xref: /linux/fs/xfs/scrub/newbt.c (revision 7f4f3b14e8079ecde096bd734af10e30d40c27b7)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2022-2023 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <djwong@kernel.org>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_mount.h"
12 #include "xfs_btree.h"
13 #include "xfs_btree_staging.h"
14 #include "xfs_log_format.h"
15 #include "xfs_trans.h"
16 #include "xfs_sb.h"
17 #include "xfs_inode.h"
18 #include "xfs_alloc.h"
19 #include "xfs_rmap.h"
20 #include "xfs_ag.h"
21 #include "xfs_defer.h"
22 #include "scrub/scrub.h"
23 #include "scrub/common.h"
24 #include "scrub/trace.h"
25 #include "scrub/repair.h"
26 #include "scrub/newbt.h"
27 
28 /*
29  * Estimate proper slack values for a btree that's being reloaded.
30  *
31  * Under most circumstances, we'll take whatever default loading value the
32  * btree bulk loading code calculates for us.  However, there are some
33  * exceptions to this rule:
34  *
35  * (0) If someone turned one of the debug knobs.
36  * (1) If this is a per-AG btree and the AG has less than 10% space free.
37  * (2) If this is an inode btree and the FS has less than 10% space free.
38 
39  * In either case, format the new btree blocks almost completely full to
40  * minimize space usage.
41  */
42 static void
43 xrep_newbt_estimate_slack(
44 	struct xrep_newbt	*xnr)
45 {
46 	struct xfs_scrub	*sc = xnr->sc;
47 	struct xfs_btree_bload	*bload = &xnr->bload;
48 	uint64_t		free;
49 	uint64_t		sz;
50 
51 	/*
52 	 * The xfs_globals values are set to -1 (i.e. take the bload defaults)
53 	 * unless someone has set them otherwise, so we just pull the values
54 	 * here.
55 	 */
56 	bload->leaf_slack = xfs_globals.bload_leaf_slack;
57 	bload->node_slack = xfs_globals.bload_node_slack;
58 
59 	if (sc->ops->type == ST_PERAG) {
60 		free = sc->sa.pag->pagf_freeblks;
61 		sz = xfs_ag_block_count(sc->mp, pag_agno(sc->sa.pag));
62 	} else {
63 		free = percpu_counter_sum(&sc->mp->m_fdblocks);
64 		sz = sc->mp->m_sb.sb_dblocks;
65 	}
66 
67 	/* No further changes if there's more than 10% free space left. */
68 	if (free >= div_u64(sz, 10))
69 		return;
70 
71 	/*
72 	 * We're low on space; load the btrees as tightly as possible.  Leave
73 	 * a couple of open slots in each btree block so that we don't end up
74 	 * splitting the btrees like crazy after a mount.
75 	 */
76 	if (bload->leaf_slack < 0)
77 		bload->leaf_slack = 2;
78 	if (bload->node_slack < 0)
79 		bload->node_slack = 2;
80 }
81 
82 /* Initialize accounting resources for staging a new AG btree. */
83 void
84 xrep_newbt_init_ag(
85 	struct xrep_newbt		*xnr,
86 	struct xfs_scrub		*sc,
87 	const struct xfs_owner_info	*oinfo,
88 	xfs_fsblock_t			alloc_hint,
89 	enum xfs_ag_resv_type		resv)
90 {
91 	memset(xnr, 0, sizeof(struct xrep_newbt));
92 	xnr->sc = sc;
93 	xnr->oinfo = *oinfo; /* structure copy */
94 	xnr->alloc_hint = alloc_hint;
95 	xnr->resv = resv;
96 	INIT_LIST_HEAD(&xnr->resv_list);
97 	xnr->bload.max_dirty = XFS_B_TO_FSBT(sc->mp, 256U << 10); /* 256K */
98 	xrep_newbt_estimate_slack(xnr);
99 }
100 
101 /* Initialize accounting resources for staging a new inode fork btree. */
102 int
103 xrep_newbt_init_inode(
104 	struct xrep_newbt		*xnr,
105 	struct xfs_scrub		*sc,
106 	int				whichfork,
107 	const struct xfs_owner_info	*oinfo)
108 {
109 	struct xfs_ifork		*ifp;
110 
111 	ifp = kmem_cache_zalloc(xfs_ifork_cache, XCHK_GFP_FLAGS);
112 	if (!ifp)
113 		return -ENOMEM;
114 
115 	xrep_newbt_init_ag(xnr, sc, oinfo,
116 			XFS_INO_TO_FSB(sc->mp, sc->ip->i_ino),
117 			XFS_AG_RESV_NONE);
118 	xnr->ifake.if_fork = ifp;
119 	xnr->ifake.if_fork_size = xfs_inode_fork_size(sc->ip, whichfork);
120 	return 0;
121 }
122 
123 /*
124  * Initialize accounting resources for staging a new btree.  Callers are
125  * expected to add their own reservations (and clean them up) manually.
126  */
127 void
128 xrep_newbt_init_bare(
129 	struct xrep_newbt		*xnr,
130 	struct xfs_scrub		*sc)
131 {
132 	xrep_newbt_init_ag(xnr, sc, &XFS_RMAP_OINFO_ANY_OWNER, NULLFSBLOCK,
133 			XFS_AG_RESV_NONE);
134 }
135 
136 /*
137  * Designate specific blocks to be used to build our new btree.  @pag must be
138  * a passive reference.
139  */
140 STATIC int
141 xrep_newbt_add_blocks(
142 	struct xrep_newbt		*xnr,
143 	struct xfs_perag		*pag,
144 	const struct xfs_alloc_arg	*args)
145 {
146 	struct xfs_mount		*mp = xnr->sc->mp;
147 	struct xrep_newbt_resv		*resv;
148 	int				error;
149 
150 	resv = kmalloc(sizeof(struct xrep_newbt_resv), XCHK_GFP_FLAGS);
151 	if (!resv)
152 		return -ENOMEM;
153 
154 	INIT_LIST_HEAD(&resv->list);
155 	resv->agbno = XFS_FSB_TO_AGBNO(mp, args->fsbno);
156 	resv->len = args->len;
157 	resv->used = 0;
158 	resv->pag = xfs_perag_hold(pag);
159 
160 	if (args->tp) {
161 		ASSERT(xnr->oinfo.oi_offset == 0);
162 
163 		error = xfs_alloc_schedule_autoreap(args,
164 				XFS_FREE_EXTENT_SKIP_DISCARD, &resv->autoreap);
165 		if (error)
166 			goto out_pag;
167 	}
168 
169 	list_add_tail(&resv->list, &xnr->resv_list);
170 	return 0;
171 out_pag:
172 	xfs_perag_put(resv->pag);
173 	kfree(resv);
174 	return error;
175 }
176 
177 /*
178  * Add an extent to the new btree reservation pool.  Callers are required to
179  * reap this reservation manually if the repair is cancelled.  @pag must be a
180  * passive reference.
181  */
182 int
183 xrep_newbt_add_extent(
184 	struct xrep_newbt	*xnr,
185 	struct xfs_perag	*pag,
186 	xfs_agblock_t		agbno,
187 	xfs_extlen_t		len)
188 {
189 	struct xfs_alloc_arg	args = {
190 		.tp		= NULL, /* no autoreap */
191 		.oinfo		= xnr->oinfo,
192 		.fsbno		= xfs_agbno_to_fsb(pag, agbno),
193 		.len		= len,
194 		.resv		= xnr->resv,
195 	};
196 
197 	return xrep_newbt_add_blocks(xnr, pag, &args);
198 }
199 
200 /* Don't let our allocation hint take us beyond this AG */
201 static inline void
202 xrep_newbt_validate_ag_alloc_hint(
203 	struct xrep_newbt	*xnr)
204 {
205 	struct xfs_scrub	*sc = xnr->sc;
206 	xfs_agnumber_t		agno = XFS_FSB_TO_AGNO(sc->mp, xnr->alloc_hint);
207 
208 	if (agno == pag_agno(sc->sa.pag) &&
209 	    xfs_verify_fsbno(sc->mp, xnr->alloc_hint))
210 		return;
211 
212 	xnr->alloc_hint =
213 		xfs_agbno_to_fsb(sc->sa.pag, XFS_AGFL_BLOCK(sc->mp) + 1);
214 }
215 
216 /* Allocate disk space for a new per-AG btree. */
217 STATIC int
218 xrep_newbt_alloc_ag_blocks(
219 	struct xrep_newbt	*xnr,
220 	uint64_t		nr_blocks)
221 {
222 	struct xfs_scrub	*sc = xnr->sc;
223 	struct xfs_mount	*mp = sc->mp;
224 	int			error = 0;
225 
226 	ASSERT(sc->sa.pag != NULL);
227 
228 	while (nr_blocks > 0) {
229 		struct xfs_alloc_arg	args = {
230 			.tp		= sc->tp,
231 			.mp		= mp,
232 			.oinfo		= xnr->oinfo,
233 			.minlen		= 1,
234 			.maxlen		= nr_blocks,
235 			.prod		= 1,
236 			.resv		= xnr->resv,
237 		};
238 		xfs_agnumber_t		agno;
239 
240 		xrep_newbt_validate_ag_alloc_hint(xnr);
241 
242 		if (xnr->alloc_vextent)
243 			error = xnr->alloc_vextent(sc, &args, xnr->alloc_hint);
244 		else
245 			error = xfs_alloc_vextent_near_bno(&args,
246 					xnr->alloc_hint);
247 		if (error)
248 			return error;
249 		if (args.fsbno == NULLFSBLOCK)
250 			return -ENOSPC;
251 
252 		agno = XFS_FSB_TO_AGNO(mp, args.fsbno);
253 		if (agno != pag_agno(sc->sa.pag)) {
254 			ASSERT(agno == pag_agno(sc->sa.pag));
255 			return -EFSCORRUPTED;
256 		}
257 
258 		trace_xrep_newbt_alloc_ag_blocks(sc->sa.pag,
259 				XFS_FSB_TO_AGBNO(mp, args.fsbno), args.len,
260 				xnr->oinfo.oi_owner);
261 
262 		error = xrep_newbt_add_blocks(xnr, sc->sa.pag, &args);
263 		if (error)
264 			return error;
265 
266 		nr_blocks -= args.len;
267 		xnr->alloc_hint = args.fsbno + args.len;
268 
269 		error = xrep_defer_finish(sc);
270 		if (error)
271 			return error;
272 	}
273 
274 	return 0;
275 }
276 
277 /* Don't let our allocation hint take us beyond EOFS */
278 static inline void
279 xrep_newbt_validate_file_alloc_hint(
280 	struct xrep_newbt	*xnr)
281 {
282 	struct xfs_scrub	*sc = xnr->sc;
283 
284 	if (xfs_verify_fsbno(sc->mp, xnr->alloc_hint))
285 		return;
286 
287 	xnr->alloc_hint = XFS_AGB_TO_FSB(sc->mp, 0, XFS_AGFL_BLOCK(sc->mp) + 1);
288 }
289 
290 /* Allocate disk space for our new file-based btree. */
291 STATIC int
292 xrep_newbt_alloc_file_blocks(
293 	struct xrep_newbt	*xnr,
294 	uint64_t		nr_blocks)
295 {
296 	struct xfs_scrub	*sc = xnr->sc;
297 	struct xfs_mount	*mp = sc->mp;
298 	int			error = 0;
299 
300 	while (nr_blocks > 0) {
301 		struct xfs_alloc_arg	args = {
302 			.tp		= sc->tp,
303 			.mp		= mp,
304 			.oinfo		= xnr->oinfo,
305 			.minlen		= 1,
306 			.maxlen		= nr_blocks,
307 			.prod		= 1,
308 			.resv		= xnr->resv,
309 		};
310 		struct xfs_perag	*pag;
311 		xfs_agnumber_t		agno;
312 
313 		xrep_newbt_validate_file_alloc_hint(xnr);
314 
315 		if (xnr->alloc_vextent)
316 			error = xnr->alloc_vextent(sc, &args, xnr->alloc_hint);
317 		else
318 			error = xfs_alloc_vextent_start_ag(&args,
319 					xnr->alloc_hint);
320 		if (error)
321 			return error;
322 		if (args.fsbno == NULLFSBLOCK)
323 			return -ENOSPC;
324 
325 		agno = XFS_FSB_TO_AGNO(mp, args.fsbno);
326 
327 		pag = xfs_perag_get(mp, agno);
328 		if (!pag) {
329 			ASSERT(0);
330 			return -EFSCORRUPTED;
331 		}
332 
333 		trace_xrep_newbt_alloc_file_blocks(pag,
334 				XFS_FSB_TO_AGBNO(mp, args.fsbno), args.len,
335 				xnr->oinfo.oi_owner);
336 
337 		error = xrep_newbt_add_blocks(xnr, pag, &args);
338 		xfs_perag_put(pag);
339 		if (error)
340 			return error;
341 
342 		nr_blocks -= args.len;
343 		xnr->alloc_hint = args.fsbno + args.len;
344 
345 		error = xrep_defer_finish(sc);
346 		if (error)
347 			return error;
348 	}
349 
350 	return 0;
351 }
352 
353 /* Allocate disk space for our new btree. */
354 int
355 xrep_newbt_alloc_blocks(
356 	struct xrep_newbt	*xnr,
357 	uint64_t		nr_blocks)
358 {
359 	if (xnr->sc->ip)
360 		return xrep_newbt_alloc_file_blocks(xnr, nr_blocks);
361 	return xrep_newbt_alloc_ag_blocks(xnr, nr_blocks);
362 }
363 
364 /*
365  * Free the unused part of a space extent that was reserved for a new ondisk
366  * structure.  Returns the number of EFIs logged or a negative errno.
367  */
368 STATIC int
369 xrep_newbt_free_extent(
370 	struct xrep_newbt	*xnr,
371 	struct xrep_newbt_resv	*resv,
372 	bool			btree_committed)
373 {
374 	struct xfs_scrub	*sc = xnr->sc;
375 	xfs_agblock_t		free_agbno = resv->agbno;
376 	xfs_extlen_t		free_aglen = resv->len;
377 	int			error;
378 
379 	if (!btree_committed || resv->used == 0) {
380 		/*
381 		 * If we're not committing a new btree or we didn't use the
382 		 * space reservation, let the existing EFI free the entire
383 		 * space extent.
384 		 */
385 		trace_xrep_newbt_free_blocks(resv->pag, free_agbno, free_aglen,
386 				xnr->oinfo.oi_owner);
387 		xfs_alloc_commit_autoreap(sc->tp, &resv->autoreap);
388 		return 1;
389 	}
390 
391 	/*
392 	 * We used space and committed the btree.  Cancel the autoreap, remove
393 	 * the written blocks from the reservation, and possibly log a new EFI
394 	 * to free any unused reservation space.
395 	 */
396 	xfs_alloc_cancel_autoreap(sc->tp, &resv->autoreap);
397 	free_agbno += resv->used;
398 	free_aglen -= resv->used;
399 
400 	if (free_aglen == 0)
401 		return 0;
402 
403 	trace_xrep_newbt_free_blocks(resv->pag, free_agbno, free_aglen,
404 			xnr->oinfo.oi_owner);
405 
406 	ASSERT(xnr->resv != XFS_AG_RESV_AGFL);
407 	ASSERT(xnr->resv != XFS_AG_RESV_IGNORE);
408 
409 	/*
410 	 * Use EFIs to free the reservations.  This reduces the chance
411 	 * that we leak blocks if the system goes down.
412 	 */
413 	error = xfs_free_extent_later(sc->tp,
414 			xfs_agbno_to_fsb(resv->pag, free_agbno), free_aglen,
415 			&xnr->oinfo, xnr->resv, XFS_FREE_EXTENT_SKIP_DISCARD);
416 	if (error)
417 		return error;
418 
419 	return 1;
420 }
421 
422 /* Free all the accounting info and disk space we reserved for a new btree. */
423 STATIC int
424 xrep_newbt_free(
425 	struct xrep_newbt	*xnr,
426 	bool			btree_committed)
427 {
428 	struct xfs_scrub	*sc = xnr->sc;
429 	struct xrep_newbt_resv	*resv, *n;
430 	unsigned int		freed = 0;
431 	int			error = 0;
432 
433 	/*
434 	 * If the filesystem already went down, we can't free the blocks.  Skip
435 	 * ahead to freeing the incore metadata because we can't fix anything.
436 	 */
437 	if (xfs_is_shutdown(sc->mp))
438 		goto junkit;
439 
440 	list_for_each_entry_safe(resv, n, &xnr->resv_list, list) {
441 		int		ret;
442 
443 		ret = xrep_newbt_free_extent(xnr, resv, btree_committed);
444 		list_del(&resv->list);
445 		xfs_perag_put(resv->pag);
446 		kfree(resv);
447 		if (ret < 0) {
448 			error = ret;
449 			goto junkit;
450 		}
451 
452 		freed += ret;
453 		if (freed >= XREP_MAX_ITRUNCATE_EFIS) {
454 			error = xrep_defer_finish(sc);
455 			if (error)
456 				goto junkit;
457 			freed = 0;
458 		}
459 	}
460 
461 	if (freed)
462 		error = xrep_defer_finish(sc);
463 
464 junkit:
465 	/*
466 	 * If we still have reservations attached to @newbt, cleanup must have
467 	 * failed and the filesystem is about to go down.  Clean up the incore
468 	 * reservations and try to commit to freeing the space we used.
469 	 */
470 	list_for_each_entry_safe(resv, n, &xnr->resv_list, list) {
471 		xfs_alloc_commit_autoreap(sc->tp, &resv->autoreap);
472 		list_del(&resv->list);
473 		xfs_perag_put(resv->pag);
474 		kfree(resv);
475 	}
476 
477 	if (sc->ip) {
478 		kmem_cache_free(xfs_ifork_cache, xnr->ifake.if_fork);
479 		xnr->ifake.if_fork = NULL;
480 	}
481 
482 	return error;
483 }
484 
485 /*
486  * Free all the accounting info and unused disk space allocations after
487  * committing a new btree.
488  */
489 int
490 xrep_newbt_commit(
491 	struct xrep_newbt	*xnr)
492 {
493 	return xrep_newbt_free(xnr, true);
494 }
495 
496 /*
497  * Free all the accounting info and all of the disk space we reserved for a new
498  * btree that we're not going to commit.  We want to try to roll things back
499  * cleanly for things like ENOSPC midway through allocation.
500  */
501 void
502 xrep_newbt_cancel(
503 	struct xrep_newbt	*xnr)
504 {
505 	xrep_newbt_free(xnr, false);
506 }
507 
508 /* Feed one of the reserved btree blocks to the bulk loader. */
509 int
510 xrep_newbt_claim_block(
511 	struct xfs_btree_cur	*cur,
512 	struct xrep_newbt	*xnr,
513 	union xfs_btree_ptr	*ptr)
514 {
515 	struct xrep_newbt_resv	*resv;
516 	xfs_agblock_t		agbno;
517 
518 	/*
519 	 * The first item in the list should always have a free block unless
520 	 * we're completely out.
521 	 */
522 	resv = list_first_entry(&xnr->resv_list, struct xrep_newbt_resv, list);
523 	if (resv->used == resv->len)
524 		return -ENOSPC;
525 
526 	/*
527 	 * Peel off a block from the start of the reservation.  We allocate
528 	 * blocks in order to place blocks on disk in increasing record or key
529 	 * order.  The block reservations tend to end up on the list in
530 	 * decreasing order, which hopefully results in leaf blocks ending up
531 	 * together.
532 	 */
533 	agbno = resv->agbno + resv->used;
534 	resv->used++;
535 
536 	/* If we used all the blocks in this reservation, move it to the end. */
537 	if (resv->used == resv->len)
538 		list_move_tail(&resv->list, &xnr->resv_list);
539 
540 	trace_xrep_newbt_claim_block(resv->pag, agbno, 1, xnr->oinfo.oi_owner);
541 
542 	if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
543 		ptr->l = cpu_to_be64(xfs_agbno_to_fsb(resv->pag, agbno));
544 	else
545 		ptr->s = cpu_to_be32(agbno);
546 
547 	/* Relog all the EFIs. */
548 	return xrep_defer_finish(xnr->sc);
549 }
550 
551 /* How many reserved blocks are unused? */
552 unsigned int
553 xrep_newbt_unused_blocks(
554 	struct xrep_newbt	*xnr)
555 {
556 	struct xrep_newbt_resv	*resv;
557 	unsigned int		unused = 0;
558 
559 	list_for_each_entry(resv, &xnr->resv_list, list)
560 		unused += resv->len - resv->used;
561 	return unused;
562 }
563