1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (C) 2019 Oracle. All Rights Reserved. 4 * Author: Darrick J. Wong <darrick.wong@oracle.com> 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_btree.h" 11 #include "xfs_ag.h" 12 #include "xfs_health.h" 13 #include "scrub/scrub.h" 14 #include "scrub/health.h" 15 16 /* 17 * Scrub and In-Core Filesystem Health Assessments 18 * =============================================== 19 * 20 * Online scrub and repair have the time and the ability to perform stronger 21 * checks than we can do from the metadata verifiers, because they can 22 * cross-reference records between data structures. Therefore, scrub is in a 23 * good position to update the online filesystem health assessments to reflect 24 * the good/bad state of the data structure. 25 * 26 * We therefore extend scrub in the following ways to achieve this: 27 * 28 * 1. Create a "sick_mask" field in the scrub context. When we're setting up a 29 * scrub call, set this to the default XFS_SICK_* flag(s) for the selected 30 * scrub type (call it A). Scrub and repair functions can override the default 31 * sick_mask value if they choose. 32 * 33 * 2. If the scrubber returns a runtime error code, we exit making no changes 34 * to the incore sick state. 35 * 36 * 3. If the scrubber finds that A is clean, use sick_mask to clear the incore 37 * sick flags before exiting. 38 * 39 * 4. If the scrubber finds that A is corrupt, use sick_mask to set the incore 40 * sick flags. If the user didn't want to repair then we exit, leaving the 41 * metadata structure unfixed and the sick flag set. 42 * 43 * 5. Now we know that A is corrupt and the user wants to repair, so run the 44 * repairer. If the repairer returns an error code, we exit with that error 45 * code, having made no further changes to the incore sick state. 46 * 47 * 6. If repair rebuilds A correctly and the subsequent re-scrub of A is clean, 48 * use sick_mask to clear the incore sick flags. This should have the effect 49 * that A is no longer marked sick. 50 * 51 * 7. If repair rebuilds A incorrectly, the re-scrub will find it corrupt and 52 * use sick_mask to set the incore sick flags. This should have no externally 53 * visible effect since we already set them in step (4). 54 * 55 * There are some complications to this story, however. For certain types of 56 * complementary metadata indices (e.g. inobt/finobt), it is easier to rebuild 57 * both structures at the same time. The following principles apply to this 58 * type of repair strategy: 59 * 60 * 8. Any repair function that rebuilds multiple structures should update 61 * sick_mask_visible to reflect whatever other structures are rebuilt, and 62 * verify that all the rebuilt structures can pass a scrub check. The outcomes 63 * of 5-7 still apply, but with a sick_mask that covers everything being 64 * rebuilt. 65 */ 66 67 /* Map our scrub type to a sick mask and a set of health update functions. */ 68 69 enum xchk_health_group { 70 XHG_FS = 1, 71 XHG_RT, 72 XHG_AG, 73 XHG_INO, 74 }; 75 76 struct xchk_health_map { 77 enum xchk_health_group group; 78 unsigned int sick_mask; 79 }; 80 81 static const struct xchk_health_map type_to_health_flag[XFS_SCRUB_TYPE_NR] = { 82 [XFS_SCRUB_TYPE_SB] = { XHG_AG, XFS_SICK_AG_SB }, 83 [XFS_SCRUB_TYPE_AGF] = { XHG_AG, XFS_SICK_AG_AGF }, 84 [XFS_SCRUB_TYPE_AGFL] = { XHG_AG, XFS_SICK_AG_AGFL }, 85 [XFS_SCRUB_TYPE_AGI] = { XHG_AG, XFS_SICK_AG_AGI }, 86 [XFS_SCRUB_TYPE_BNOBT] = { XHG_AG, XFS_SICK_AG_BNOBT }, 87 [XFS_SCRUB_TYPE_CNTBT] = { XHG_AG, XFS_SICK_AG_CNTBT }, 88 [XFS_SCRUB_TYPE_INOBT] = { XHG_AG, XFS_SICK_AG_INOBT }, 89 [XFS_SCRUB_TYPE_FINOBT] = { XHG_AG, XFS_SICK_AG_FINOBT }, 90 [XFS_SCRUB_TYPE_RMAPBT] = { XHG_AG, XFS_SICK_AG_RMAPBT }, 91 [XFS_SCRUB_TYPE_REFCNTBT] = { XHG_AG, XFS_SICK_AG_REFCNTBT }, 92 [XFS_SCRUB_TYPE_INODE] = { XHG_INO, XFS_SICK_INO_CORE }, 93 [XFS_SCRUB_TYPE_BMBTD] = { XHG_INO, XFS_SICK_INO_BMBTD }, 94 [XFS_SCRUB_TYPE_BMBTA] = { XHG_INO, XFS_SICK_INO_BMBTA }, 95 [XFS_SCRUB_TYPE_BMBTC] = { XHG_INO, XFS_SICK_INO_BMBTC }, 96 [XFS_SCRUB_TYPE_DIR] = { XHG_INO, XFS_SICK_INO_DIR }, 97 [XFS_SCRUB_TYPE_XATTR] = { XHG_INO, XFS_SICK_INO_XATTR }, 98 [XFS_SCRUB_TYPE_SYMLINK] = { XHG_INO, XFS_SICK_INO_SYMLINK }, 99 [XFS_SCRUB_TYPE_PARENT] = { XHG_INO, XFS_SICK_INO_PARENT }, 100 [XFS_SCRUB_TYPE_RTBITMAP] = { XHG_RT, XFS_SICK_RT_BITMAP }, 101 [XFS_SCRUB_TYPE_RTSUM] = { XHG_RT, XFS_SICK_RT_SUMMARY }, 102 [XFS_SCRUB_TYPE_UQUOTA] = { XHG_FS, XFS_SICK_FS_UQUOTA }, 103 [XFS_SCRUB_TYPE_GQUOTA] = { XHG_FS, XFS_SICK_FS_GQUOTA }, 104 [XFS_SCRUB_TYPE_PQUOTA] = { XHG_FS, XFS_SICK_FS_PQUOTA }, 105 [XFS_SCRUB_TYPE_FSCOUNTERS] = { XHG_FS, XFS_SICK_FS_COUNTERS }, 106 }; 107 108 /* Return the health status mask for this scrub type. */ 109 unsigned int 110 xchk_health_mask_for_scrub_type( 111 __u32 scrub_type) 112 { 113 return type_to_health_flag[scrub_type].sick_mask; 114 } 115 116 /* 117 * Update filesystem health assessments based on what we found and did. 118 * 119 * If the scrubber finds errors, we mark sick whatever's mentioned in 120 * sick_mask, no matter whether this is a first scan or an 121 * evaluation of repair effectiveness. 122 * 123 * Otherwise, no direct corruption was found, so mark whatever's in 124 * sick_mask as healthy. 125 */ 126 void 127 xchk_update_health( 128 struct xfs_scrub *sc) 129 { 130 struct xfs_perag *pag; 131 bool bad; 132 133 if (!sc->sick_mask) 134 return; 135 136 bad = (sc->sm->sm_flags & (XFS_SCRUB_OFLAG_CORRUPT | 137 XFS_SCRUB_OFLAG_XCORRUPT)); 138 switch (type_to_health_flag[sc->sm->sm_type].group) { 139 case XHG_AG: 140 pag = xfs_perag_get(sc->mp, sc->sm->sm_agno); 141 if (bad) 142 xfs_ag_mark_sick(pag, sc->sick_mask); 143 else 144 xfs_ag_mark_healthy(pag, sc->sick_mask); 145 xfs_perag_put(pag); 146 break; 147 case XHG_INO: 148 if (!sc->ip) 149 return; 150 if (bad) 151 xfs_inode_mark_sick(sc->ip, sc->sick_mask); 152 else 153 xfs_inode_mark_healthy(sc->ip, sc->sick_mask); 154 break; 155 case XHG_FS: 156 if (bad) 157 xfs_fs_mark_sick(sc->mp, sc->sick_mask); 158 else 159 xfs_fs_mark_healthy(sc->mp, sc->sick_mask); 160 break; 161 case XHG_RT: 162 if (bad) 163 xfs_rt_mark_sick(sc->mp, sc->sick_mask); 164 else 165 xfs_rt_mark_healthy(sc->mp, sc->sick_mask); 166 break; 167 default: 168 ASSERT(0); 169 break; 170 } 171 } 172 173 /* Is the given per-AG btree healthy enough for scanning? */ 174 bool 175 xchk_ag_btree_healthy_enough( 176 struct xfs_scrub *sc, 177 struct xfs_perag *pag, 178 xfs_btnum_t btnum) 179 { 180 unsigned int mask = 0; 181 182 /* 183 * We always want the cursor if it's the same type as whatever we're 184 * scrubbing, even if we already know the structure is corrupt. 185 * 186 * Otherwise, we're only interested in the btree for cross-referencing. 187 * If we know the btree is bad then don't bother, just set XFAIL. 188 */ 189 switch (btnum) { 190 case XFS_BTNUM_BNO: 191 if (sc->sm->sm_type == XFS_SCRUB_TYPE_BNOBT) 192 return true; 193 mask = XFS_SICK_AG_BNOBT; 194 break; 195 case XFS_BTNUM_CNT: 196 if (sc->sm->sm_type == XFS_SCRUB_TYPE_CNTBT) 197 return true; 198 mask = XFS_SICK_AG_CNTBT; 199 break; 200 case XFS_BTNUM_INO: 201 if (sc->sm->sm_type == XFS_SCRUB_TYPE_INOBT) 202 return true; 203 mask = XFS_SICK_AG_INOBT; 204 break; 205 case XFS_BTNUM_FINO: 206 if (sc->sm->sm_type == XFS_SCRUB_TYPE_FINOBT) 207 return true; 208 mask = XFS_SICK_AG_FINOBT; 209 break; 210 case XFS_BTNUM_RMAP: 211 if (sc->sm->sm_type == XFS_SCRUB_TYPE_RMAPBT) 212 return true; 213 mask = XFS_SICK_AG_RMAPBT; 214 break; 215 case XFS_BTNUM_REFC: 216 if (sc->sm->sm_type == XFS_SCRUB_TYPE_REFCNTBT) 217 return true; 218 mask = XFS_SICK_AG_REFCNTBT; 219 break; 220 default: 221 ASSERT(0); 222 return true; 223 } 224 225 if (xfs_ag_has_sickness(pag, mask)) { 226 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XFAIL; 227 return false; 228 } 229 230 return true; 231 } 232