xref: /linux/fs/xfs/scrub/newbt.c (revision 8bc7c5e525584903ea83332e18a2118ed3b1985e)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2022-2023 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <djwong@kernel.org>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_mount.h"
12 #include "xfs_btree.h"
13 #include "xfs_btree_staging.h"
14 #include "xfs_log_format.h"
15 #include "xfs_trans.h"
16 #include "xfs_sb.h"
17 #include "xfs_inode.h"
18 #include "xfs_alloc.h"
19 #include "xfs_rmap.h"
20 #include "xfs_ag.h"
21 #include "xfs_defer.h"
22 #include "scrub/scrub.h"
23 #include "scrub/common.h"
24 #include "scrub/trace.h"
25 #include "scrub/repair.h"
26 #include "scrub/newbt.h"
27 
28 /*
29  * Estimate proper slack values for a btree that's being reloaded.
30  *
31  * Under most circumstances, we'll take whatever default loading value the
32  * btree bulk loading code calculates for us.  However, there are some
33  * exceptions to this rule:
34  *
35  * (0) If someone turned one of the debug knobs.
36  * (1) If this is a per-AG btree and the AG has less than 10% space free.
37  * (2) If this is an inode btree and the FS has less than 10% space free.
38 
39  * In either case, format the new btree blocks almost completely full to
40  * minimize space usage.
41  */
42 static void
43 xrep_newbt_estimate_slack(
44 	struct xrep_newbt	*xnr)
45 {
46 	struct xfs_scrub	*sc = xnr->sc;
47 	struct xfs_btree_bload	*bload = &xnr->bload;
48 	uint64_t		free;
49 	uint64_t		sz;
50 
51 	/*
52 	 * The xfs_globals values are set to -1 (i.e. take the bload defaults)
53 	 * unless someone has set them otherwise, so we just pull the values
54 	 * here.
55 	 */
56 	bload->leaf_slack = xfs_globals.bload_leaf_slack;
57 	bload->node_slack = xfs_globals.bload_node_slack;
58 
59 	if (sc->ops->type == ST_PERAG) {
60 		free = sc->sa.pag->pagf_freeblks;
61 		sz = xfs_ag_block_count(sc->mp, sc->sa.pag->pag_agno);
62 	} else {
63 		free = percpu_counter_sum(&sc->mp->m_fdblocks);
64 		sz = sc->mp->m_sb.sb_dblocks;
65 	}
66 
67 	/* No further changes if there's more than 10% free space left. */
68 	if (free >= div_u64(sz, 10))
69 		return;
70 
71 	/*
72 	 * We're low on space; load the btrees as tightly as possible.  Leave
73 	 * a couple of open slots in each btree block so that we don't end up
74 	 * splitting the btrees like crazy after a mount.
75 	 */
76 	if (bload->leaf_slack < 0)
77 		bload->leaf_slack = 2;
78 	if (bload->node_slack < 0)
79 		bload->node_slack = 2;
80 }
81 
82 /* Initialize accounting resources for staging a new AG btree. */
83 void
84 xrep_newbt_init_ag(
85 	struct xrep_newbt		*xnr,
86 	struct xfs_scrub		*sc,
87 	const struct xfs_owner_info	*oinfo,
88 	xfs_fsblock_t			alloc_hint,
89 	enum xfs_ag_resv_type		resv)
90 {
91 	memset(xnr, 0, sizeof(struct xrep_newbt));
92 	xnr->sc = sc;
93 	xnr->oinfo = *oinfo; /* structure copy */
94 	xnr->alloc_hint = alloc_hint;
95 	xnr->resv = resv;
96 	INIT_LIST_HEAD(&xnr->resv_list);
97 	xnr->bload.max_dirty = XFS_B_TO_FSBT(sc->mp, 256U << 10); /* 256K */
98 	xrep_newbt_estimate_slack(xnr);
99 }
100 
101 /* Initialize accounting resources for staging a new inode fork btree. */
102 int
103 xrep_newbt_init_inode(
104 	struct xrep_newbt		*xnr,
105 	struct xfs_scrub		*sc,
106 	int				whichfork,
107 	const struct xfs_owner_info	*oinfo)
108 {
109 	struct xfs_ifork		*ifp;
110 
111 	ifp = kmem_cache_zalloc(xfs_ifork_cache, XCHK_GFP_FLAGS);
112 	if (!ifp)
113 		return -ENOMEM;
114 
115 	xrep_newbt_init_ag(xnr, sc, oinfo,
116 			XFS_INO_TO_FSB(sc->mp, sc->ip->i_ino),
117 			XFS_AG_RESV_NONE);
118 	xnr->ifake.if_fork = ifp;
119 	xnr->ifake.if_fork_size = xfs_inode_fork_size(sc->ip, whichfork);
120 	return 0;
121 }
122 
123 /*
124  * Initialize accounting resources for staging a new btree.  Callers are
125  * expected to add their own reservations (and clean them up) manually.
126  */
127 void
128 xrep_newbt_init_bare(
129 	struct xrep_newbt		*xnr,
130 	struct xfs_scrub		*sc)
131 {
132 	xrep_newbt_init_ag(xnr, sc, &XFS_RMAP_OINFO_ANY_OWNER, NULLFSBLOCK,
133 			XFS_AG_RESV_NONE);
134 }
135 
136 /*
137  * Designate specific blocks to be used to build our new btree.  @pag must be
138  * a passive reference.
139  */
140 STATIC int
141 xrep_newbt_add_blocks(
142 	struct xrep_newbt		*xnr,
143 	struct xfs_perag		*pag,
144 	const struct xfs_alloc_arg	*args)
145 {
146 	struct xfs_mount		*mp = xnr->sc->mp;
147 	struct xrep_newbt_resv		*resv;
148 	int				error;
149 
150 	resv = kmalloc(sizeof(struct xrep_newbt_resv), XCHK_GFP_FLAGS);
151 	if (!resv)
152 		return -ENOMEM;
153 
154 	INIT_LIST_HEAD(&resv->list);
155 	resv->agbno = XFS_FSB_TO_AGBNO(mp, args->fsbno);
156 	resv->len = args->len;
157 	resv->used = 0;
158 	resv->pag = xfs_perag_hold(pag);
159 
160 	if (args->tp) {
161 		ASSERT(xnr->oinfo.oi_offset == 0);
162 
163 		error = xfs_alloc_schedule_autoreap(args,
164 				XFS_FREE_EXTENT_SKIP_DISCARD, &resv->autoreap);
165 		if (error)
166 			goto out_pag;
167 	}
168 
169 	list_add_tail(&resv->list, &xnr->resv_list);
170 	return 0;
171 out_pag:
172 	xfs_perag_put(resv->pag);
173 	kfree(resv);
174 	return error;
175 }
176 
177 /*
178  * Add an extent to the new btree reservation pool.  Callers are required to
179  * reap this reservation manually if the repair is cancelled.  @pag must be a
180  * passive reference.
181  */
182 int
183 xrep_newbt_add_extent(
184 	struct xrep_newbt	*xnr,
185 	struct xfs_perag	*pag,
186 	xfs_agblock_t		agbno,
187 	xfs_extlen_t		len)
188 {
189 	struct xfs_mount	*mp = xnr->sc->mp;
190 	struct xfs_alloc_arg	args = {
191 		.tp		= NULL, /* no autoreap */
192 		.oinfo		= xnr->oinfo,
193 		.fsbno		= XFS_AGB_TO_FSB(mp, pag->pag_agno, agbno),
194 		.len		= len,
195 		.resv		= xnr->resv,
196 	};
197 
198 	return xrep_newbt_add_blocks(xnr, pag, &args);
199 }
200 
201 /* Don't let our allocation hint take us beyond this AG */
202 static inline void
203 xrep_newbt_validate_ag_alloc_hint(
204 	struct xrep_newbt	*xnr)
205 {
206 	struct xfs_scrub	*sc = xnr->sc;
207 	xfs_agnumber_t		agno = XFS_FSB_TO_AGNO(sc->mp, xnr->alloc_hint);
208 
209 	if (agno == sc->sa.pag->pag_agno &&
210 	    xfs_verify_fsbno(sc->mp, xnr->alloc_hint))
211 		return;
212 
213 	xnr->alloc_hint = XFS_AGB_TO_FSB(sc->mp, sc->sa.pag->pag_agno,
214 					 XFS_AGFL_BLOCK(sc->mp) + 1);
215 }
216 
217 /* Allocate disk space for a new per-AG btree. */
218 STATIC int
219 xrep_newbt_alloc_ag_blocks(
220 	struct xrep_newbt	*xnr,
221 	uint64_t		nr_blocks)
222 {
223 	struct xfs_scrub	*sc = xnr->sc;
224 	struct xfs_mount	*mp = sc->mp;
225 	int			error = 0;
226 
227 	ASSERT(sc->sa.pag != NULL);
228 
229 	while (nr_blocks > 0) {
230 		struct xfs_alloc_arg	args = {
231 			.tp		= sc->tp,
232 			.mp		= mp,
233 			.oinfo		= xnr->oinfo,
234 			.minlen		= 1,
235 			.maxlen		= nr_blocks,
236 			.prod		= 1,
237 			.resv		= xnr->resv,
238 		};
239 		xfs_agnumber_t		agno;
240 
241 		xrep_newbt_validate_ag_alloc_hint(xnr);
242 
243 		if (xnr->alloc_vextent)
244 			error = xnr->alloc_vextent(sc, &args, xnr->alloc_hint);
245 		else
246 			error = xfs_alloc_vextent_near_bno(&args,
247 					xnr->alloc_hint);
248 		if (error)
249 			return error;
250 		if (args.fsbno == NULLFSBLOCK)
251 			return -ENOSPC;
252 
253 		agno = XFS_FSB_TO_AGNO(mp, args.fsbno);
254 
255 		trace_xrep_newbt_alloc_ag_blocks(mp, agno,
256 				XFS_FSB_TO_AGBNO(mp, args.fsbno), args.len,
257 				xnr->oinfo.oi_owner);
258 
259 		if (agno != sc->sa.pag->pag_agno) {
260 			ASSERT(agno == sc->sa.pag->pag_agno);
261 			return -EFSCORRUPTED;
262 		}
263 
264 		error = xrep_newbt_add_blocks(xnr, sc->sa.pag, &args);
265 		if (error)
266 			return error;
267 
268 		nr_blocks -= args.len;
269 		xnr->alloc_hint = args.fsbno + args.len;
270 
271 		error = xrep_defer_finish(sc);
272 		if (error)
273 			return error;
274 	}
275 
276 	return 0;
277 }
278 
279 /* Don't let our allocation hint take us beyond EOFS */
280 static inline void
281 xrep_newbt_validate_file_alloc_hint(
282 	struct xrep_newbt	*xnr)
283 {
284 	struct xfs_scrub	*sc = xnr->sc;
285 
286 	if (xfs_verify_fsbno(sc->mp, xnr->alloc_hint))
287 		return;
288 
289 	xnr->alloc_hint = XFS_AGB_TO_FSB(sc->mp, 0, XFS_AGFL_BLOCK(sc->mp) + 1);
290 }
291 
292 /* Allocate disk space for our new file-based btree. */
293 STATIC int
294 xrep_newbt_alloc_file_blocks(
295 	struct xrep_newbt	*xnr,
296 	uint64_t		nr_blocks)
297 {
298 	struct xfs_scrub	*sc = xnr->sc;
299 	struct xfs_mount	*mp = sc->mp;
300 	int			error = 0;
301 
302 	while (nr_blocks > 0) {
303 		struct xfs_alloc_arg	args = {
304 			.tp		= sc->tp,
305 			.mp		= mp,
306 			.oinfo		= xnr->oinfo,
307 			.minlen		= 1,
308 			.maxlen		= nr_blocks,
309 			.prod		= 1,
310 			.resv		= xnr->resv,
311 		};
312 		struct xfs_perag	*pag;
313 		xfs_agnumber_t		agno;
314 
315 		xrep_newbt_validate_file_alloc_hint(xnr);
316 
317 		if (xnr->alloc_vextent)
318 			error = xnr->alloc_vextent(sc, &args, xnr->alloc_hint);
319 		else
320 			error = xfs_alloc_vextent_start_ag(&args,
321 					xnr->alloc_hint);
322 		if (error)
323 			return error;
324 		if (args.fsbno == NULLFSBLOCK)
325 			return -ENOSPC;
326 
327 		agno = XFS_FSB_TO_AGNO(mp, args.fsbno);
328 
329 		trace_xrep_newbt_alloc_file_blocks(mp, agno,
330 				XFS_FSB_TO_AGBNO(mp, args.fsbno), args.len,
331 				xnr->oinfo.oi_owner);
332 
333 		pag = xfs_perag_get(mp, agno);
334 		if (!pag) {
335 			ASSERT(0);
336 			return -EFSCORRUPTED;
337 		}
338 
339 		error = xrep_newbt_add_blocks(xnr, pag, &args);
340 		xfs_perag_put(pag);
341 		if (error)
342 			return error;
343 
344 		nr_blocks -= args.len;
345 		xnr->alloc_hint = args.fsbno + args.len;
346 
347 		error = xrep_defer_finish(sc);
348 		if (error)
349 			return error;
350 	}
351 
352 	return 0;
353 }
354 
355 /* Allocate disk space for our new btree. */
356 int
357 xrep_newbt_alloc_blocks(
358 	struct xrep_newbt	*xnr,
359 	uint64_t		nr_blocks)
360 {
361 	if (xnr->sc->ip)
362 		return xrep_newbt_alloc_file_blocks(xnr, nr_blocks);
363 	return xrep_newbt_alloc_ag_blocks(xnr, nr_blocks);
364 }
365 
366 /*
367  * Free the unused part of a space extent that was reserved for a new ondisk
368  * structure.  Returns the number of EFIs logged or a negative errno.
369  */
370 STATIC int
371 xrep_newbt_free_extent(
372 	struct xrep_newbt	*xnr,
373 	struct xrep_newbt_resv	*resv,
374 	bool			btree_committed)
375 {
376 	struct xfs_scrub	*sc = xnr->sc;
377 	xfs_agblock_t		free_agbno = resv->agbno;
378 	xfs_extlen_t		free_aglen = resv->len;
379 	xfs_fsblock_t		fsbno;
380 	int			error;
381 
382 	if (!btree_committed || resv->used == 0) {
383 		/*
384 		 * If we're not committing a new btree or we didn't use the
385 		 * space reservation, let the existing EFI free the entire
386 		 * space extent.
387 		 */
388 		trace_xrep_newbt_free_blocks(sc->mp, resv->pag->pag_agno,
389 				free_agbno, free_aglen, xnr->oinfo.oi_owner);
390 		xfs_alloc_commit_autoreap(sc->tp, &resv->autoreap);
391 		return 1;
392 	}
393 
394 	/*
395 	 * We used space and committed the btree.  Cancel the autoreap, remove
396 	 * the written blocks from the reservation, and possibly log a new EFI
397 	 * to free any unused reservation space.
398 	 */
399 	xfs_alloc_cancel_autoreap(sc->tp, &resv->autoreap);
400 	free_agbno += resv->used;
401 	free_aglen -= resv->used;
402 
403 	if (free_aglen == 0)
404 		return 0;
405 
406 	trace_xrep_newbt_free_blocks(sc->mp, resv->pag->pag_agno, free_agbno,
407 			free_aglen, xnr->oinfo.oi_owner);
408 
409 	ASSERT(xnr->resv != XFS_AG_RESV_AGFL);
410 	ASSERT(xnr->resv != XFS_AG_RESV_IGNORE);
411 
412 	/*
413 	 * Use EFIs to free the reservations.  This reduces the chance
414 	 * that we leak blocks if the system goes down.
415 	 */
416 	fsbno = XFS_AGB_TO_FSB(sc->mp, resv->pag->pag_agno, free_agbno);
417 	error = xfs_free_extent_later(sc->tp, fsbno, free_aglen, &xnr->oinfo,
418 			xnr->resv, XFS_FREE_EXTENT_SKIP_DISCARD);
419 	if (error)
420 		return error;
421 
422 	return 1;
423 }
424 
425 /* Free all the accounting info and disk space we reserved for a new btree. */
426 STATIC int
427 xrep_newbt_free(
428 	struct xrep_newbt	*xnr,
429 	bool			btree_committed)
430 {
431 	struct xfs_scrub	*sc = xnr->sc;
432 	struct xrep_newbt_resv	*resv, *n;
433 	unsigned int		freed = 0;
434 	int			error = 0;
435 
436 	/*
437 	 * If the filesystem already went down, we can't free the blocks.  Skip
438 	 * ahead to freeing the incore metadata because we can't fix anything.
439 	 */
440 	if (xfs_is_shutdown(sc->mp))
441 		goto junkit;
442 
443 	list_for_each_entry_safe(resv, n, &xnr->resv_list, list) {
444 		int		ret;
445 
446 		ret = xrep_newbt_free_extent(xnr, resv, btree_committed);
447 		list_del(&resv->list);
448 		xfs_perag_put(resv->pag);
449 		kfree(resv);
450 		if (ret < 0) {
451 			error = ret;
452 			goto junkit;
453 		}
454 
455 		freed += ret;
456 		if (freed >= XREP_MAX_ITRUNCATE_EFIS) {
457 			error = xrep_defer_finish(sc);
458 			if (error)
459 				goto junkit;
460 			freed = 0;
461 		}
462 	}
463 
464 	if (freed)
465 		error = xrep_defer_finish(sc);
466 
467 junkit:
468 	/*
469 	 * If we still have reservations attached to @newbt, cleanup must have
470 	 * failed and the filesystem is about to go down.  Clean up the incore
471 	 * reservations and try to commit to freeing the space we used.
472 	 */
473 	list_for_each_entry_safe(resv, n, &xnr->resv_list, list) {
474 		xfs_alloc_commit_autoreap(sc->tp, &resv->autoreap);
475 		list_del(&resv->list);
476 		xfs_perag_put(resv->pag);
477 		kfree(resv);
478 	}
479 
480 	if (sc->ip) {
481 		kmem_cache_free(xfs_ifork_cache, xnr->ifake.if_fork);
482 		xnr->ifake.if_fork = NULL;
483 	}
484 
485 	return error;
486 }
487 
488 /*
489  * Free all the accounting info and unused disk space allocations after
490  * committing a new btree.
491  */
492 int
493 xrep_newbt_commit(
494 	struct xrep_newbt	*xnr)
495 {
496 	return xrep_newbt_free(xnr, true);
497 }
498 
499 /*
500  * Free all the accounting info and all of the disk space we reserved for a new
501  * btree that we're not going to commit.  We want to try to roll things back
502  * cleanly for things like ENOSPC midway through allocation.
503  */
504 void
505 xrep_newbt_cancel(
506 	struct xrep_newbt	*xnr)
507 {
508 	xrep_newbt_free(xnr, false);
509 }
510 
511 /* Feed one of the reserved btree blocks to the bulk loader. */
512 int
513 xrep_newbt_claim_block(
514 	struct xfs_btree_cur	*cur,
515 	struct xrep_newbt	*xnr,
516 	union xfs_btree_ptr	*ptr)
517 {
518 	struct xrep_newbt_resv	*resv;
519 	struct xfs_mount	*mp = cur->bc_mp;
520 	xfs_agblock_t		agbno;
521 
522 	/*
523 	 * The first item in the list should always have a free block unless
524 	 * we're completely out.
525 	 */
526 	resv = list_first_entry(&xnr->resv_list, struct xrep_newbt_resv, list);
527 	if (resv->used == resv->len)
528 		return -ENOSPC;
529 
530 	/*
531 	 * Peel off a block from the start of the reservation.  We allocate
532 	 * blocks in order to place blocks on disk in increasing record or key
533 	 * order.  The block reservations tend to end up on the list in
534 	 * decreasing order, which hopefully results in leaf blocks ending up
535 	 * together.
536 	 */
537 	agbno = resv->agbno + resv->used;
538 	resv->used++;
539 
540 	/* If we used all the blocks in this reservation, move it to the end. */
541 	if (resv->used == resv->len)
542 		list_move_tail(&resv->list, &xnr->resv_list);
543 
544 	trace_xrep_newbt_claim_block(mp, resv->pag->pag_agno, agbno, 1,
545 			xnr->oinfo.oi_owner);
546 
547 	if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
548 		ptr->l = cpu_to_be64(XFS_AGB_TO_FSB(mp, resv->pag->pag_agno,
549 								agbno));
550 	else
551 		ptr->s = cpu_to_be32(agbno);
552 
553 	/* Relog all the EFIs. */
554 	return xrep_defer_finish(xnr->sc);
555 }
556 
557 /* How many reserved blocks are unused? */
558 unsigned int
559 xrep_newbt_unused_blocks(
560 	struct xrep_newbt	*xnr)
561 {
562 	struct xrep_newbt_resv	*resv;
563 	unsigned int		unused = 0;
564 
565 	list_for_each_entry(resv, &xnr->resv_list, list)
566 		unused += resv->len - resv->used;
567 	return unused;
568 }
569