xref: /linux/fs/xfs/scrub/newbt.c (revision b58b13f156c00c2457035b7071eaaac105fe6836)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2022-2023 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <djwong@kernel.org>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_mount.h"
12 #include "xfs_btree.h"
13 #include "xfs_btree_staging.h"
14 #include "xfs_log_format.h"
15 #include "xfs_trans.h"
16 #include "xfs_sb.h"
17 #include "xfs_inode.h"
18 #include "xfs_alloc.h"
19 #include "xfs_rmap.h"
20 #include "xfs_ag.h"
21 #include "xfs_defer.h"
22 #include "scrub/scrub.h"
23 #include "scrub/common.h"
24 #include "scrub/trace.h"
25 #include "scrub/repair.h"
26 #include "scrub/newbt.h"
27 
28 /*
29  * Estimate proper slack values for a btree that's being reloaded.
30  *
31  * Under most circumstances, we'll take whatever default loading value the
32  * btree bulk loading code calculates for us.  However, there are some
33  * exceptions to this rule:
34  *
35  * (0) If someone turned one of the debug knobs.
36  * (1) If this is a per-AG btree and the AG has less than 10% space free.
37  * (2) If this is an inode btree and the FS has less than 10% space free.
38 
39  * In either case, format the new btree blocks almost completely full to
40  * minimize space usage.
41  */
42 static void
43 xrep_newbt_estimate_slack(
44 	struct xrep_newbt	*xnr)
45 {
46 	struct xfs_scrub	*sc = xnr->sc;
47 	struct xfs_btree_bload	*bload = &xnr->bload;
48 	uint64_t		free;
49 	uint64_t		sz;
50 
51 	/*
52 	 * The xfs_globals values are set to -1 (i.e. take the bload defaults)
53 	 * unless someone has set them otherwise, so we just pull the values
54 	 * here.
55 	 */
56 	bload->leaf_slack = xfs_globals.bload_leaf_slack;
57 	bload->node_slack = xfs_globals.bload_node_slack;
58 
59 	if (sc->ops->type == ST_PERAG) {
60 		free = sc->sa.pag->pagf_freeblks;
61 		sz = xfs_ag_block_count(sc->mp, sc->sa.pag->pag_agno);
62 	} else {
63 		free = percpu_counter_sum(&sc->mp->m_fdblocks);
64 		sz = sc->mp->m_sb.sb_dblocks;
65 	}
66 
67 	/* No further changes if there's more than 10% free space left. */
68 	if (free >= div_u64(sz, 10))
69 		return;
70 
71 	/*
72 	 * We're low on space; load the btrees as tightly as possible.  Leave
73 	 * a couple of open slots in each btree block so that we don't end up
74 	 * splitting the btrees like crazy after a mount.
75 	 */
76 	if (bload->leaf_slack < 0)
77 		bload->leaf_slack = 2;
78 	if (bload->node_slack < 0)
79 		bload->node_slack = 2;
80 }
81 
82 /* Initialize accounting resources for staging a new AG btree. */
83 void
84 xrep_newbt_init_ag(
85 	struct xrep_newbt		*xnr,
86 	struct xfs_scrub		*sc,
87 	const struct xfs_owner_info	*oinfo,
88 	xfs_fsblock_t			alloc_hint,
89 	enum xfs_ag_resv_type		resv)
90 {
91 	memset(xnr, 0, sizeof(struct xrep_newbt));
92 	xnr->sc = sc;
93 	xnr->oinfo = *oinfo; /* structure copy */
94 	xnr->alloc_hint = alloc_hint;
95 	xnr->resv = resv;
96 	INIT_LIST_HEAD(&xnr->resv_list);
97 	xnr->bload.max_dirty = XFS_B_TO_FSBT(sc->mp, 256U << 10); /* 256K */
98 	xrep_newbt_estimate_slack(xnr);
99 }
100 
101 /* Initialize accounting resources for staging a new inode fork btree. */
102 int
103 xrep_newbt_init_inode(
104 	struct xrep_newbt		*xnr,
105 	struct xfs_scrub		*sc,
106 	int				whichfork,
107 	const struct xfs_owner_info	*oinfo)
108 {
109 	struct xfs_ifork		*ifp;
110 
111 	ifp = kmem_cache_zalloc(xfs_ifork_cache, XCHK_GFP_FLAGS);
112 	if (!ifp)
113 		return -ENOMEM;
114 
115 	xrep_newbt_init_ag(xnr, sc, oinfo,
116 			XFS_INO_TO_FSB(sc->mp, sc->ip->i_ino),
117 			XFS_AG_RESV_NONE);
118 	xnr->ifake.if_fork = ifp;
119 	xnr->ifake.if_fork_size = xfs_inode_fork_size(sc->ip, whichfork);
120 	return 0;
121 }
122 
123 /*
124  * Initialize accounting resources for staging a new btree.  Callers are
125  * expected to add their own reservations (and clean them up) manually.
126  */
127 void
128 xrep_newbt_init_bare(
129 	struct xrep_newbt		*xnr,
130 	struct xfs_scrub		*sc)
131 {
132 	xrep_newbt_init_ag(xnr, sc, &XFS_RMAP_OINFO_ANY_OWNER, NULLFSBLOCK,
133 			XFS_AG_RESV_NONE);
134 }
135 
136 /*
137  * Designate specific blocks to be used to build our new btree.  @pag must be
138  * a passive reference.
139  */
140 STATIC int
141 xrep_newbt_add_blocks(
142 	struct xrep_newbt		*xnr,
143 	struct xfs_perag		*pag,
144 	const struct xfs_alloc_arg	*args)
145 {
146 	struct xfs_mount		*mp = xnr->sc->mp;
147 	struct xrep_newbt_resv		*resv;
148 	int				error;
149 
150 	resv = kmalloc(sizeof(struct xrep_newbt_resv), XCHK_GFP_FLAGS);
151 	if (!resv)
152 		return -ENOMEM;
153 
154 	INIT_LIST_HEAD(&resv->list);
155 	resv->agbno = XFS_FSB_TO_AGBNO(mp, args->fsbno);
156 	resv->len = args->len;
157 	resv->used = 0;
158 	resv->pag = xfs_perag_hold(pag);
159 
160 	if (args->tp) {
161 		ASSERT(xnr->oinfo.oi_offset == 0);
162 
163 		error = xfs_alloc_schedule_autoreap(args, true, &resv->autoreap);
164 		if (error)
165 			goto out_pag;
166 	}
167 
168 	list_add_tail(&resv->list, &xnr->resv_list);
169 	return 0;
170 out_pag:
171 	xfs_perag_put(resv->pag);
172 	kfree(resv);
173 	return error;
174 }
175 
176 /*
177  * Add an extent to the new btree reservation pool.  Callers are required to
178  * reap this reservation manually if the repair is cancelled.  @pag must be a
179  * passive reference.
180  */
181 int
182 xrep_newbt_add_extent(
183 	struct xrep_newbt	*xnr,
184 	struct xfs_perag	*pag,
185 	xfs_agblock_t		agbno,
186 	xfs_extlen_t		len)
187 {
188 	struct xfs_mount	*mp = xnr->sc->mp;
189 	struct xfs_alloc_arg	args = {
190 		.tp		= NULL, /* no autoreap */
191 		.oinfo		= xnr->oinfo,
192 		.fsbno		= XFS_AGB_TO_FSB(mp, pag->pag_agno, agbno),
193 		.len		= len,
194 		.resv		= xnr->resv,
195 	};
196 
197 	return xrep_newbt_add_blocks(xnr, pag, &args);
198 }
199 
200 /* Don't let our allocation hint take us beyond this AG */
201 static inline void
202 xrep_newbt_validate_ag_alloc_hint(
203 	struct xrep_newbt	*xnr)
204 {
205 	struct xfs_scrub	*sc = xnr->sc;
206 	xfs_agnumber_t		agno = XFS_FSB_TO_AGNO(sc->mp, xnr->alloc_hint);
207 
208 	if (agno == sc->sa.pag->pag_agno &&
209 	    xfs_verify_fsbno(sc->mp, xnr->alloc_hint))
210 		return;
211 
212 	xnr->alloc_hint = XFS_AGB_TO_FSB(sc->mp, sc->sa.pag->pag_agno,
213 					 XFS_AGFL_BLOCK(sc->mp) + 1);
214 }
215 
216 /* Allocate disk space for a new per-AG btree. */
217 STATIC int
218 xrep_newbt_alloc_ag_blocks(
219 	struct xrep_newbt	*xnr,
220 	uint64_t		nr_blocks)
221 {
222 	struct xfs_scrub	*sc = xnr->sc;
223 	struct xfs_mount	*mp = sc->mp;
224 	int			error = 0;
225 
226 	ASSERT(sc->sa.pag != NULL);
227 
228 	while (nr_blocks > 0) {
229 		struct xfs_alloc_arg	args = {
230 			.tp		= sc->tp,
231 			.mp		= mp,
232 			.oinfo		= xnr->oinfo,
233 			.minlen		= 1,
234 			.maxlen		= nr_blocks,
235 			.prod		= 1,
236 			.resv		= xnr->resv,
237 		};
238 		xfs_agnumber_t		agno;
239 
240 		xrep_newbt_validate_ag_alloc_hint(xnr);
241 
242 		error = xfs_alloc_vextent_near_bno(&args, xnr->alloc_hint);
243 		if (error)
244 			return error;
245 		if (args.fsbno == NULLFSBLOCK)
246 			return -ENOSPC;
247 
248 		agno = XFS_FSB_TO_AGNO(mp, args.fsbno);
249 
250 		trace_xrep_newbt_alloc_ag_blocks(mp, agno,
251 				XFS_FSB_TO_AGBNO(mp, args.fsbno), args.len,
252 				xnr->oinfo.oi_owner);
253 
254 		if (agno != sc->sa.pag->pag_agno) {
255 			ASSERT(agno == sc->sa.pag->pag_agno);
256 			return -EFSCORRUPTED;
257 		}
258 
259 		error = xrep_newbt_add_blocks(xnr, sc->sa.pag, &args);
260 		if (error)
261 			return error;
262 
263 		nr_blocks -= args.len;
264 		xnr->alloc_hint = args.fsbno + args.len;
265 
266 		error = xrep_defer_finish(sc);
267 		if (error)
268 			return error;
269 	}
270 
271 	return 0;
272 }
273 
274 /* Don't let our allocation hint take us beyond EOFS */
275 static inline void
276 xrep_newbt_validate_file_alloc_hint(
277 	struct xrep_newbt	*xnr)
278 {
279 	struct xfs_scrub	*sc = xnr->sc;
280 
281 	if (xfs_verify_fsbno(sc->mp, xnr->alloc_hint))
282 		return;
283 
284 	xnr->alloc_hint = XFS_AGB_TO_FSB(sc->mp, 0, XFS_AGFL_BLOCK(sc->mp) + 1);
285 }
286 
287 /* Allocate disk space for our new file-based btree. */
288 STATIC int
289 xrep_newbt_alloc_file_blocks(
290 	struct xrep_newbt	*xnr,
291 	uint64_t		nr_blocks)
292 {
293 	struct xfs_scrub	*sc = xnr->sc;
294 	struct xfs_mount	*mp = sc->mp;
295 	int			error = 0;
296 
297 	while (nr_blocks > 0) {
298 		struct xfs_alloc_arg	args = {
299 			.tp		= sc->tp,
300 			.mp		= mp,
301 			.oinfo		= xnr->oinfo,
302 			.minlen		= 1,
303 			.maxlen		= nr_blocks,
304 			.prod		= 1,
305 			.resv		= xnr->resv,
306 		};
307 		struct xfs_perag	*pag;
308 		xfs_agnumber_t		agno;
309 
310 		xrep_newbt_validate_file_alloc_hint(xnr);
311 
312 		error = xfs_alloc_vextent_start_ag(&args, xnr->alloc_hint);
313 		if (error)
314 			return error;
315 		if (args.fsbno == NULLFSBLOCK)
316 			return -ENOSPC;
317 
318 		agno = XFS_FSB_TO_AGNO(mp, args.fsbno);
319 
320 		trace_xrep_newbt_alloc_file_blocks(mp, agno,
321 				XFS_FSB_TO_AGBNO(mp, args.fsbno), args.len,
322 				xnr->oinfo.oi_owner);
323 
324 		pag = xfs_perag_get(mp, agno);
325 		if (!pag) {
326 			ASSERT(0);
327 			return -EFSCORRUPTED;
328 		}
329 
330 		error = xrep_newbt_add_blocks(xnr, pag, &args);
331 		xfs_perag_put(pag);
332 		if (error)
333 			return error;
334 
335 		nr_blocks -= args.len;
336 		xnr->alloc_hint = args.fsbno + args.len;
337 
338 		error = xrep_defer_finish(sc);
339 		if (error)
340 			return error;
341 	}
342 
343 	return 0;
344 }
345 
346 /* Allocate disk space for our new btree. */
347 int
348 xrep_newbt_alloc_blocks(
349 	struct xrep_newbt	*xnr,
350 	uint64_t		nr_blocks)
351 {
352 	if (xnr->sc->ip)
353 		return xrep_newbt_alloc_file_blocks(xnr, nr_blocks);
354 	return xrep_newbt_alloc_ag_blocks(xnr, nr_blocks);
355 }
356 
357 /*
358  * Free the unused part of a space extent that was reserved for a new ondisk
359  * structure.  Returns the number of EFIs logged or a negative errno.
360  */
361 STATIC int
362 xrep_newbt_free_extent(
363 	struct xrep_newbt	*xnr,
364 	struct xrep_newbt_resv	*resv,
365 	bool			btree_committed)
366 {
367 	struct xfs_scrub	*sc = xnr->sc;
368 	xfs_agblock_t		free_agbno = resv->agbno;
369 	xfs_extlen_t		free_aglen = resv->len;
370 	xfs_fsblock_t		fsbno;
371 	int			error;
372 
373 	if (!btree_committed || resv->used == 0) {
374 		/*
375 		 * If we're not committing a new btree or we didn't use the
376 		 * space reservation, let the existing EFI free the entire
377 		 * space extent.
378 		 */
379 		trace_xrep_newbt_free_blocks(sc->mp, resv->pag->pag_agno,
380 				free_agbno, free_aglen, xnr->oinfo.oi_owner);
381 		xfs_alloc_commit_autoreap(sc->tp, &resv->autoreap);
382 		return 1;
383 	}
384 
385 	/*
386 	 * We used space and committed the btree.  Cancel the autoreap, remove
387 	 * the written blocks from the reservation, and possibly log a new EFI
388 	 * to free any unused reservation space.
389 	 */
390 	xfs_alloc_cancel_autoreap(sc->tp, &resv->autoreap);
391 	free_agbno += resv->used;
392 	free_aglen -= resv->used;
393 
394 	if (free_aglen == 0)
395 		return 0;
396 
397 	trace_xrep_newbt_free_blocks(sc->mp, resv->pag->pag_agno, free_agbno,
398 			free_aglen, xnr->oinfo.oi_owner);
399 
400 	ASSERT(xnr->resv != XFS_AG_RESV_AGFL);
401 	ASSERT(xnr->resv != XFS_AG_RESV_IGNORE);
402 
403 	/*
404 	 * Use EFIs to free the reservations.  This reduces the chance
405 	 * that we leak blocks if the system goes down.
406 	 */
407 	fsbno = XFS_AGB_TO_FSB(sc->mp, resv->pag->pag_agno, free_agbno);
408 	error = xfs_free_extent_later(sc->tp, fsbno, free_aglen, &xnr->oinfo,
409 			xnr->resv, true);
410 	if (error)
411 		return error;
412 
413 	return 1;
414 }
415 
416 /* Free all the accounting info and disk space we reserved for a new btree. */
417 STATIC int
418 xrep_newbt_free(
419 	struct xrep_newbt	*xnr,
420 	bool			btree_committed)
421 {
422 	struct xfs_scrub	*sc = xnr->sc;
423 	struct xrep_newbt_resv	*resv, *n;
424 	unsigned int		freed = 0;
425 	int			error = 0;
426 
427 	/*
428 	 * If the filesystem already went down, we can't free the blocks.  Skip
429 	 * ahead to freeing the incore metadata because we can't fix anything.
430 	 */
431 	if (xfs_is_shutdown(sc->mp))
432 		goto junkit;
433 
434 	list_for_each_entry_safe(resv, n, &xnr->resv_list, list) {
435 		int		ret;
436 
437 		ret = xrep_newbt_free_extent(xnr, resv, btree_committed);
438 		list_del(&resv->list);
439 		xfs_perag_put(resv->pag);
440 		kfree(resv);
441 		if (ret < 0) {
442 			error = ret;
443 			goto junkit;
444 		}
445 
446 		freed += ret;
447 		if (freed >= XREP_MAX_ITRUNCATE_EFIS) {
448 			error = xrep_defer_finish(sc);
449 			if (error)
450 				goto junkit;
451 			freed = 0;
452 		}
453 	}
454 
455 	if (freed)
456 		error = xrep_defer_finish(sc);
457 
458 junkit:
459 	/*
460 	 * If we still have reservations attached to @newbt, cleanup must have
461 	 * failed and the filesystem is about to go down.  Clean up the incore
462 	 * reservations and try to commit to freeing the space we used.
463 	 */
464 	list_for_each_entry_safe(resv, n, &xnr->resv_list, list) {
465 		xfs_alloc_commit_autoreap(sc->tp, &resv->autoreap);
466 		list_del(&resv->list);
467 		xfs_perag_put(resv->pag);
468 		kfree(resv);
469 	}
470 
471 	if (sc->ip) {
472 		kmem_cache_free(xfs_ifork_cache, xnr->ifake.if_fork);
473 		xnr->ifake.if_fork = NULL;
474 	}
475 
476 	return error;
477 }
478 
479 /*
480  * Free all the accounting info and unused disk space allocations after
481  * committing a new btree.
482  */
483 int
484 xrep_newbt_commit(
485 	struct xrep_newbt	*xnr)
486 {
487 	return xrep_newbt_free(xnr, true);
488 }
489 
490 /*
491  * Free all the accounting info and all of the disk space we reserved for a new
492  * btree that we're not going to commit.  We want to try to roll things back
493  * cleanly for things like ENOSPC midway through allocation.
494  */
495 void
496 xrep_newbt_cancel(
497 	struct xrep_newbt	*xnr)
498 {
499 	xrep_newbt_free(xnr, false);
500 }
501 
502 /* Feed one of the reserved btree blocks to the bulk loader. */
503 int
504 xrep_newbt_claim_block(
505 	struct xfs_btree_cur	*cur,
506 	struct xrep_newbt	*xnr,
507 	union xfs_btree_ptr	*ptr)
508 {
509 	struct xrep_newbt_resv	*resv;
510 	struct xfs_mount	*mp = cur->bc_mp;
511 	xfs_agblock_t		agbno;
512 
513 	/*
514 	 * The first item in the list should always have a free block unless
515 	 * we're completely out.
516 	 */
517 	resv = list_first_entry(&xnr->resv_list, struct xrep_newbt_resv, list);
518 	if (resv->used == resv->len)
519 		return -ENOSPC;
520 
521 	/*
522 	 * Peel off a block from the start of the reservation.  We allocate
523 	 * blocks in order to place blocks on disk in increasing record or key
524 	 * order.  The block reservations tend to end up on the list in
525 	 * decreasing order, which hopefully results in leaf blocks ending up
526 	 * together.
527 	 */
528 	agbno = resv->agbno + resv->used;
529 	resv->used++;
530 
531 	/* If we used all the blocks in this reservation, move it to the end. */
532 	if (resv->used == resv->len)
533 		list_move_tail(&resv->list, &xnr->resv_list);
534 
535 	trace_xrep_newbt_claim_block(mp, resv->pag->pag_agno, agbno, 1,
536 			xnr->oinfo.oi_owner);
537 
538 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
539 		ptr->l = cpu_to_be64(XFS_AGB_TO_FSB(mp, resv->pag->pag_agno,
540 								agbno));
541 	else
542 		ptr->s = cpu_to_be32(agbno);
543 
544 	/* Relog all the EFIs. */
545 	return xrep_defer_finish(xnr->sc);
546 }
547 
548 /* How many reserved blocks are unused? */
549 unsigned int
550 xrep_newbt_unused_blocks(
551 	struct xrep_newbt	*xnr)
552 {
553 	struct xrep_newbt_resv	*resv;
554 	unsigned int		unused = 0;
555 
556 	list_for_each_entry(resv, &xnr->resv_list, list)
557 		unused += resv->len - resv->used;
558 	return unused;
559 }
560