xref: /linux/fs/xfs/scrub/common.c (revision fdd51b3e73e906aac056f2c337710185607d43d1)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2017-2023 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <djwong@kernel.org>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_mount.h"
12 #include "xfs_btree.h"
13 #include "xfs_log_format.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode.h"
16 #include "xfs_icache.h"
17 #include "xfs_alloc.h"
18 #include "xfs_alloc_btree.h"
19 #include "xfs_ialloc.h"
20 #include "xfs_ialloc_btree.h"
21 #include "xfs_refcount_btree.h"
22 #include "xfs_rmap.h"
23 #include "xfs_rmap_btree.h"
24 #include "xfs_log.h"
25 #include "xfs_trans_priv.h"
26 #include "xfs_da_format.h"
27 #include "xfs_da_btree.h"
28 #include "xfs_dir2_priv.h"
29 #include "xfs_attr.h"
30 #include "xfs_reflink.h"
31 #include "xfs_ag.h"
32 #include "xfs_error.h"
33 #include "xfs_quota.h"
34 #include "scrub/scrub.h"
35 #include "scrub/common.h"
36 #include "scrub/trace.h"
37 #include "scrub/repair.h"
38 #include "scrub/health.h"
39 
40 /* Common code for the metadata scrubbers. */
41 
42 /*
43  * Handling operational errors.
44  *
45  * The *_process_error() family of functions are used to process error return
46  * codes from functions called as part of a scrub operation.
47  *
48  * If there's no error, we return true to tell the caller that it's ok
49  * to move on to the next check in its list.
50  *
51  * For non-verifier errors (e.g. ENOMEM) we return false to tell the
52  * caller that something bad happened, and we preserve *error so that
53  * the caller can return the *error up the stack to userspace.
54  *
55  * Verifier errors (EFSBADCRC/EFSCORRUPTED) are recorded by setting
56  * OFLAG_CORRUPT in sm_flags and the *error is cleared.  In other words,
57  * we track verifier errors (and failed scrub checks) via OFLAG_CORRUPT,
58  * not via return codes.  We return false to tell the caller that
59  * something bad happened.  Since the error has been cleared, the caller
60  * will (presumably) return that zero and scrubbing will move on to
61  * whatever's next.
62  *
63  * ftrace can be used to record the precise metadata location and the
64  * approximate code location of the failed operation.
65  */
66 
67 /* Check for operational errors. */
68 static bool
69 __xchk_process_error(
70 	struct xfs_scrub	*sc,
71 	xfs_agnumber_t		agno,
72 	xfs_agblock_t		bno,
73 	int			*error,
74 	__u32			errflag,
75 	void			*ret_ip)
76 {
77 	switch (*error) {
78 	case 0:
79 		return true;
80 	case -EDEADLOCK:
81 	case -ECHRNG:
82 		/* Used to restart an op with deadlock avoidance. */
83 		trace_xchk_deadlock_retry(
84 				sc->ip ? sc->ip : XFS_I(file_inode(sc->file)),
85 				sc->sm, *error);
86 		break;
87 	case -ECANCELED:
88 		/*
89 		 * ECANCELED here means that the caller set one of the scrub
90 		 * outcome flags (corrupt, xfail, xcorrupt) and wants to exit
91 		 * quickly.  Set error to zero and do not continue.
92 		 */
93 		trace_xchk_op_error(sc, agno, bno, *error, ret_ip);
94 		*error = 0;
95 		break;
96 	case -EFSBADCRC:
97 	case -EFSCORRUPTED:
98 		/* Note the badness but don't abort. */
99 		sc->sm->sm_flags |= errflag;
100 		*error = 0;
101 		fallthrough;
102 	default:
103 		trace_xchk_op_error(sc, agno, bno, *error, ret_ip);
104 		break;
105 	}
106 	return false;
107 }
108 
109 bool
110 xchk_process_error(
111 	struct xfs_scrub	*sc,
112 	xfs_agnumber_t		agno,
113 	xfs_agblock_t		bno,
114 	int			*error)
115 {
116 	return __xchk_process_error(sc, agno, bno, error,
117 			XFS_SCRUB_OFLAG_CORRUPT, __return_address);
118 }
119 
120 bool
121 xchk_xref_process_error(
122 	struct xfs_scrub	*sc,
123 	xfs_agnumber_t		agno,
124 	xfs_agblock_t		bno,
125 	int			*error)
126 {
127 	return __xchk_process_error(sc, agno, bno, error,
128 			XFS_SCRUB_OFLAG_XFAIL, __return_address);
129 }
130 
131 /* Check for operational errors for a file offset. */
132 static bool
133 __xchk_fblock_process_error(
134 	struct xfs_scrub	*sc,
135 	int			whichfork,
136 	xfs_fileoff_t		offset,
137 	int			*error,
138 	__u32			errflag,
139 	void			*ret_ip)
140 {
141 	switch (*error) {
142 	case 0:
143 		return true;
144 	case -EDEADLOCK:
145 	case -ECHRNG:
146 		/* Used to restart an op with deadlock avoidance. */
147 		trace_xchk_deadlock_retry(sc->ip, sc->sm, *error);
148 		break;
149 	case -ECANCELED:
150 		/*
151 		 * ECANCELED here means that the caller set one of the scrub
152 		 * outcome flags (corrupt, xfail, xcorrupt) and wants to exit
153 		 * quickly.  Set error to zero and do not continue.
154 		 */
155 		trace_xchk_file_op_error(sc, whichfork, offset, *error,
156 				ret_ip);
157 		*error = 0;
158 		break;
159 	case -EFSBADCRC:
160 	case -EFSCORRUPTED:
161 		/* Note the badness but don't abort. */
162 		sc->sm->sm_flags |= errflag;
163 		*error = 0;
164 		fallthrough;
165 	default:
166 		trace_xchk_file_op_error(sc, whichfork, offset, *error,
167 				ret_ip);
168 		break;
169 	}
170 	return false;
171 }
172 
173 bool
174 xchk_fblock_process_error(
175 	struct xfs_scrub	*sc,
176 	int			whichfork,
177 	xfs_fileoff_t		offset,
178 	int			*error)
179 {
180 	return __xchk_fblock_process_error(sc, whichfork, offset, error,
181 			XFS_SCRUB_OFLAG_CORRUPT, __return_address);
182 }
183 
184 bool
185 xchk_fblock_xref_process_error(
186 	struct xfs_scrub	*sc,
187 	int			whichfork,
188 	xfs_fileoff_t		offset,
189 	int			*error)
190 {
191 	return __xchk_fblock_process_error(sc, whichfork, offset, error,
192 			XFS_SCRUB_OFLAG_XFAIL, __return_address);
193 }
194 
195 /*
196  * Handling scrub corruption/optimization/warning checks.
197  *
198  * The *_set_{corrupt,preen,warning}() family of functions are used to
199  * record the presence of metadata that is incorrect (corrupt), could be
200  * optimized somehow (preen), or should be flagged for administrative
201  * review but is not incorrect (warn).
202  *
203  * ftrace can be used to record the precise metadata location and
204  * approximate code location of the failed check.
205  */
206 
207 /* Record a block which could be optimized. */
208 void
209 xchk_block_set_preen(
210 	struct xfs_scrub	*sc,
211 	struct xfs_buf		*bp)
212 {
213 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_PREEN;
214 	trace_xchk_block_preen(sc, xfs_buf_daddr(bp), __return_address);
215 }
216 
217 /*
218  * Record an inode which could be optimized.  The trace data will
219  * include the block given by bp if bp is given; otherwise it will use
220  * the block location of the inode record itself.
221  */
222 void
223 xchk_ino_set_preen(
224 	struct xfs_scrub	*sc,
225 	xfs_ino_t		ino)
226 {
227 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_PREEN;
228 	trace_xchk_ino_preen(sc, ino, __return_address);
229 }
230 
231 /* Record something being wrong with the filesystem primary superblock. */
232 void
233 xchk_set_corrupt(
234 	struct xfs_scrub	*sc)
235 {
236 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
237 	trace_xchk_fs_error(sc, 0, __return_address);
238 }
239 
240 /* Record a corrupt block. */
241 void
242 xchk_block_set_corrupt(
243 	struct xfs_scrub	*sc,
244 	struct xfs_buf		*bp)
245 {
246 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
247 	trace_xchk_block_error(sc, xfs_buf_daddr(bp), __return_address);
248 }
249 
250 #ifdef CONFIG_XFS_QUOTA
251 /* Record a corrupt quota counter. */
252 void
253 xchk_qcheck_set_corrupt(
254 	struct xfs_scrub	*sc,
255 	unsigned int		dqtype,
256 	xfs_dqid_t		id)
257 {
258 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
259 	trace_xchk_qcheck_error(sc, dqtype, id, __return_address);
260 }
261 #endif
262 
263 /* Record a corruption while cross-referencing. */
264 void
265 xchk_block_xref_set_corrupt(
266 	struct xfs_scrub	*sc,
267 	struct xfs_buf		*bp)
268 {
269 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT;
270 	trace_xchk_block_error(sc, xfs_buf_daddr(bp), __return_address);
271 }
272 
273 /*
274  * Record a corrupt inode.  The trace data will include the block given
275  * by bp if bp is given; otherwise it will use the block location of the
276  * inode record itself.
277  */
278 void
279 xchk_ino_set_corrupt(
280 	struct xfs_scrub	*sc,
281 	xfs_ino_t		ino)
282 {
283 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
284 	trace_xchk_ino_error(sc, ino, __return_address);
285 }
286 
287 /* Record a corruption while cross-referencing with an inode. */
288 void
289 xchk_ino_xref_set_corrupt(
290 	struct xfs_scrub	*sc,
291 	xfs_ino_t		ino)
292 {
293 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT;
294 	trace_xchk_ino_error(sc, ino, __return_address);
295 }
296 
297 /* Record corruption in a block indexed by a file fork. */
298 void
299 xchk_fblock_set_corrupt(
300 	struct xfs_scrub	*sc,
301 	int			whichfork,
302 	xfs_fileoff_t		offset)
303 {
304 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
305 	trace_xchk_fblock_error(sc, whichfork, offset, __return_address);
306 }
307 
308 /* Record a corruption while cross-referencing a fork block. */
309 void
310 xchk_fblock_xref_set_corrupt(
311 	struct xfs_scrub	*sc,
312 	int			whichfork,
313 	xfs_fileoff_t		offset)
314 {
315 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT;
316 	trace_xchk_fblock_error(sc, whichfork, offset, __return_address);
317 }
318 
319 /*
320  * Warn about inodes that need administrative review but is not
321  * incorrect.
322  */
323 void
324 xchk_ino_set_warning(
325 	struct xfs_scrub	*sc,
326 	xfs_ino_t		ino)
327 {
328 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_WARNING;
329 	trace_xchk_ino_warning(sc, ino, __return_address);
330 }
331 
332 /* Warn about a block indexed by a file fork that needs review. */
333 void
334 xchk_fblock_set_warning(
335 	struct xfs_scrub	*sc,
336 	int			whichfork,
337 	xfs_fileoff_t		offset)
338 {
339 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_WARNING;
340 	trace_xchk_fblock_warning(sc, whichfork, offset, __return_address);
341 }
342 
343 /* Signal an incomplete scrub. */
344 void
345 xchk_set_incomplete(
346 	struct xfs_scrub	*sc)
347 {
348 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_INCOMPLETE;
349 	trace_xchk_incomplete(sc, __return_address);
350 }
351 
352 /*
353  * rmap scrubbing -- compute the number of blocks with a given owner,
354  * at least according to the reverse mapping data.
355  */
356 
357 struct xchk_rmap_ownedby_info {
358 	const struct xfs_owner_info	*oinfo;
359 	xfs_filblks_t			*blocks;
360 };
361 
362 STATIC int
363 xchk_count_rmap_ownedby_irec(
364 	struct xfs_btree_cur		*cur,
365 	const struct xfs_rmap_irec	*rec,
366 	void				*priv)
367 {
368 	struct xchk_rmap_ownedby_info	*sroi = priv;
369 	bool				irec_attr;
370 	bool				oinfo_attr;
371 
372 	irec_attr = rec->rm_flags & XFS_RMAP_ATTR_FORK;
373 	oinfo_attr = sroi->oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK;
374 
375 	if (rec->rm_owner != sroi->oinfo->oi_owner)
376 		return 0;
377 
378 	if (XFS_RMAP_NON_INODE_OWNER(rec->rm_owner) || irec_attr == oinfo_attr)
379 		(*sroi->blocks) += rec->rm_blockcount;
380 
381 	return 0;
382 }
383 
384 /*
385  * Calculate the number of blocks the rmap thinks are owned by something.
386  * The caller should pass us an rmapbt cursor.
387  */
388 int
389 xchk_count_rmap_ownedby_ag(
390 	struct xfs_scrub		*sc,
391 	struct xfs_btree_cur		*cur,
392 	const struct xfs_owner_info	*oinfo,
393 	xfs_filblks_t			*blocks)
394 {
395 	struct xchk_rmap_ownedby_info	sroi = {
396 		.oinfo			= oinfo,
397 		.blocks			= blocks,
398 	};
399 
400 	*blocks = 0;
401 	return xfs_rmap_query_all(cur, xchk_count_rmap_ownedby_irec,
402 			&sroi);
403 }
404 
405 /*
406  * AG scrubbing
407  *
408  * These helpers facilitate locking an allocation group's header
409  * buffers, setting up cursors for all btrees that are present, and
410  * cleaning everything up once we're through.
411  */
412 
413 /* Decide if we want to return an AG header read failure. */
414 static inline bool
415 want_ag_read_header_failure(
416 	struct xfs_scrub	*sc,
417 	unsigned int		type)
418 {
419 	/* Return all AG header read failures when scanning btrees. */
420 	if (sc->sm->sm_type != XFS_SCRUB_TYPE_AGF &&
421 	    sc->sm->sm_type != XFS_SCRUB_TYPE_AGFL &&
422 	    sc->sm->sm_type != XFS_SCRUB_TYPE_AGI)
423 		return true;
424 	/*
425 	 * If we're scanning a given type of AG header, we only want to
426 	 * see read failures from that specific header.  We'd like the
427 	 * other headers to cross-check them, but this isn't required.
428 	 */
429 	if (sc->sm->sm_type == type)
430 		return true;
431 	return false;
432 }
433 
434 /*
435  * Grab the AG header buffers for the attached perag structure.
436  *
437  * The headers should be released by xchk_ag_free, but as a fail safe we attach
438  * all the buffers we grab to the scrub transaction so they'll all be freed
439  * when we cancel it.
440  */
441 static inline int
442 xchk_perag_read_headers(
443 	struct xfs_scrub	*sc,
444 	struct xchk_ag		*sa)
445 {
446 	int			error;
447 
448 	error = xfs_ialloc_read_agi(sa->pag, sc->tp, &sa->agi_bp);
449 	if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGI))
450 		return error;
451 
452 	error = xfs_alloc_read_agf(sa->pag, sc->tp, 0, &sa->agf_bp);
453 	if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGF))
454 		return error;
455 
456 	return 0;
457 }
458 
459 /*
460  * Grab the AG headers for the attached perag structure and wait for pending
461  * intents to drain.
462  */
463 int
464 xchk_perag_drain_and_lock(
465 	struct xfs_scrub	*sc)
466 {
467 	struct xchk_ag		*sa = &sc->sa;
468 	int			error = 0;
469 
470 	ASSERT(sa->pag != NULL);
471 	ASSERT(sa->agi_bp == NULL);
472 	ASSERT(sa->agf_bp == NULL);
473 
474 	do {
475 		if (xchk_should_terminate(sc, &error))
476 			return error;
477 
478 		error = xchk_perag_read_headers(sc, sa);
479 		if (error)
480 			return error;
481 
482 		/*
483 		 * If we've grabbed an inode for scrubbing then we assume that
484 		 * holding its ILOCK will suffice to coordinate with any intent
485 		 * chains involving this inode.
486 		 */
487 		if (sc->ip)
488 			return 0;
489 
490 		/*
491 		 * Decide if this AG is quiet enough for all metadata to be
492 		 * consistent with each other.  XFS allows the AG header buffer
493 		 * locks to cycle across transaction rolls while processing
494 		 * chains of deferred ops, which means that there could be
495 		 * other threads in the middle of processing a chain of
496 		 * deferred ops.  For regular operations we are careful about
497 		 * ordering operations to prevent collisions between threads
498 		 * (which is why we don't need a per-AG lock), but scrub and
499 		 * repair have to serialize against chained operations.
500 		 *
501 		 * We just locked all the AG headers buffers; now take a look
502 		 * to see if there are any intents in progress.  If there are,
503 		 * drop the AG headers and wait for the intents to drain.
504 		 * Since we hold all the AG header locks for the duration of
505 		 * the scrub, this is the only time we have to sample the
506 		 * intents counter; any threads increasing it after this point
507 		 * can't possibly be in the middle of a chain of AG metadata
508 		 * updates.
509 		 *
510 		 * Obviously, this should be slanted against scrub and in favor
511 		 * of runtime threads.
512 		 */
513 		if (!xfs_perag_intent_busy(sa->pag))
514 			return 0;
515 
516 		if (sa->agf_bp) {
517 			xfs_trans_brelse(sc->tp, sa->agf_bp);
518 			sa->agf_bp = NULL;
519 		}
520 
521 		if (sa->agi_bp) {
522 			xfs_trans_brelse(sc->tp, sa->agi_bp);
523 			sa->agi_bp = NULL;
524 		}
525 
526 		if (!(sc->flags & XCHK_FSGATES_DRAIN))
527 			return -ECHRNG;
528 		error = xfs_perag_intent_drain(sa->pag);
529 		if (error == -ERESTARTSYS)
530 			error = -EINTR;
531 	} while (!error);
532 
533 	return error;
534 }
535 
536 /*
537  * Grab the per-AG structure, grab all AG header buffers, and wait until there
538  * aren't any pending intents.  Returns -ENOENT if we can't grab the perag
539  * structure.
540  */
541 int
542 xchk_ag_read_headers(
543 	struct xfs_scrub	*sc,
544 	xfs_agnumber_t		agno,
545 	struct xchk_ag		*sa)
546 {
547 	struct xfs_mount	*mp = sc->mp;
548 
549 	ASSERT(!sa->pag);
550 	sa->pag = xfs_perag_get(mp, agno);
551 	if (!sa->pag)
552 		return -ENOENT;
553 
554 	return xchk_perag_drain_and_lock(sc);
555 }
556 
557 /* Release all the AG btree cursors. */
558 void
559 xchk_ag_btcur_free(
560 	struct xchk_ag		*sa)
561 {
562 	if (sa->refc_cur)
563 		xfs_btree_del_cursor(sa->refc_cur, XFS_BTREE_ERROR);
564 	if (sa->rmap_cur)
565 		xfs_btree_del_cursor(sa->rmap_cur, XFS_BTREE_ERROR);
566 	if (sa->fino_cur)
567 		xfs_btree_del_cursor(sa->fino_cur, XFS_BTREE_ERROR);
568 	if (sa->ino_cur)
569 		xfs_btree_del_cursor(sa->ino_cur, XFS_BTREE_ERROR);
570 	if (sa->cnt_cur)
571 		xfs_btree_del_cursor(sa->cnt_cur, XFS_BTREE_ERROR);
572 	if (sa->bno_cur)
573 		xfs_btree_del_cursor(sa->bno_cur, XFS_BTREE_ERROR);
574 
575 	sa->refc_cur = NULL;
576 	sa->rmap_cur = NULL;
577 	sa->fino_cur = NULL;
578 	sa->ino_cur = NULL;
579 	sa->bno_cur = NULL;
580 	sa->cnt_cur = NULL;
581 }
582 
583 /* Initialize all the btree cursors for an AG. */
584 void
585 xchk_ag_btcur_init(
586 	struct xfs_scrub	*sc,
587 	struct xchk_ag		*sa)
588 {
589 	struct xfs_mount	*mp = sc->mp;
590 
591 	if (sa->agf_bp) {
592 		/* Set up a bnobt cursor for cross-referencing. */
593 		sa->bno_cur = xfs_bnobt_init_cursor(mp, sc->tp, sa->agf_bp,
594 				sa->pag);
595 		xchk_ag_btree_del_cursor_if_sick(sc, &sa->bno_cur,
596 				XFS_SCRUB_TYPE_BNOBT);
597 
598 		/* Set up a cntbt cursor for cross-referencing. */
599 		sa->cnt_cur = xfs_cntbt_init_cursor(mp, sc->tp, sa->agf_bp,
600 				sa->pag);
601 		xchk_ag_btree_del_cursor_if_sick(sc, &sa->cnt_cur,
602 				XFS_SCRUB_TYPE_CNTBT);
603 
604 		/* Set up a rmapbt cursor for cross-referencing. */
605 		if (xfs_has_rmapbt(mp)) {
606 			sa->rmap_cur = xfs_rmapbt_init_cursor(mp, sc->tp,
607 					sa->agf_bp, sa->pag);
608 			xchk_ag_btree_del_cursor_if_sick(sc, &sa->rmap_cur,
609 					XFS_SCRUB_TYPE_RMAPBT);
610 		}
611 
612 		/* Set up a refcountbt cursor for cross-referencing. */
613 		if (xfs_has_reflink(mp)) {
614 			sa->refc_cur = xfs_refcountbt_init_cursor(mp, sc->tp,
615 					sa->agf_bp, sa->pag);
616 			xchk_ag_btree_del_cursor_if_sick(sc, &sa->refc_cur,
617 					XFS_SCRUB_TYPE_REFCNTBT);
618 		}
619 	}
620 
621 	if (sa->agi_bp) {
622 		/* Set up a inobt cursor for cross-referencing. */
623 		sa->ino_cur = xfs_inobt_init_cursor(sa->pag, sc->tp,
624 				sa->agi_bp);
625 		xchk_ag_btree_del_cursor_if_sick(sc, &sa->ino_cur,
626 				XFS_SCRUB_TYPE_INOBT);
627 
628 		/* Set up a finobt cursor for cross-referencing. */
629 		if (xfs_has_finobt(mp)) {
630 			sa->fino_cur = xfs_finobt_init_cursor(sa->pag, sc->tp,
631 					sa->agi_bp);
632 			xchk_ag_btree_del_cursor_if_sick(sc, &sa->fino_cur,
633 					XFS_SCRUB_TYPE_FINOBT);
634 		}
635 	}
636 }
637 
638 /* Release the AG header context and btree cursors. */
639 void
640 xchk_ag_free(
641 	struct xfs_scrub	*sc,
642 	struct xchk_ag		*sa)
643 {
644 	xchk_ag_btcur_free(sa);
645 	xrep_reset_perag_resv(sc);
646 	if (sa->agf_bp) {
647 		xfs_trans_brelse(sc->tp, sa->agf_bp);
648 		sa->agf_bp = NULL;
649 	}
650 	if (sa->agi_bp) {
651 		xfs_trans_brelse(sc->tp, sa->agi_bp);
652 		sa->agi_bp = NULL;
653 	}
654 	if (sa->pag) {
655 		xfs_perag_put(sa->pag);
656 		sa->pag = NULL;
657 	}
658 }
659 
660 /*
661  * For scrub, grab the perag structure, the AGI, and the AGF headers, in that
662  * order.  Locking order requires us to get the AGI before the AGF.  We use the
663  * transaction to avoid deadlocking on crosslinked metadata buffers; either the
664  * caller passes one in (bmap scrub) or we have to create a transaction
665  * ourselves.  Returns ENOENT if the perag struct cannot be grabbed.
666  */
667 int
668 xchk_ag_init(
669 	struct xfs_scrub	*sc,
670 	xfs_agnumber_t		agno,
671 	struct xchk_ag		*sa)
672 {
673 	int			error;
674 
675 	error = xchk_ag_read_headers(sc, agno, sa);
676 	if (error)
677 		return error;
678 
679 	xchk_ag_btcur_init(sc, sa);
680 	return 0;
681 }
682 
683 /* Per-scrubber setup functions */
684 
685 void
686 xchk_trans_cancel(
687 	struct xfs_scrub	*sc)
688 {
689 	xfs_trans_cancel(sc->tp);
690 	sc->tp = NULL;
691 }
692 
693 int
694 xchk_trans_alloc_empty(
695 	struct xfs_scrub	*sc)
696 {
697 	return xfs_trans_alloc_empty(sc->mp, &sc->tp);
698 }
699 
700 /*
701  * Grab an empty transaction so that we can re-grab locked buffers if
702  * one of our btrees turns out to be cyclic.
703  *
704  * If we're going to repair something, we need to ask for the largest possible
705  * log reservation so that we can handle the worst case scenario for metadata
706  * updates while rebuilding a metadata item.  We also need to reserve as many
707  * blocks in the head transaction as we think we're going to need to rebuild
708  * the metadata object.
709  */
710 int
711 xchk_trans_alloc(
712 	struct xfs_scrub	*sc,
713 	uint			resblks)
714 {
715 	if (sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR)
716 		return xfs_trans_alloc(sc->mp, &M_RES(sc->mp)->tr_itruncate,
717 				resblks, 0, 0, &sc->tp);
718 
719 	return xchk_trans_alloc_empty(sc);
720 }
721 
722 /* Set us up with a transaction and an empty context. */
723 int
724 xchk_setup_fs(
725 	struct xfs_scrub	*sc)
726 {
727 	uint			resblks;
728 
729 	resblks = xrep_calc_ag_resblks(sc);
730 	return xchk_trans_alloc(sc, resblks);
731 }
732 
733 /* Set us up with AG headers and btree cursors. */
734 int
735 xchk_setup_ag_btree(
736 	struct xfs_scrub	*sc,
737 	bool			force_log)
738 {
739 	struct xfs_mount	*mp = sc->mp;
740 	int			error;
741 
742 	/*
743 	 * If the caller asks us to checkpont the log, do so.  This
744 	 * expensive operation should be performed infrequently and only
745 	 * as a last resort.  Any caller that sets force_log should
746 	 * document why they need to do so.
747 	 */
748 	if (force_log) {
749 		error = xchk_checkpoint_log(mp);
750 		if (error)
751 			return error;
752 	}
753 
754 	error = xchk_setup_fs(sc);
755 	if (error)
756 		return error;
757 
758 	return xchk_ag_init(sc, sc->sm->sm_agno, &sc->sa);
759 }
760 
761 /* Push everything out of the log onto disk. */
762 int
763 xchk_checkpoint_log(
764 	struct xfs_mount	*mp)
765 {
766 	int			error;
767 
768 	error = xfs_log_force(mp, XFS_LOG_SYNC);
769 	if (error)
770 		return error;
771 	xfs_ail_push_all_sync(mp->m_ail);
772 	return 0;
773 }
774 
775 /* Verify that an inode is allocated ondisk, then return its cached inode. */
776 int
777 xchk_iget(
778 	struct xfs_scrub	*sc,
779 	xfs_ino_t		inum,
780 	struct xfs_inode	**ipp)
781 {
782 	ASSERT(sc->tp != NULL);
783 
784 	return xfs_iget(sc->mp, sc->tp, inum, XFS_IGET_UNTRUSTED, 0, ipp);
785 }
786 
787 /*
788  * Try to grab an inode in a manner that avoids races with physical inode
789  * allocation.  If we can't, return the locked AGI buffer so that the caller
790  * can single-step the loading process to see where things went wrong.
791  * Callers must have a valid scrub transaction.
792  *
793  * If the iget succeeds, return 0, a NULL AGI, and the inode.
794  *
795  * If the iget fails, return the error, the locked AGI, and a NULL inode.  This
796  * can include -EINVAL and -ENOENT for invalid inode numbers or inodes that are
797  * no longer allocated; or any other corruption or runtime error.
798  *
799  * If the AGI read fails, return the error, a NULL AGI, and NULL inode.
800  *
801  * If a fatal signal is pending, return -EINTR, a NULL AGI, and a NULL inode.
802  */
803 int
804 xchk_iget_agi(
805 	struct xfs_scrub	*sc,
806 	xfs_ino_t		inum,
807 	struct xfs_buf		**agi_bpp,
808 	struct xfs_inode	**ipp)
809 {
810 	struct xfs_mount	*mp = sc->mp;
811 	struct xfs_trans	*tp = sc->tp;
812 	struct xfs_perag	*pag;
813 	int			error;
814 
815 	ASSERT(sc->tp != NULL);
816 
817 again:
818 	*agi_bpp = NULL;
819 	*ipp = NULL;
820 	error = 0;
821 
822 	if (xchk_should_terminate(sc, &error))
823 		return error;
824 
825 	/*
826 	 * Attach the AGI buffer to the scrub transaction to avoid deadlocks
827 	 * in the iget cache miss path.
828 	 */
829 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
830 	error = xfs_ialloc_read_agi(pag, tp, agi_bpp);
831 	xfs_perag_put(pag);
832 	if (error)
833 		return error;
834 
835 	error = xfs_iget(mp, tp, inum,
836 			XFS_IGET_NORETRY | XFS_IGET_UNTRUSTED, 0, ipp);
837 	if (error == -EAGAIN) {
838 		/*
839 		 * The inode may be in core but temporarily unavailable and may
840 		 * require the AGI buffer before it can be returned.  Drop the
841 		 * AGI buffer and retry the lookup.
842 		 *
843 		 * Incore lookup will fail with EAGAIN on a cache hit if the
844 		 * inode is queued to the inactivation list.  The inactivation
845 		 * worker may remove the inode from the unlinked list and hence
846 		 * needs the AGI.
847 		 *
848 		 * Hence xchk_iget_agi() needs to drop the AGI lock on EAGAIN
849 		 * to allow inodegc to make progress and move the inode to
850 		 * IRECLAIMABLE state where xfs_iget will be able to return it
851 		 * again if it can lock the inode.
852 		 */
853 		xfs_trans_brelse(tp, *agi_bpp);
854 		delay(1);
855 		goto again;
856 	}
857 	if (error)
858 		return error;
859 
860 	/* We got the inode, so we can release the AGI. */
861 	ASSERT(*ipp != NULL);
862 	xfs_trans_brelse(tp, *agi_bpp);
863 	*agi_bpp = NULL;
864 	return 0;
865 }
866 
867 #ifdef CONFIG_XFS_QUOTA
868 /*
869  * Try to attach dquots to this inode if we think we might want to repair it.
870  * Callers must not hold any ILOCKs.  If the dquots are broken and cannot be
871  * attached, a quotacheck will be scheduled.
872  */
873 int
874 xchk_ino_dqattach(
875 	struct xfs_scrub	*sc)
876 {
877 	ASSERT(sc->tp != NULL);
878 	ASSERT(sc->ip != NULL);
879 
880 	if (!xchk_could_repair(sc))
881 		return 0;
882 
883 	return xrep_ino_dqattach(sc);
884 }
885 #endif
886 
887 /* Install an inode that we opened by handle for scrubbing. */
888 int
889 xchk_install_handle_inode(
890 	struct xfs_scrub	*sc,
891 	struct xfs_inode	*ip)
892 {
893 	if (VFS_I(ip)->i_generation != sc->sm->sm_gen) {
894 		xchk_irele(sc, ip);
895 		return -ENOENT;
896 	}
897 
898 	sc->ip = ip;
899 	return 0;
900 }
901 
902 /*
903  * Install an already-referenced inode for scrubbing.  Get our own reference to
904  * the inode to make disposal simpler.  The inode must not be in I_FREEING or
905  * I_WILL_FREE state!
906  */
907 int
908 xchk_install_live_inode(
909 	struct xfs_scrub	*sc,
910 	struct xfs_inode	*ip)
911 {
912 	if (!igrab(VFS_I(ip))) {
913 		xchk_ino_set_corrupt(sc, ip->i_ino);
914 		return -EFSCORRUPTED;
915 	}
916 
917 	sc->ip = ip;
918 	return 0;
919 }
920 
921 /*
922  * In preparation to scrub metadata structures that hang off of an inode,
923  * grab either the inode referenced in the scrub control structure or the
924  * inode passed in.  If the inumber does not reference an allocated inode
925  * record, the function returns ENOENT to end the scrub early.  The inode
926  * is not locked.
927  */
928 int
929 xchk_iget_for_scrubbing(
930 	struct xfs_scrub	*sc)
931 {
932 	struct xfs_imap		imap;
933 	struct xfs_mount	*mp = sc->mp;
934 	struct xfs_perag	*pag;
935 	struct xfs_buf		*agi_bp;
936 	struct xfs_inode	*ip_in = XFS_I(file_inode(sc->file));
937 	struct xfs_inode	*ip = NULL;
938 	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, sc->sm->sm_ino);
939 	int			error;
940 
941 	ASSERT(sc->tp == NULL);
942 
943 	/* We want to scan the inode we already had opened. */
944 	if (sc->sm->sm_ino == 0 || sc->sm->sm_ino == ip_in->i_ino)
945 		return xchk_install_live_inode(sc, ip_in);
946 
947 	/* Reject internal metadata files and obviously bad inode numbers. */
948 	if (xfs_internal_inum(mp, sc->sm->sm_ino))
949 		return -ENOENT;
950 	if (!xfs_verify_ino(sc->mp, sc->sm->sm_ino))
951 		return -ENOENT;
952 
953 	/* Try a safe untrusted iget. */
954 	error = xchk_iget_safe(sc, sc->sm->sm_ino, &ip);
955 	if (!error)
956 		return xchk_install_handle_inode(sc, ip);
957 	if (error == -ENOENT)
958 		return error;
959 	if (error != -EINVAL)
960 		goto out_error;
961 
962 	/*
963 	 * EINVAL with IGET_UNTRUSTED probably means one of several things:
964 	 * userspace gave us an inode number that doesn't correspond to fs
965 	 * space; the inode btree lacks a record for this inode; or there is a
966 	 * record, and it says this inode is free.
967 	 *
968 	 * We want to look up this inode in the inobt to distinguish two
969 	 * scenarios: (1) the inobt says the inode is free, in which case
970 	 * there's nothing to do; and (2) the inobt says the inode is
971 	 * allocated, but loading it failed due to corruption.
972 	 *
973 	 * Allocate a transaction and grab the AGI to prevent inobt activity
974 	 * in this AG.  Retry the iget in case someone allocated a new inode
975 	 * after the first iget failed.
976 	 */
977 	error = xchk_trans_alloc(sc, 0);
978 	if (error)
979 		goto out_error;
980 
981 	error = xchk_iget_agi(sc, sc->sm->sm_ino, &agi_bp, &ip);
982 	if (error == 0) {
983 		/* Actually got the inode, so install it. */
984 		xchk_trans_cancel(sc);
985 		return xchk_install_handle_inode(sc, ip);
986 	}
987 	if (error == -ENOENT)
988 		goto out_gone;
989 	if (error != -EINVAL)
990 		goto out_cancel;
991 
992 	/* Ensure that we have protected against inode allocation/freeing. */
993 	if (agi_bp == NULL) {
994 		ASSERT(agi_bp != NULL);
995 		error = -ECANCELED;
996 		goto out_cancel;
997 	}
998 
999 	/*
1000 	 * Untrusted iget failed a second time.  Let's try an inobt lookup.
1001 	 * If the inobt thinks this the inode neither can exist inside the
1002 	 * filesystem nor is allocated, return ENOENT to signal that the check
1003 	 * can be skipped.
1004 	 *
1005 	 * If the lookup returns corruption, we'll mark this inode corrupt and
1006 	 * exit to userspace.  There's little chance of fixing anything until
1007 	 * the inobt is straightened out, but there's nothing we can do here.
1008 	 *
1009 	 * If the lookup encounters any other error, exit to userspace.
1010 	 *
1011 	 * If the lookup succeeds, something else must be very wrong in the fs
1012 	 * such that setting up the incore inode failed in some strange way.
1013 	 * Treat those as corruptions.
1014 	 */
1015 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sc->sm->sm_ino));
1016 	if (!pag) {
1017 		error = -EFSCORRUPTED;
1018 		goto out_cancel;
1019 	}
1020 
1021 	error = xfs_imap(pag, sc->tp, sc->sm->sm_ino, &imap,
1022 			XFS_IGET_UNTRUSTED);
1023 	xfs_perag_put(pag);
1024 	if (error == -EINVAL || error == -ENOENT)
1025 		goto out_gone;
1026 	if (!error)
1027 		error = -EFSCORRUPTED;
1028 
1029 out_cancel:
1030 	xchk_trans_cancel(sc);
1031 out_error:
1032 	trace_xchk_op_error(sc, agno, XFS_INO_TO_AGBNO(mp, sc->sm->sm_ino),
1033 			error, __return_address);
1034 	return error;
1035 out_gone:
1036 	/* The file is gone, so there's nothing to check. */
1037 	xchk_trans_cancel(sc);
1038 	return -ENOENT;
1039 }
1040 
1041 /* Release an inode, possibly dropping it in the process. */
1042 void
1043 xchk_irele(
1044 	struct xfs_scrub	*sc,
1045 	struct xfs_inode	*ip)
1046 {
1047 	if (sc->tp) {
1048 		/*
1049 		 * If we are in a transaction, we /cannot/ drop the inode
1050 		 * ourselves, because the VFS will trigger writeback, which
1051 		 * can require a transaction.  Clear DONTCACHE to force the
1052 		 * inode to the LRU, where someone else can take care of
1053 		 * dropping it.
1054 		 *
1055 		 * Note that when we grabbed our reference to the inode, it
1056 		 * could have had an active ref and DONTCACHE set if a sysadmin
1057 		 * is trying to coerce a change in file access mode.  icache
1058 		 * hits do not clear DONTCACHE, so we must do it here.
1059 		 */
1060 		spin_lock(&VFS_I(ip)->i_lock);
1061 		VFS_I(ip)->i_state &= ~I_DONTCACHE;
1062 		spin_unlock(&VFS_I(ip)->i_lock);
1063 	} else if (atomic_read(&VFS_I(ip)->i_count) == 1) {
1064 		/*
1065 		 * If this is the last reference to the inode and the caller
1066 		 * permits it, set DONTCACHE to avoid thrashing.
1067 		 */
1068 		d_mark_dontcache(VFS_I(ip));
1069 	}
1070 
1071 	xfs_irele(ip);
1072 }
1073 
1074 /*
1075  * Set us up to scrub metadata mapped by a file's fork.  Callers must not use
1076  * this to operate on user-accessible regular file data because the MMAPLOCK is
1077  * not taken.
1078  */
1079 int
1080 xchk_setup_inode_contents(
1081 	struct xfs_scrub	*sc,
1082 	unsigned int		resblks)
1083 {
1084 	int			error;
1085 
1086 	error = xchk_iget_for_scrubbing(sc);
1087 	if (error)
1088 		return error;
1089 
1090 	/* Lock the inode so the VFS cannot touch this file. */
1091 	xchk_ilock(sc, XFS_IOLOCK_EXCL);
1092 
1093 	error = xchk_trans_alloc(sc, resblks);
1094 	if (error)
1095 		goto out;
1096 
1097 	error = xchk_ino_dqattach(sc);
1098 	if (error)
1099 		goto out;
1100 
1101 	xchk_ilock(sc, XFS_ILOCK_EXCL);
1102 out:
1103 	/* scrub teardown will unlock and release the inode for us */
1104 	return error;
1105 }
1106 
1107 void
1108 xchk_ilock(
1109 	struct xfs_scrub	*sc,
1110 	unsigned int		ilock_flags)
1111 {
1112 	xfs_ilock(sc->ip, ilock_flags);
1113 	sc->ilock_flags |= ilock_flags;
1114 }
1115 
1116 bool
1117 xchk_ilock_nowait(
1118 	struct xfs_scrub	*sc,
1119 	unsigned int		ilock_flags)
1120 {
1121 	if (xfs_ilock_nowait(sc->ip, ilock_flags)) {
1122 		sc->ilock_flags |= ilock_flags;
1123 		return true;
1124 	}
1125 
1126 	return false;
1127 }
1128 
1129 void
1130 xchk_iunlock(
1131 	struct xfs_scrub	*sc,
1132 	unsigned int		ilock_flags)
1133 {
1134 	sc->ilock_flags &= ~ilock_flags;
1135 	xfs_iunlock(sc->ip, ilock_flags);
1136 }
1137 
1138 /*
1139  * Predicate that decides if we need to evaluate the cross-reference check.
1140  * If there was an error accessing the cross-reference btree, just delete
1141  * the cursor and skip the check.
1142  */
1143 bool
1144 xchk_should_check_xref(
1145 	struct xfs_scrub	*sc,
1146 	int			*error,
1147 	struct xfs_btree_cur	**curpp)
1148 {
1149 	/* No point in xref if we already know we're corrupt. */
1150 	if (xchk_skip_xref(sc->sm))
1151 		return false;
1152 
1153 	if (*error == 0)
1154 		return true;
1155 
1156 	if (curpp) {
1157 		/* If we've already given up on xref, just bail out. */
1158 		if (!*curpp)
1159 			return false;
1160 
1161 		/* xref error, delete cursor and bail out. */
1162 		xfs_btree_del_cursor(*curpp, XFS_BTREE_ERROR);
1163 		*curpp = NULL;
1164 	}
1165 
1166 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XFAIL;
1167 	trace_xchk_xref_error(sc, *error, __return_address);
1168 
1169 	/*
1170 	 * Errors encountered during cross-referencing with another
1171 	 * data structure should not cause this scrubber to abort.
1172 	 */
1173 	*error = 0;
1174 	return false;
1175 }
1176 
1177 /* Run the structure verifiers on in-memory buffers to detect bad memory. */
1178 void
1179 xchk_buffer_recheck(
1180 	struct xfs_scrub	*sc,
1181 	struct xfs_buf		*bp)
1182 {
1183 	xfs_failaddr_t		fa;
1184 
1185 	if (bp->b_ops == NULL) {
1186 		xchk_block_set_corrupt(sc, bp);
1187 		return;
1188 	}
1189 	if (bp->b_ops->verify_struct == NULL) {
1190 		xchk_set_incomplete(sc);
1191 		return;
1192 	}
1193 	fa = bp->b_ops->verify_struct(bp);
1194 	if (!fa)
1195 		return;
1196 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
1197 	trace_xchk_block_error(sc, xfs_buf_daddr(bp), fa);
1198 }
1199 
1200 static inline int
1201 xchk_metadata_inode_subtype(
1202 	struct xfs_scrub	*sc,
1203 	unsigned int		scrub_type)
1204 {
1205 	__u32			smtype = sc->sm->sm_type;
1206 	unsigned int		sick_mask = sc->sick_mask;
1207 	int			error;
1208 
1209 	sc->sm->sm_type = scrub_type;
1210 
1211 	switch (scrub_type) {
1212 	case XFS_SCRUB_TYPE_INODE:
1213 		error = xchk_inode(sc);
1214 		break;
1215 	case XFS_SCRUB_TYPE_BMBTD:
1216 		error = xchk_bmap_data(sc);
1217 		break;
1218 	default:
1219 		ASSERT(0);
1220 		error = -EFSCORRUPTED;
1221 		break;
1222 	}
1223 
1224 	sc->sick_mask = sick_mask;
1225 	sc->sm->sm_type = smtype;
1226 	return error;
1227 }
1228 
1229 /*
1230  * Scrub the attr/data forks of a metadata inode.  The metadata inode must be
1231  * pointed to by sc->ip and the ILOCK must be held.
1232  */
1233 int
1234 xchk_metadata_inode_forks(
1235 	struct xfs_scrub	*sc)
1236 {
1237 	bool			shared;
1238 	int			error;
1239 
1240 	if (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT)
1241 		return 0;
1242 
1243 	/* Check the inode record. */
1244 	error = xchk_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_INODE);
1245 	if (error || (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT))
1246 		return error;
1247 
1248 	/* Metadata inodes don't live on the rt device. */
1249 	if (sc->ip->i_diflags & XFS_DIFLAG_REALTIME) {
1250 		xchk_ino_set_corrupt(sc, sc->ip->i_ino);
1251 		return 0;
1252 	}
1253 
1254 	/* They should never participate in reflink. */
1255 	if (xfs_is_reflink_inode(sc->ip)) {
1256 		xchk_ino_set_corrupt(sc, sc->ip->i_ino);
1257 		return 0;
1258 	}
1259 
1260 	/* They also should never have extended attributes. */
1261 	if (xfs_inode_hasattr(sc->ip)) {
1262 		xchk_ino_set_corrupt(sc, sc->ip->i_ino);
1263 		return 0;
1264 	}
1265 
1266 	/* Invoke the data fork scrubber. */
1267 	error = xchk_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_BMBTD);
1268 	if (error || (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT))
1269 		return error;
1270 
1271 	/* Look for incorrect shared blocks. */
1272 	if (xfs_has_reflink(sc->mp)) {
1273 		error = xfs_reflink_inode_has_shared_extents(sc->tp, sc->ip,
1274 				&shared);
1275 		if (!xchk_fblock_process_error(sc, XFS_DATA_FORK, 0,
1276 				&error))
1277 			return error;
1278 		if (shared)
1279 			xchk_ino_set_corrupt(sc, sc->ip->i_ino);
1280 	}
1281 
1282 	return 0;
1283 }
1284 
1285 /*
1286  * Enable filesystem hooks (i.e. runtime code patching) before starting a scrub
1287  * operation.  Callers must not hold any locks that intersect with the CPU
1288  * hotplug lock (e.g. writeback locks) because code patching must halt the CPUs
1289  * to change kernel code.
1290  */
1291 void
1292 xchk_fsgates_enable(
1293 	struct xfs_scrub	*sc,
1294 	unsigned int		scrub_fsgates)
1295 {
1296 	ASSERT(!(scrub_fsgates & ~XCHK_FSGATES_ALL));
1297 	ASSERT(!(sc->flags & scrub_fsgates));
1298 
1299 	trace_xchk_fsgates_enable(sc, scrub_fsgates);
1300 
1301 	if (scrub_fsgates & XCHK_FSGATES_DRAIN)
1302 		xfs_drain_wait_enable();
1303 
1304 	if (scrub_fsgates & XCHK_FSGATES_QUOTA)
1305 		xfs_dqtrx_hook_enable();
1306 
1307 	if (scrub_fsgates & XCHK_FSGATES_DIRENTS)
1308 		xfs_dir_hook_enable();
1309 
1310 	if (scrub_fsgates & XCHK_FSGATES_RMAP)
1311 		xfs_rmap_hook_enable();
1312 
1313 	sc->flags |= scrub_fsgates;
1314 }
1315 
1316 /*
1317  * Decide if this is this a cached inode that's also allocated.  The caller
1318  * must hold a reference to an AG and the AGI buffer lock to prevent inodes
1319  * from being allocated or freed.
1320  *
1321  * Look up an inode by number in the given file system.  If the inode number
1322  * is invalid, return -EINVAL.  If the inode is not in cache, return -ENODATA.
1323  * If the inode is being reclaimed, return -ENODATA because we know the inode
1324  * cache cannot be updating the ondisk metadata.
1325  *
1326  * Otherwise, the incore inode is the one we want, and it is either live,
1327  * somewhere in the inactivation machinery, or reclaimable.  The inode is
1328  * allocated if i_mode is nonzero.  In all three cases, the cached inode will
1329  * be more up to date than the ondisk inode buffer, so we must use the incore
1330  * i_mode.
1331  */
1332 int
1333 xchk_inode_is_allocated(
1334 	struct xfs_scrub	*sc,
1335 	xfs_agino_t		agino,
1336 	bool			*inuse)
1337 {
1338 	struct xfs_mount	*mp = sc->mp;
1339 	struct xfs_perag	*pag = sc->sa.pag;
1340 	xfs_ino_t		ino;
1341 	struct xfs_inode	*ip;
1342 	int			error;
1343 
1344 	/* caller must hold perag reference */
1345 	if (pag == NULL) {
1346 		ASSERT(pag != NULL);
1347 		return -EINVAL;
1348 	}
1349 
1350 	/* caller must have AGI buffer */
1351 	if (sc->sa.agi_bp == NULL) {
1352 		ASSERT(sc->sa.agi_bp != NULL);
1353 		return -EINVAL;
1354 	}
1355 
1356 	/* reject inode numbers outside existing AGs */
1357 	ino = XFS_AGINO_TO_INO(sc->mp, pag->pag_agno, agino);
1358 	if (!xfs_verify_ino(mp, ino))
1359 		return -EINVAL;
1360 
1361 	error = -ENODATA;
1362 	rcu_read_lock();
1363 	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
1364 	if (!ip) {
1365 		/* cache miss */
1366 		goto out_rcu;
1367 	}
1368 
1369 	/*
1370 	 * If the inode number doesn't match, the incore inode got reused
1371 	 * during an RCU grace period and the radix tree hasn't been updated.
1372 	 * This isn't the inode we want.
1373 	 */
1374 	spin_lock(&ip->i_flags_lock);
1375 	if (ip->i_ino != ino)
1376 		goto out_skip;
1377 
1378 	trace_xchk_inode_is_allocated(ip);
1379 
1380 	/*
1381 	 * We have an incore inode that matches the inode we want, and the
1382 	 * caller holds the perag structure and the AGI buffer.  Let's check
1383 	 * our assumptions below:
1384 	 */
1385 
1386 #ifdef DEBUG
1387 	/*
1388 	 * (1) If the incore inode is live (i.e. referenced from the dcache),
1389 	 * it will not be INEW, nor will it be in the inactivation or reclaim
1390 	 * machinery.  The ondisk inode had better be allocated.  This is the
1391 	 * most trivial case.
1392 	 */
1393 	if (!(ip->i_flags & (XFS_NEED_INACTIVE | XFS_INEW | XFS_IRECLAIMABLE |
1394 			     XFS_INACTIVATING))) {
1395 		/* live inode */
1396 		ASSERT(VFS_I(ip)->i_mode != 0);
1397 	}
1398 
1399 	/*
1400 	 * If the incore inode is INEW, there are several possibilities:
1401 	 *
1402 	 * (2) For a file that is being created, note that we allocate the
1403 	 * ondisk inode before allocating, initializing, and adding the incore
1404 	 * inode to the radix tree.
1405 	 *
1406 	 * (3) If the incore inode is being recycled, the inode has to be
1407 	 * allocated because we don't allow freed inodes to be recycled.
1408 	 * Recycling doesn't touch i_mode.
1409 	 */
1410 	if (ip->i_flags & XFS_INEW) {
1411 		/* created on disk already or recycling */
1412 		ASSERT(VFS_I(ip)->i_mode != 0);
1413 	}
1414 
1415 	/*
1416 	 * (4) If the inode is queued for inactivation (NEED_INACTIVE) but
1417 	 * inactivation has not started (!INACTIVATING), it is still allocated.
1418 	 */
1419 	if ((ip->i_flags & XFS_NEED_INACTIVE) &&
1420 	    !(ip->i_flags & XFS_INACTIVATING)) {
1421 		/* definitely before difree */
1422 		ASSERT(VFS_I(ip)->i_mode != 0);
1423 	}
1424 #endif
1425 
1426 	/*
1427 	 * If the incore inode is undergoing inactivation (INACTIVATING), there
1428 	 * are two possibilities:
1429 	 *
1430 	 * (5) It is before the point where it would get freed ondisk, in which
1431 	 * case i_mode is still nonzero.
1432 	 *
1433 	 * (6) It has already been freed, in which case i_mode is zero.
1434 	 *
1435 	 * We don't take the ILOCK here, but difree and dialloc update the AGI,
1436 	 * and we've taken the AGI buffer lock, which prevents that from
1437 	 * happening.
1438 	 */
1439 
1440 	/*
1441 	 * (7) Inodes undergoing inactivation (INACTIVATING) or queued for
1442 	 * reclaim (IRECLAIMABLE) could be allocated or free.  i_mode still
1443 	 * reflects the ondisk state.
1444 	 */
1445 
1446 	/*
1447 	 * (8) If the inode is in IFLUSHING, it's safe to query i_mode because
1448 	 * the flush code uses i_mode to format the ondisk inode.
1449 	 */
1450 
1451 	/*
1452 	 * (9) If the inode is in IRECLAIM and was reachable via the radix
1453 	 * tree, it still has the same i_mode as it did before it entered
1454 	 * reclaim.  The inode object is still alive because we hold the RCU
1455 	 * read lock.
1456 	 */
1457 
1458 	*inuse = VFS_I(ip)->i_mode != 0;
1459 	error = 0;
1460 
1461 out_skip:
1462 	spin_unlock(&ip->i_flags_lock);
1463 out_rcu:
1464 	rcu_read_unlock();
1465 	return error;
1466 }
1467