1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2019-2023 Oracle. All Rights Reserved. 4 * Author: Darrick J. Wong <djwong@kernel.org> 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_trans_resv.h" 11 #include "xfs_mount.h" 12 #include "xfs_btree.h" 13 #include "xfs_ag.h" 14 #include "xfs_health.h" 15 #include "xfs_rtgroup.h" 16 #include "scrub/scrub.h" 17 #include "scrub/health.h" 18 #include "scrub/common.h" 19 20 /* 21 * Scrub and In-Core Filesystem Health Assessments 22 * =============================================== 23 * 24 * Online scrub and repair have the time and the ability to perform stronger 25 * checks than we can do from the metadata verifiers, because they can 26 * cross-reference records between data structures. Therefore, scrub is in a 27 * good position to update the online filesystem health assessments to reflect 28 * the good/bad state of the data structure. 29 * 30 * We therefore extend scrub in the following ways to achieve this: 31 * 32 * 1. Create a "sick_mask" field in the scrub context. When we're setting up a 33 * scrub call, set this to the default XFS_SICK_* flag(s) for the selected 34 * scrub type (call it A). Scrub and repair functions can override the default 35 * sick_mask value if they choose. 36 * 37 * 2. If the scrubber returns a runtime error code, we exit making no changes 38 * to the incore sick state. 39 * 40 * 3. If the scrubber finds that A is clean, use sick_mask to clear the incore 41 * sick flags before exiting. 42 * 43 * 4. If the scrubber finds that A is corrupt, use sick_mask to set the incore 44 * sick flags. If the user didn't want to repair then we exit, leaving the 45 * metadata structure unfixed and the sick flag set. 46 * 47 * 5. Now we know that A is corrupt and the user wants to repair, so run the 48 * repairer. If the repairer returns an error code, we exit with that error 49 * code, having made no further changes to the incore sick state. 50 * 51 * 6. If repair rebuilds A correctly and the subsequent re-scrub of A is clean, 52 * use sick_mask to clear the incore sick flags. This should have the effect 53 * that A is no longer marked sick. 54 * 55 * 7. If repair rebuilds A incorrectly, the re-scrub will find it corrupt and 56 * use sick_mask to set the incore sick flags. This should have no externally 57 * visible effect since we already set them in step (4). 58 * 59 * There are some complications to this story, however. For certain types of 60 * complementary metadata indices (e.g. inobt/finobt), it is easier to rebuild 61 * both structures at the same time. The following principles apply to this 62 * type of repair strategy: 63 * 64 * 8. Any repair function that rebuilds multiple structures should update 65 * sick_mask_visible to reflect whatever other structures are rebuilt, and 66 * verify that all the rebuilt structures can pass a scrub check. The outcomes 67 * of 5-7 still apply, but with a sick_mask that covers everything being 68 * rebuilt. 69 */ 70 71 /* Map our scrub type to a sick mask and a set of health update functions. */ 72 73 enum xchk_health_group { 74 XHG_NONE = 1, 75 XHG_FS, 76 XHG_AG, 77 XHG_INO, 78 XHG_RTGROUP, 79 }; 80 81 struct xchk_health_map { 82 enum xchk_health_group group; 83 unsigned int sick_mask; 84 }; 85 86 static const struct xchk_health_map type_to_health_flag[XFS_SCRUB_TYPE_NR] = { 87 [XFS_SCRUB_TYPE_PROBE] = { XHG_NONE, 0 }, 88 [XFS_SCRUB_TYPE_SB] = { XHG_AG, XFS_SICK_AG_SB }, 89 [XFS_SCRUB_TYPE_AGF] = { XHG_AG, XFS_SICK_AG_AGF }, 90 [XFS_SCRUB_TYPE_AGFL] = { XHG_AG, XFS_SICK_AG_AGFL }, 91 [XFS_SCRUB_TYPE_AGI] = { XHG_AG, XFS_SICK_AG_AGI }, 92 [XFS_SCRUB_TYPE_BNOBT] = { XHG_AG, XFS_SICK_AG_BNOBT }, 93 [XFS_SCRUB_TYPE_CNTBT] = { XHG_AG, XFS_SICK_AG_CNTBT }, 94 [XFS_SCRUB_TYPE_INOBT] = { XHG_AG, XFS_SICK_AG_INOBT }, 95 [XFS_SCRUB_TYPE_FINOBT] = { XHG_AG, XFS_SICK_AG_FINOBT }, 96 [XFS_SCRUB_TYPE_RMAPBT] = { XHG_AG, XFS_SICK_AG_RMAPBT }, 97 [XFS_SCRUB_TYPE_REFCNTBT] = { XHG_AG, XFS_SICK_AG_REFCNTBT }, 98 [XFS_SCRUB_TYPE_INODE] = { XHG_INO, XFS_SICK_INO_CORE }, 99 [XFS_SCRUB_TYPE_BMBTD] = { XHG_INO, XFS_SICK_INO_BMBTD }, 100 [XFS_SCRUB_TYPE_BMBTA] = { XHG_INO, XFS_SICK_INO_BMBTA }, 101 [XFS_SCRUB_TYPE_BMBTC] = { XHG_INO, XFS_SICK_INO_BMBTC }, 102 [XFS_SCRUB_TYPE_DIR] = { XHG_INO, XFS_SICK_INO_DIR }, 103 [XFS_SCRUB_TYPE_XATTR] = { XHG_INO, XFS_SICK_INO_XATTR }, 104 [XFS_SCRUB_TYPE_SYMLINK] = { XHG_INO, XFS_SICK_INO_SYMLINK }, 105 [XFS_SCRUB_TYPE_PARENT] = { XHG_INO, XFS_SICK_INO_PARENT }, 106 [XFS_SCRUB_TYPE_RTBITMAP] = { XHG_RTGROUP, XFS_SICK_RG_BITMAP }, 107 [XFS_SCRUB_TYPE_RTSUM] = { XHG_RTGROUP, XFS_SICK_RG_SUMMARY }, 108 [XFS_SCRUB_TYPE_UQUOTA] = { XHG_FS, XFS_SICK_FS_UQUOTA }, 109 [XFS_SCRUB_TYPE_GQUOTA] = { XHG_FS, XFS_SICK_FS_GQUOTA }, 110 [XFS_SCRUB_TYPE_PQUOTA] = { XHG_FS, XFS_SICK_FS_PQUOTA }, 111 [XFS_SCRUB_TYPE_FSCOUNTERS] = { XHG_FS, XFS_SICK_FS_COUNTERS }, 112 [XFS_SCRUB_TYPE_QUOTACHECK] = { XHG_FS, XFS_SICK_FS_QUOTACHECK }, 113 [XFS_SCRUB_TYPE_NLINKS] = { XHG_FS, XFS_SICK_FS_NLINKS }, 114 [XFS_SCRUB_TYPE_DIRTREE] = { XHG_INO, XFS_SICK_INO_DIRTREE }, 115 [XFS_SCRUB_TYPE_METAPATH] = { XHG_FS, XFS_SICK_FS_METAPATH }, 116 [XFS_SCRUB_TYPE_RGSUPER] = { XHG_RTGROUP, XFS_SICK_RG_SUPER }, 117 }; 118 119 /* Return the health status mask for this scrub type. */ 120 unsigned int 121 xchk_health_mask_for_scrub_type( 122 __u32 scrub_type) 123 { 124 return type_to_health_flag[scrub_type].sick_mask; 125 } 126 127 /* 128 * If the scrub state is clean, add @mask to the scrub sick mask to clear 129 * additional sick flags from the metadata object's sick state. 130 */ 131 void 132 xchk_mark_healthy_if_clean( 133 struct xfs_scrub *sc, 134 unsigned int mask) 135 { 136 if (!(sc->sm->sm_flags & (XFS_SCRUB_OFLAG_CORRUPT | 137 XFS_SCRUB_OFLAG_XCORRUPT))) 138 sc->healthy_mask |= mask; 139 } 140 141 /* 142 * If we're scrubbing a piece of file metadata for the first time, does it look 143 * like it has been zapped? Skip the check if we just repaired the metadata 144 * and are revalidating it. 145 */ 146 bool 147 xchk_file_looks_zapped( 148 struct xfs_scrub *sc, 149 unsigned int mask) 150 { 151 ASSERT((mask & ~XFS_SICK_INO_ZAPPED) == 0); 152 153 if (sc->flags & XREP_ALREADY_FIXED) 154 return false; 155 156 return xfs_inode_has_sickness(sc->ip, mask); 157 } 158 159 /* 160 * Scrub gave the filesystem a clean bill of health, so clear all the indirect 161 * markers of past problems (at least for the fs and ags) so that we can be 162 * healthy again. 163 */ 164 STATIC void 165 xchk_mark_all_healthy( 166 struct xfs_mount *mp) 167 { 168 struct xfs_perag *pag = NULL; 169 struct xfs_rtgroup *rtg = NULL; 170 171 xfs_fs_mark_healthy(mp, XFS_SICK_FS_INDIRECT); 172 while ((pag = xfs_perag_next(mp, pag))) 173 xfs_group_mark_healthy(pag_group(pag), XFS_SICK_AG_INDIRECT); 174 while ((rtg = xfs_rtgroup_next(mp, rtg))) 175 xfs_group_mark_healthy(rtg_group(rtg), XFS_SICK_RG_INDIRECT); 176 } 177 178 /* 179 * Update filesystem health assessments based on what we found and did. 180 * 181 * If the scrubber finds errors, we mark sick whatever's mentioned in 182 * sick_mask, no matter whether this is a first scan or an 183 * evaluation of repair effectiveness. 184 * 185 * Otherwise, no direct corruption was found, so mark whatever's in 186 * sick_mask as healthy. 187 */ 188 void 189 xchk_update_health( 190 struct xfs_scrub *sc) 191 { 192 struct xfs_perag *pag; 193 struct xfs_rtgroup *rtg; 194 unsigned int mask = sc->sick_mask; 195 bool bad; 196 197 /* 198 * The HEALTHY scrub type is a request from userspace to clear all the 199 * indirect flags after a clean scan of the entire filesystem. As such 200 * there's no sick flag defined for it, so we branch here ahead of the 201 * mask check. 202 */ 203 if (sc->sm->sm_type == XFS_SCRUB_TYPE_HEALTHY && 204 !(sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT)) { 205 xchk_mark_all_healthy(sc->mp); 206 return; 207 } 208 209 bad = (sc->sm->sm_flags & (XFS_SCRUB_OFLAG_CORRUPT | 210 XFS_SCRUB_OFLAG_XCORRUPT)); 211 if (!bad) 212 mask |= sc->healthy_mask; 213 switch (type_to_health_flag[sc->sm->sm_type].group) { 214 case XHG_NONE: 215 break; 216 case XHG_AG: 217 if (!mask) 218 return; 219 pag = xfs_perag_get(sc->mp, sc->sm->sm_agno); 220 if (bad) 221 xfs_group_mark_corrupt(pag_group(pag), mask); 222 else 223 xfs_group_mark_healthy(pag_group(pag), mask); 224 xfs_perag_put(pag); 225 break; 226 case XHG_INO: 227 if (!sc->ip) 228 return; 229 /* 230 * If we're coming in for repairs then we don't want sickness 231 * flags to propagate to the incore health status if the inode 232 * gets inactivated before we can fix it. 233 */ 234 if (sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) 235 mask |= XFS_SICK_INO_FORGET; 236 if (!mask) 237 return; 238 if (bad) 239 xfs_inode_mark_corrupt(sc->ip, mask); 240 else 241 xfs_inode_mark_healthy(sc->ip, mask); 242 break; 243 case XHG_FS: 244 if (!mask) 245 return; 246 if (bad) 247 xfs_fs_mark_corrupt(sc->mp, mask); 248 else 249 xfs_fs_mark_healthy(sc->mp, mask); 250 break; 251 case XHG_RTGROUP: 252 if (!mask) 253 return; 254 rtg = xfs_rtgroup_get(sc->mp, sc->sm->sm_agno); 255 if (bad) 256 xfs_group_mark_corrupt(rtg_group(rtg), mask); 257 else 258 xfs_group_mark_healthy(rtg_group(rtg), mask); 259 xfs_rtgroup_put(rtg); 260 break; 261 default: 262 ASSERT(0); 263 break; 264 } 265 } 266 267 /* Is the given per-AG btree healthy enough for scanning? */ 268 void 269 xchk_ag_btree_del_cursor_if_sick( 270 struct xfs_scrub *sc, 271 struct xfs_btree_cur **curp, 272 unsigned int sm_type) 273 { 274 unsigned int mask = (*curp)->bc_ops->sick_mask; 275 276 /* 277 * We always want the cursor if it's the same type as whatever we're 278 * scrubbing, even if we already know the structure is corrupt. 279 * 280 * Otherwise, we're only interested in the btree for cross-referencing. 281 * If we know the btree is bad then don't bother, just set XFAIL. 282 */ 283 if (sc->sm->sm_type == sm_type) 284 return; 285 286 /* 287 * If we just repaired some AG metadata, sc->sick_mask will reflect all 288 * the per-AG metadata types that were repaired. Exclude these from 289 * the filesystem health query because we have not yet updated the 290 * health status and we want everything to be scanned. 291 */ 292 if ((sc->flags & XREP_ALREADY_FIXED) && 293 type_to_health_flag[sc->sm->sm_type].group == XHG_AG) 294 mask &= ~sc->sick_mask; 295 296 if (xfs_group_has_sickness((*curp)->bc_group, mask)) { 297 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XFAIL; 298 xfs_btree_del_cursor(*curp, XFS_BTREE_NOERROR); 299 *curp = NULL; 300 } 301 } 302 303 /* 304 * Quick scan to double-check that there isn't any evidence of lingering 305 * primary health problems. If we're still clear, then the health update will 306 * take care of clearing the indirect evidence. 307 */ 308 int 309 xchk_health_record( 310 struct xfs_scrub *sc) 311 { 312 struct xfs_mount *mp = sc->mp; 313 struct xfs_perag *pag = NULL; 314 struct xfs_rtgroup *rtg = NULL; 315 unsigned int sick; 316 unsigned int checked; 317 318 xfs_fs_measure_sickness(mp, &sick, &checked); 319 if (sick & XFS_SICK_FS_PRIMARY) 320 xchk_set_corrupt(sc); 321 322 while ((pag = xfs_perag_next(mp, pag))) { 323 xfs_group_measure_sickness(pag_group(pag), &sick, &checked); 324 if (sick & XFS_SICK_AG_PRIMARY) 325 xchk_set_corrupt(sc); 326 } 327 328 while ((rtg = xfs_rtgroup_next(mp, rtg))) { 329 xfs_group_measure_sickness(rtg_group(rtg), &sick, &checked); 330 if (sick & XFS_SICK_RG_PRIMARY) 331 xchk_set_corrupt(sc); 332 } 333 334 return 0; 335 } 336