1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (C) 2019 Oracle. All Rights Reserved. 4 * Author: Darrick J. Wong <darrick.wong@oracle.com> 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_btree.h" 11 #include "xfs_sb.h" 12 #include "xfs_health.h" 13 #include "scrub/scrub.h" 14 15 /* 16 * Scrub and In-Core Filesystem Health Assessments 17 * =============================================== 18 * 19 * Online scrub and repair have the time and the ability to perform stronger 20 * checks than we can do from the metadata verifiers, because they can 21 * cross-reference records between data structures. Therefore, scrub is in a 22 * good position to update the online filesystem health assessments to reflect 23 * the good/bad state of the data structure. 24 * 25 * We therefore extend scrub in the following ways to achieve this: 26 * 27 * 1. Create a "sick_mask" field in the scrub context. When we're setting up a 28 * scrub call, set this to the default XFS_SICK_* flag(s) for the selected 29 * scrub type (call it A). Scrub and repair functions can override the default 30 * sick_mask value if they choose. 31 * 32 * 2. If the scrubber returns a runtime error code, we exit making no changes 33 * to the incore sick state. 34 * 35 * 3. If the scrubber finds that A is clean, use sick_mask to clear the incore 36 * sick flags before exiting. 37 * 38 * 4. If the scrubber finds that A is corrupt, use sick_mask to set the incore 39 * sick flags. If the user didn't want to repair then we exit, leaving the 40 * metadata structure unfixed and the sick flag set. 41 * 42 * 5. Now we know that A is corrupt and the user wants to repair, so run the 43 * repairer. If the repairer returns an error code, we exit with that error 44 * code, having made no further changes to the incore sick state. 45 * 46 * 6. If repair rebuilds A correctly and the subsequent re-scrub of A is clean, 47 * use sick_mask to clear the incore sick flags. This should have the effect 48 * that A is no longer marked sick. 49 * 50 * 7. If repair rebuilds A incorrectly, the re-scrub will find it corrupt and 51 * use sick_mask to set the incore sick flags. This should have no externally 52 * visible effect since we already set them in step (4). 53 * 54 * There are some complications to this story, however. For certain types of 55 * complementary metadata indices (e.g. inobt/finobt), it is easier to rebuild 56 * both structures at the same time. The following principles apply to this 57 * type of repair strategy: 58 * 59 * 8. Any repair function that rebuilds multiple structures should update 60 * sick_mask_visible to reflect whatever other structures are rebuilt, and 61 * verify that all the rebuilt structures can pass a scrub check. The outcomes 62 * of 5-7 still apply, but with a sick_mask that covers everything being 63 * rebuilt. 64 */ 65 66 /* Map our scrub type to a sick mask and a set of health update functions. */ 67 68 enum xchk_health_group { 69 XHG_FS = 1, 70 XHG_RT, 71 XHG_AG, 72 XHG_INO, 73 }; 74 75 struct xchk_health_map { 76 enum xchk_health_group group; 77 unsigned int sick_mask; 78 }; 79 80 static const struct xchk_health_map type_to_health_flag[XFS_SCRUB_TYPE_NR] = { 81 [XFS_SCRUB_TYPE_SB] = { XHG_AG, XFS_SICK_AG_SB }, 82 [XFS_SCRUB_TYPE_AGF] = { XHG_AG, XFS_SICK_AG_AGF }, 83 [XFS_SCRUB_TYPE_AGFL] = { XHG_AG, XFS_SICK_AG_AGFL }, 84 [XFS_SCRUB_TYPE_AGI] = { XHG_AG, XFS_SICK_AG_AGI }, 85 [XFS_SCRUB_TYPE_BNOBT] = { XHG_AG, XFS_SICK_AG_BNOBT }, 86 [XFS_SCRUB_TYPE_CNTBT] = { XHG_AG, XFS_SICK_AG_CNTBT }, 87 [XFS_SCRUB_TYPE_INOBT] = { XHG_AG, XFS_SICK_AG_INOBT }, 88 [XFS_SCRUB_TYPE_FINOBT] = { XHG_AG, XFS_SICK_AG_FINOBT }, 89 [XFS_SCRUB_TYPE_RMAPBT] = { XHG_AG, XFS_SICK_AG_RMAPBT }, 90 [XFS_SCRUB_TYPE_REFCNTBT] = { XHG_AG, XFS_SICK_AG_REFCNTBT }, 91 [XFS_SCRUB_TYPE_INODE] = { XHG_INO, XFS_SICK_INO_CORE }, 92 [XFS_SCRUB_TYPE_BMBTD] = { XHG_INO, XFS_SICK_INO_BMBTD }, 93 [XFS_SCRUB_TYPE_BMBTA] = { XHG_INO, XFS_SICK_INO_BMBTA }, 94 [XFS_SCRUB_TYPE_BMBTC] = { XHG_INO, XFS_SICK_INO_BMBTC }, 95 [XFS_SCRUB_TYPE_DIR] = { XHG_INO, XFS_SICK_INO_DIR }, 96 [XFS_SCRUB_TYPE_XATTR] = { XHG_INO, XFS_SICK_INO_XATTR }, 97 [XFS_SCRUB_TYPE_SYMLINK] = { XHG_INO, XFS_SICK_INO_SYMLINK }, 98 [XFS_SCRUB_TYPE_PARENT] = { XHG_INO, XFS_SICK_INO_PARENT }, 99 [XFS_SCRUB_TYPE_RTBITMAP] = { XHG_RT, XFS_SICK_RT_BITMAP }, 100 [XFS_SCRUB_TYPE_RTSUM] = { XHG_RT, XFS_SICK_RT_SUMMARY }, 101 [XFS_SCRUB_TYPE_UQUOTA] = { XHG_FS, XFS_SICK_FS_UQUOTA }, 102 [XFS_SCRUB_TYPE_GQUOTA] = { XHG_FS, XFS_SICK_FS_GQUOTA }, 103 [XFS_SCRUB_TYPE_PQUOTA] = { XHG_FS, XFS_SICK_FS_PQUOTA }, 104 [XFS_SCRUB_TYPE_FSCOUNTERS] = { XHG_FS, XFS_SICK_FS_COUNTERS }, 105 }; 106 107 /* Return the health status mask for this scrub type. */ 108 unsigned int 109 xchk_health_mask_for_scrub_type( 110 __u32 scrub_type) 111 { 112 return type_to_health_flag[scrub_type].sick_mask; 113 } 114 115 /* 116 * Update filesystem health assessments based on what we found and did. 117 * 118 * If the scrubber finds errors, we mark sick whatever's mentioned in 119 * sick_mask, no matter whether this is a first scan or an 120 * evaluation of repair effectiveness. 121 * 122 * Otherwise, no direct corruption was found, so mark whatever's in 123 * sick_mask as healthy. 124 */ 125 void 126 xchk_update_health( 127 struct xfs_scrub *sc) 128 { 129 struct xfs_perag *pag; 130 bool bad; 131 132 if (!sc->sick_mask) 133 return; 134 135 bad = (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT); 136 switch (type_to_health_flag[sc->sm->sm_type].group) { 137 case XHG_AG: 138 pag = xfs_perag_get(sc->mp, sc->sm->sm_agno); 139 if (bad) 140 xfs_ag_mark_sick(pag, sc->sick_mask); 141 else 142 xfs_ag_mark_healthy(pag, sc->sick_mask); 143 xfs_perag_put(pag); 144 break; 145 case XHG_INO: 146 if (!sc->ip) 147 return; 148 if (bad) 149 xfs_inode_mark_sick(sc->ip, sc->sick_mask); 150 else 151 xfs_inode_mark_healthy(sc->ip, sc->sick_mask); 152 break; 153 case XHG_FS: 154 if (bad) 155 xfs_fs_mark_sick(sc->mp, sc->sick_mask); 156 else 157 xfs_fs_mark_healthy(sc->mp, sc->sick_mask); 158 break; 159 case XHG_RT: 160 if (bad) 161 xfs_rt_mark_sick(sc->mp, sc->sick_mask); 162 else 163 xfs_rt_mark_healthy(sc->mp, sc->sick_mask); 164 break; 165 default: 166 ASSERT(0); 167 break; 168 } 169 } 170 171 /* Is the given per-AG btree healthy enough for scanning? */ 172 bool 173 xchk_ag_btree_healthy_enough( 174 struct xfs_scrub *sc, 175 struct xfs_perag *pag, 176 xfs_btnum_t btnum) 177 { 178 unsigned int mask = 0; 179 180 /* 181 * We always want the cursor if it's the same type as whatever we're 182 * scrubbing, even if we already know the structure is corrupt. 183 * 184 * Otherwise, we're only interested in the btree for cross-referencing. 185 * If we know the btree is bad then don't bother, just set XFAIL. 186 */ 187 switch (btnum) { 188 case XFS_BTNUM_BNO: 189 if (sc->sm->sm_type == XFS_SCRUB_TYPE_BNOBT) 190 return true; 191 mask = XFS_SICK_AG_BNOBT; 192 break; 193 case XFS_BTNUM_CNT: 194 if (sc->sm->sm_type == XFS_SCRUB_TYPE_CNTBT) 195 return true; 196 mask = XFS_SICK_AG_CNTBT; 197 break; 198 case XFS_BTNUM_INO: 199 if (sc->sm->sm_type == XFS_SCRUB_TYPE_INOBT) 200 return true; 201 mask = XFS_SICK_AG_INOBT; 202 break; 203 case XFS_BTNUM_FINO: 204 if (sc->sm->sm_type == XFS_SCRUB_TYPE_FINOBT) 205 return true; 206 mask = XFS_SICK_AG_FINOBT; 207 break; 208 case XFS_BTNUM_RMAP: 209 if (sc->sm->sm_type == XFS_SCRUB_TYPE_RMAPBT) 210 return true; 211 mask = XFS_SICK_AG_RMAPBT; 212 break; 213 case XFS_BTNUM_REFC: 214 if (sc->sm->sm_type == XFS_SCRUB_TYPE_REFCNTBT) 215 return true; 216 mask = XFS_SICK_AG_REFCNTBT; 217 break; 218 default: 219 ASSERT(0); 220 return true; 221 } 222 223 if (xfs_ag_has_sickness(pag, mask)) { 224 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XFAIL; 225 return false; 226 } 227 228 return true; 229 } 230