting before the first block of the extent but overlap
921 	 * anyway.
922 	 */
923 	trace_xreap_dispose_free_extent(sc->sa.pag,
924 			XFS_FSB_TO_AGBNO(sc->mp, imap->br_startblock),
925 			imap->br_blockcount);
926 
927 	/*
928 	 * Invalidate as many buffers as we can, starting at the beginning of
929 	 * this mapping.  If this function sets blockcount to zero, the
930 	 * transaction is full of logged buffer invalidations, so we need to
931 	 * return early so that we can roll and retry.
932 	 */
933 	error = xreap_bmapi_binval(sc, ip, whichfork, imap);
934 	if (error || imap->br_blockcount == 0)
935 		return error;
936 
937 	/*
938 	 * Schedule removal of the mapping from the fork.  We use deferred log
939 	 * intents in this function to control the exact sequence of metadata
940 	 * updates.
941 	 */
942 	xfs_bmap_unmap_extent(sc->tp, ip, whichfork, imap);
943 	xfs_trans_mod_dquot_byino(sc->tp, ip, XFS_TRANS_DQ_BCOUNT,
944 			-(int64_t)imap->br_blockcount);
945 	return xfs_free_extent_later(sc->tp, imap->br_startblock,
946 			imap->br_blockcount, NULL, XFS_AG_RESV_NONE, true);
947 }
948 
949 /*
950  * Dispose of as much of this file extent as we can.  Upon successful return,
951  * the imap will reflect the mapping that was removed from the fork.
952  */
953 STATIC int
954 xreap_ifork_extent(
955 	struct xfs_scrub		*sc,
956 	struct xfs_inode		*ip,
957 	int				whichfork,
958 	struct xfs_bmbt_irec		*imap)
959 {
960 	xfs_agnumber_t			agno;
961 	bool				crosslinked;
962 	int				error;
963 
964 	ASSERT(sc->sa.pag == NULL);
965 
966 	trace_xreap_ifork_extent(sc, ip, whichfork, imap);
967 
968 	agno = XFS_FSB_TO_AGNO(sc->mp, imap->br_startblock);
969 	sc->sa.pag = xfs_perag_get(sc->mp, agno);
970 	if (!sc->sa.pag)
971 		return -EFSCORRUPTED;
972 
973 	error = xfs_alloc_read_agf(sc->sa.pag, sc->tp, 0, &sc->sa.agf_bp);
974 	if (error)
975 		goto out_pag;
976 
977 	/*
978 	 * Decide the fate of the blocks at the beginning of the mapping, then
979 	 * update the mapping to use it with the unmap calls.
980 	 */
981 	error = xreap_bmapi_select(sc, ip, whichfork, imap, &crosslinked);
982 	if (error)
983 		goto out_agf;
984 
985 	error = xrep_reap_bmapi_iter(sc, ip, whichfork, imap, crosslinked);
986 	if (error)
987 		goto out_agf;
988 
989 out_agf:
990 	xfs_trans_brelse(sc->tp, sc->sa.agf_bp);
991 	sc->sa.agf_bp = NULL;
992 out_pag:
993 	xfs_perag_put(sc->sa.pag);
994 	sc->sa.pag = NULL;
995 	return error;
996 }
997 
998 /*
999  * Dispose of each block mapped to the given fork of the given file.  Callers
1000  * must hold ILOCK_EXCL, and ip can only be sc->ip or sc->tempip.  The fork
1001  * must not have any delalloc reservations.
1002  */
1003 int
1004 xrep_reap_ifork(
1005 	struct xfs_scrub	*sc,
1006 	struct xfs_inode	*ip,
1007 	int			whichfork)
1008 {
1009 	xfs_fileoff_t		off = 0;
1010 	int			bmap_flags = xfs_bmapi_aflag(whichfork);
1011 	int			error;
1012 
1013 	ASSERT(xfs_has_rmapbt(sc->mp));
1014 	ASSERT(ip == sc->ip || ip == sc->tempip);
1015 	ASSERT(whichfork == XFS_ATTR_FORK || !XFS_IS_REALTIME_INODE(ip));
1016 
1017 	while (off < XFS_MAX_FILEOFF) {
1018 		struct xfs_bmbt_irec	imap;
1019 		int			nimaps = 1;
1020 
1021 		/* Read the next extent, skip past holes and delalloc. */
1022 		error = xfs_bmapi_read(ip, off, XFS_MAX_FILEOFF - off, &imap,
1023 				&nimaps, bmap_flags);
1024 		if (error)
1025 			return error;
1026 		if (nimaps != 1 || imap.br_startblock == DELAYSTARTBLOCK) {
1027 			ASSERT(0);
1028 			return -EFSCORRUPTED;
1029 		}
1030 
1031 		/*
1032 		 * If this is a real space mapping, reap as much of it as we
1033 		 * can in a single transaction.
1034 		 */
1035 		if (xfs_bmap_is_real_extent(&imap)) {
1036 			error = xreap_ifork_extent(sc, ip, whichfork, &imap);
1037 			if (error)
1038 				return error;
1039 
1040 			error = xfs_defer_finish(&sc->tp);
1041 			if (error)
1042 				return error;
1043 		}
1044 
1045 		off = imap.br_startoff + imap.br_blockcount;
1046 	}
1047 
1048 	return 0;
1049 }
1050