1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2017-2023 Oracle. All Rights Reserved. 4 * Author: Darrick J. Wong <djwong@kernel.org> 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_trans_resv.h" 11 #include "xfs_mount.h" 12 #include "xfs_btree.h" 13 #include "xfs_log_format.h" 14 #include "xfs_trans.h" 15 #include "xfs_inode.h" 16 #include "xfs_icache.h" 17 #include "xfs_alloc.h" 18 #include "xfs_alloc_btree.h" 19 #include "xfs_ialloc.h" 20 #include "xfs_ialloc_btree.h" 21 #include "xfs_refcount_btree.h" 22 #include "xfs_rmap.h" 23 #include "xfs_rmap_btree.h" 24 #include "xfs_log.h" 25 #include "xfs_trans_priv.h" 26 #include "xfs_da_format.h" 27 #include "xfs_da_btree.h" 28 #include "xfs_dir2_priv.h" 29 #include "xfs_attr.h" 30 #include "xfs_reflink.h" 31 #include "xfs_ag.h" 32 #include "xfs_error.h" 33 #include "xfs_quota.h" 34 #include "scrub/scrub.h" 35 #include "scrub/common.h" 36 #include "scrub/trace.h" 37 #include "scrub/repair.h" 38 #include "scrub/health.h" 39 40 /* Common code for the metadata scrubbers. */ 41 42 /* 43 * Handling operational errors. 44 * 45 * The *_process_error() family of functions are used to process error return 46 * codes from functions called as part of a scrub operation. 47 * 48 * If there's no error, we return true to tell the caller that it's ok 49 * to move on to the next check in its list. 50 * 51 * For non-verifier errors (e.g. ENOMEM) we return false to tell the 52 * caller that something bad happened, and we preserve *error so that 53 * the caller can return the *error up the stack to userspace. 54 * 55 * Verifier errors (EFSBADCRC/EFSCORRUPTED) are recorded by setting 56 * OFLAG_CORRUPT in sm_flags and the *error is cleared. In other words, 57 * we track verifier errors (and failed scrub checks) via OFLAG_CORRUPT, 58 * not via return codes. We return false to tell the caller that 59 * something bad happened. Since the error has been cleared, the caller 60 * will (presumably) return that zero and scrubbing will move on to 61 * whatever's next. 62 * 63 * ftrace can be used to record the precise metadata location and the 64 * approximate code location of the failed operation. 65 */ 66 67 /* Check for operational errors. */ 68 static bool 69 __xchk_process_error( 70 struct xfs_scrub *sc, 71 xfs_agnumber_t agno, 72 xfs_agblock_t bno, 73 int *error, 74 __u32 errflag, 75 void *ret_ip) 76 { 77 switch (*error) { 78 case 0: 79 return true; 80 case -EDEADLOCK: 81 case -ECHRNG: 82 /* Used to restart an op with deadlock avoidance. */ 83 trace_xchk_deadlock_retry( 84 sc->ip ? sc->ip : XFS_I(file_inode(sc->file)), 85 sc->sm, *error); 86 break; 87 case -ECANCELED: 88 /* 89 * ECANCELED here means that the caller set one of the scrub 90 * outcome flags (corrupt, xfail, xcorrupt) and wants to exit 91 * quickly. Set error to zero and do not continue. 92 */ 93 trace_xchk_op_error(sc, agno, bno, *error, ret_ip); 94 *error = 0; 95 break; 96 case -EFSBADCRC: 97 case -EFSCORRUPTED: 98 /* Note the badness but don't abort. */ 99 sc->sm->sm_flags |= errflag; 100 *error = 0; 101 fallthrough; 102 default: 103 trace_xchk_op_error(sc, agno, bno, *error, ret_ip); 104 break; 105 } 106 return false; 107 } 108 109 bool 110 xchk_process_error( 111 struct xfs_scrub *sc, 112 xfs_agnumber_t agno, 113 xfs_agblock_t bno, 114 int *error) 115 { 116 return __xchk_process_error(sc, agno, bno, error, 117 XFS_SCRUB_OFLAG_CORRUPT, __return_address); 118 } 119 120 bool 121 xchk_xref_process_error( 122 struct xfs_scrub *sc, 123 xfs_agnumber_t agno, 124 xfs_agblock_t bno, 125 int *error) 126 { 127 return __xchk_process_error(sc, agno, bno, error, 128 XFS_SCRUB_OFLAG_XFAIL, __return_address); 129 } 130 131 /* Check for operational errors for a file offset. */ 132 static bool 133 __xchk_fblock_process_error( 134 struct xfs_scrub *sc, 135 int whichfork, 136 xfs_fileoff_t offset, 137 int *error, 138 __u32 errflag, 139 void *ret_ip) 140 { 141 switch (*error) { 142 case 0: 143 return true; 144 case -EDEADLOCK: 145 case -ECHRNG: 146 /* Used to restart an op with deadlock avoidance. */ 147 trace_xchk_deadlock_retry(sc->ip, sc->sm, *error); 148 break; 149 case -ECANCELED: 150 /* 151 * ECANCELED here means that the caller set one of the scrub 152 * outcome flags (corrupt, xfail, xcorrupt) and wants to exit 153 * quickly. Set error to zero and do not continue. 154 */ 155 trace_xchk_file_op_error(sc, whichfork, offset, *error, 156 ret_ip); 157 *error = 0; 158 break; 159 case -EFSBADCRC: 160 case -EFSCORRUPTED: 161 /* Note the badness but don't abort. */ 162 sc->sm->sm_flags |= errflag; 163 *error = 0; 164 fallthrough; 165 default: 166 trace_xchk_file_op_error(sc, whichfork, offset, *error, 167 ret_ip); 168 break; 169 } 170 return false; 171 } 172 173 bool 174 xchk_fblock_process_error( 175 struct xfs_scrub *sc, 176 int whichfork, 177 xfs_fileoff_t offset, 178 int *error) 179 { 180 return __xchk_fblock_process_error(sc, whichfork, offset, error, 181 XFS_SCRUB_OFLAG_CORRUPT, __return_address); 182 } 183 184 bool 185 xchk_fblock_xref_process_error( 186 struct xfs_scrub *sc, 187 int whichfork, 188 xfs_fileoff_t offset, 189 int *error) 190 { 191 return __xchk_fblock_process_error(sc, whichfork, offset, error, 192 XFS_SCRUB_OFLAG_XFAIL, __return_address); 193 } 194 195 /* 196 * Handling scrub corruption/optimization/warning checks. 197 * 198 * The *_set_{corrupt,preen,warning}() family of functions are used to 199 * record the presence of metadata that is incorrect (corrupt), could be 200 * optimized somehow (preen), or should be flagged for administrative 201 * review but is not incorrect (warn). 202 * 203 * ftrace can be used to record the precise metadata location and 204 * approximate code location of the failed check. 205 */ 206 207 /* Record a block which could be optimized. */ 208 void 209 xchk_block_set_preen( 210 struct xfs_scrub *sc, 211 struct xfs_buf *bp) 212 { 213 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_PREEN; 214 trace_xchk_block_preen(sc, xfs_buf_daddr(bp), __return_address); 215 } 216 217 /* 218 * Record an inode which could be optimized. The trace data will 219 * include the block given by bp if bp is given; otherwise it will use 220 * the block location of the inode record itself. 221 */ 222 void 223 xchk_ino_set_preen( 224 struct xfs_scrub *sc, 225 xfs_ino_t ino) 226 { 227 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_PREEN; 228 trace_xchk_ino_preen(sc, ino, __return_address); 229 } 230 231 /* Record something being wrong with the filesystem primary superblock. */ 232 void 233 xchk_set_corrupt( 234 struct xfs_scrub *sc) 235 { 236 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT; 237 trace_xchk_fs_error(sc, 0, __return_address); 238 } 239 240 /* Record a corrupt block. */ 241 void 242 xchk_block_set_corrupt( 243 struct xfs_scrub *sc, 244 struct xfs_buf *bp) 245 { 246 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT; 247 trace_xchk_block_error(sc, xfs_buf_daddr(bp), __return_address); 248 } 249 250 #ifdef CONFIG_XFS_QUOTA 251 /* Record a corrupt quota counter. */ 252 void 253 xchk_qcheck_set_corrupt( 254 struct xfs_scrub *sc, 255 unsigned int dqtype, 256 xfs_dqid_t id) 257 { 258 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT; 259 trace_xchk_qcheck_error(sc, dqtype, id, __return_address); 260 } 261 #endif 262 263 /* Record a corruption while cross-referencing. */ 264 void 265 xchk_block_xref_set_corrupt( 266 struct xfs_scrub *sc, 267 struct xfs_buf *bp) 268 { 269 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT; 270 trace_xchk_block_error(sc, xfs_buf_daddr(bp), __return_address); 271 } 272 273 /* 274 * Record a corrupt inode. The trace data will include the block given 275 * by bp if bp is given; otherwise it will use the block location of the 276 * inode record itself. 277 */ 278 void 279 xchk_ino_set_corrupt( 280 struct xfs_scrub *sc, 281 xfs_ino_t ino) 282 { 283 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT; 284 trace_xchk_ino_error(sc, ino, __return_address); 285 } 286 287 /* Record a corruption while cross-referencing with an inode. */ 288 void 289 xchk_ino_xref_set_corrupt( 290 struct xfs_scrub *sc, 291 xfs_ino_t ino) 292 { 293 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT; 294 trace_xchk_ino_error(sc, ino, __return_address); 295 } 296 297 /* Record corruption in a block indexed by a file fork. */ 298 void 299 xchk_fblock_set_corrupt( 300 struct xfs_scrub *sc, 301 int whichfork, 302 xfs_fileoff_t offset) 303 { 304 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT; 305 trace_xchk_fblock_error(sc, whichfork, offset, __return_address); 306 } 307 308 /* Record a corruption while cross-referencing a fork block. */ 309 void 310 xchk_fblock_xref_set_corrupt( 311 struct xfs_scrub *sc, 312 int whichfork, 313 xfs_fileoff_t offset) 314 { 315 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT; 316 trace_xchk_fblock_error(sc, whichfork, offset, __return_address); 317 } 318 319 /* 320 * Warn about inodes that need administrative review but is not 321 * incorrect. 322 */ 323 void 324 xchk_ino_set_warning( 325 struct xfs_scrub *sc, 326 xfs_ino_t ino) 327 { 328 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_WARNING; 329 trace_xchk_ino_warning(sc, ino, __return_address); 330 } 331 332 /* Warn about a block indexed by a file fork that needs review. */ 333 void 334 xchk_fblock_set_warning( 335 struct xfs_scrub *sc, 336 int whichfork, 337 xfs_fileoff_t offset) 338 { 339 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_WARNING; 340 trace_xchk_fblock_warning(sc, whichfork, offset, __return_address); 341 } 342 343 /* Signal an incomplete scrub. */ 344 void 345 xchk_set_incomplete( 346 struct xfs_scrub *sc) 347 { 348 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_INCOMPLETE; 349 trace_xchk_incomplete(sc, __return_address); 350 } 351 352 /* 353 * rmap scrubbing -- compute the number of blocks with a given owner, 354 * at least according to the reverse mapping data. 355 */ 356 357 struct xchk_rmap_ownedby_info { 358 const struct xfs_owner_info *oinfo; 359 xfs_filblks_t *blocks; 360 }; 361 362 STATIC int 363 xchk_count_rmap_ownedby_irec( 364 struct xfs_btree_cur *cur, 365 const struct xfs_rmap_irec *rec, 366 void *priv) 367 { 368 struct xchk_rmap_ownedby_info *sroi = priv; 369 bool irec_attr; 370 bool oinfo_attr; 371 372 irec_attr = rec->rm_flags & XFS_RMAP_ATTR_FORK; 373 oinfo_attr = sroi->oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK; 374 375 if (rec->rm_owner != sroi->oinfo->oi_owner) 376 return 0; 377 378 if (XFS_RMAP_NON_INODE_OWNER(rec->rm_owner) || irec_attr == oinfo_attr) 379 (*sroi->blocks) += rec->rm_blockcount; 380 381 return 0; 382 } 383 384 /* 385 * Calculate the number of blocks the rmap thinks are owned by something. 386 * The caller should pass us an rmapbt cursor. 387 */ 388 int 389 xchk_count_rmap_ownedby_ag( 390 struct xfs_scrub *sc, 391 struct xfs_btree_cur *cur, 392 const struct xfs_owner_info *oinfo, 393 xfs_filblks_t *blocks) 394 { 395 struct xchk_rmap_ownedby_info sroi = { 396 .oinfo = oinfo, 397 .blocks = blocks, 398 }; 399 400 *blocks = 0; 401 return xfs_rmap_query_all(cur, xchk_count_rmap_ownedby_irec, 402 &sroi); 403 } 404 405 /* 406 * AG scrubbing 407 * 408 * These helpers facilitate locking an allocation group's header 409 * buffers, setting up cursors for all btrees that are present, and 410 * cleaning everything up once we're through. 411 */ 412 413 /* Decide if we want to return an AG header read failure. */ 414 static inline bool 415 want_ag_read_header_failure( 416 struct xfs_scrub *sc, 417 unsigned int type) 418 { 419 /* Return all AG header read failures when scanning btrees. */ 420 if (sc->sm->sm_type != XFS_SCRUB_TYPE_AGF && 421 sc->sm->sm_type != XFS_SCRUB_TYPE_AGFL && 422 sc->sm->sm_type != XFS_SCRUB_TYPE_AGI) 423 return true; 424 /* 425 * If we're scanning a given type of AG header, we only want to 426 * see read failures from that specific header. We'd like the 427 * other headers to cross-check them, but this isn't required. 428 */ 429 if (sc->sm->sm_type == type) 430 return true; 431 return false; 432 } 433 434 /* 435 * Grab the AG header buffers for the attached perag structure. 436 * 437 * The headers should be released by xchk_ag_free, but as a fail safe we attach 438 * all the buffers we grab to the scrub transaction so they'll all be freed 439 * when we cancel it. 440 */ 441 static inline int 442 xchk_perag_read_headers( 443 struct xfs_scrub *sc, 444 struct xchk_ag *sa) 445 { 446 int error; 447 448 error = xfs_ialloc_read_agi(sa->pag, sc->tp, &sa->agi_bp); 449 if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGI)) 450 return error; 451 452 error = xfs_alloc_read_agf(sa->pag, sc->tp, 0, &sa->agf_bp); 453 if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGF)) 454 return error; 455 456 return 0; 457 } 458 459 /* 460 * Grab the AG headers for the attached perag structure and wait for pending 461 * intents to drain. 462 */ 463 int 464 xchk_perag_drain_and_lock( 465 struct xfs_scrub *sc) 466 { 467 struct xchk_ag *sa = &sc->sa; 468 int error = 0; 469 470 ASSERT(sa->pag != NULL); 471 ASSERT(sa->agi_bp == NULL); 472 ASSERT(sa->agf_bp == NULL); 473 474 do { 475 if (xchk_should_terminate(sc, &error)) 476 return error; 477 478 error = xchk_perag_read_headers(sc, sa); 479 if (error) 480 return error; 481 482 /* 483 * If we've grabbed an inode for scrubbing then we assume that 484 * holding its ILOCK will suffice to coordinate with any intent 485 * chains involving this inode. 486 */ 487 if (sc->ip) 488 return 0; 489 490 /* 491 * Decide if this AG is quiet enough for all metadata to be 492 * consistent with each other. XFS allows the AG header buffer 493 * locks to cycle across transaction rolls while processing 494 * chains of deferred ops, which means that there could be 495 * other threads in the middle of processing a chain of 496 * deferred ops. For regular operations we are careful about 497 * ordering operations to prevent collisions between threads 498 * (which is why we don't need a per-AG lock), but scrub and 499 * repair have to serialize against chained operations. 500 * 501 * We just locked all the AG headers buffers; now take a look 502 * to see if there are any intents in progress. If there are, 503 * drop the AG headers and wait for the intents to drain. 504 * Since we hold all the AG header locks for the duration of 505 * the scrub, this is the only time we have to sample the 506 * intents counter; any threads increasing it after this point 507 * can't possibly be in the middle of a chain of AG metadata 508 * updates. 509 * 510 * Obviously, this should be slanted against scrub and in favor 511 * of runtime threads. 512 */ 513 if (!xfs_perag_intent_busy(sa->pag)) 514 return 0; 515 516 if (sa->agf_bp) { 517 xfs_trans_brelse(sc->tp, sa->agf_bp); 518 sa->agf_bp = NULL; 519 } 520 521 if (sa->agi_bp) { 522 xfs_trans_brelse(sc->tp, sa->agi_bp); 523 sa->agi_bp = NULL; 524 } 525 526 if (!(sc->flags & XCHK_FSGATES_DRAIN)) 527 return -ECHRNG; 528 error = xfs_perag_intent_drain(sa->pag); 529 if (error == -ERESTARTSYS) 530 error = -EINTR; 531 } while (!error); 532 533 return error; 534 } 535 536 /* 537 * Grab the per-AG structure, grab all AG header buffers, and wait until there 538 * aren't any pending intents. Returns -ENOENT if we can't grab the perag 539 * structure. 540 */ 541 int 542 xchk_ag_read_headers( 543 struct xfs_scrub *sc, 544 xfs_agnumber_t agno, 545 struct xchk_ag *sa) 546 { 547 struct xfs_mount *mp = sc->mp; 548 549 ASSERT(!sa->pag); 550 sa->pag = xfs_perag_get(mp, agno); 551 if (!sa->pag) 552 return -ENOENT; 553 554 return xchk_perag_drain_and_lock(sc); 555 } 556 557 /* Release all the AG btree cursors. */ 558 void 559 xchk_ag_btcur_free( 560 struct xchk_ag *sa) 561 { 562 if (sa->refc_cur) 563 xfs_btree_del_cursor(sa->refc_cur, XFS_BTREE_ERROR); 564 if (sa->rmap_cur) 565 xfs_btree_del_cursor(sa->rmap_cur, XFS_BTREE_ERROR); 566 if (sa->fino_cur) 567 xfs_btree_del_cursor(sa->fino_cur, XFS_BTREE_ERROR); 568 if (sa->ino_cur) 569 xfs_btree_del_cursor(sa->ino_cur, XFS_BTREE_ERROR); 570 if (sa->cnt_cur) 571 xfs_btree_del_cursor(sa->cnt_cur, XFS_BTREE_ERROR); 572 if (sa->bno_cur) 573 xfs_btree_del_cursor(sa->bno_cur, XFS_BTREE_ERROR); 574 575 sa->refc_cur = NULL; 576 sa->rmap_cur = NULL; 577 sa->fino_cur = NULL; 578 sa->ino_cur = NULL; 579 sa->bno_cur = NULL; 580 sa->cnt_cur = NULL; 581 } 582 583 /* Initialize all the btree cursors for an AG. */ 584 void 585 xchk_ag_btcur_init( 586 struct xfs_scrub *sc, 587 struct xchk_ag *sa) 588 { 589 struct xfs_mount *mp = sc->mp; 590 591 if (sa->agf_bp) { 592 /* Set up a bnobt cursor for cross-referencing. */ 593 sa->bno_cur = xfs_bnobt_init_cursor(mp, sc->tp, sa->agf_bp, 594 sa->pag); 595 xchk_ag_btree_del_cursor_if_sick(sc, &sa->bno_cur, 596 XFS_SCRUB_TYPE_BNOBT); 597 598 /* Set up a cntbt cursor for cross-referencing. */ 599 sa->cnt_cur = xfs_cntbt_init_cursor(mp, sc->tp, sa->agf_bp, 600 sa->pag); 601 xchk_ag_btree_del_cursor_if_sick(sc, &sa->cnt_cur, 602 XFS_SCRUB_TYPE_CNTBT); 603 604 /* Set up a rmapbt cursor for cross-referencing. */ 605 if (xfs_has_rmapbt(mp)) { 606 sa->rmap_cur = xfs_rmapbt_init_cursor(mp, sc->tp, 607 sa->agf_bp, sa->pag); 608 xchk_ag_btree_del_cursor_if_sick(sc, &sa->rmap_cur, 609 XFS_SCRUB_TYPE_RMAPBT); 610 } 611 612 /* Set up a refcountbt cursor for cross-referencing. */ 613 if (xfs_has_reflink(mp)) { 614 sa->refc_cur = xfs_refcountbt_init_cursor(mp, sc->tp, 615 sa->agf_bp, sa->pag); 616 xchk_ag_btree_del_cursor_if_sick(sc, &sa->refc_cur, 617 XFS_SCRUB_TYPE_REFCNTBT); 618 } 619 } 620 621 if (sa->agi_bp) { 622 /* Set up a inobt cursor for cross-referencing. */ 623 sa->ino_cur = xfs_inobt_init_cursor(sa->pag, sc->tp, 624 sa->agi_bp); 625 xchk_ag_btree_del_cursor_if_sick(sc, &sa->ino_cur, 626 XFS_SCRUB_TYPE_INOBT); 627 628 /* Set up a finobt cursor for cross-referencing. */ 629 if (xfs_has_finobt(mp)) { 630 sa->fino_cur = xfs_finobt_init_cursor(sa->pag, sc->tp, 631 sa->agi_bp); 632 xchk_ag_btree_del_cursor_if_sick(sc, &sa->fino_cur, 633 XFS_SCRUB_TYPE_FINOBT); 634 } 635 } 636 } 637 638 /* Release the AG header context and btree cursors. */ 639 void 640 xchk_ag_free( 641 struct xfs_scrub *sc, 642 struct xchk_ag *sa) 643 { 644 xchk_ag_btcur_free(sa); 645 xrep_reset_perag_resv(sc); 646 if (sa->agf_bp) { 647 xfs_trans_brelse(sc->tp, sa->agf_bp); 648 sa->agf_bp = NULL; 649 } 650 if (sa->agi_bp) { 651 xfs_trans_brelse(sc->tp, sa->agi_bp); 652 sa->agi_bp = NULL; 653 } 654 if (sa->pag) { 655 xfs_perag_put(sa->pag); 656 sa->pag = NULL; 657 } 658 } 659 660 /* 661 * For scrub, grab the perag structure, the AGI, and the AGF headers, in that 662 * order. Locking order requires us to get the AGI before the AGF. We use the 663 * transaction to avoid deadlocking on crosslinked metadata buffers; either the 664 * caller passes one in (bmap scrub) or we have to create a transaction 665 * ourselves. Returns ENOENT if the perag struct cannot be grabbed. 666 */ 667 int 668 xchk_ag_init( 669 struct xfs_scrub *sc, 670 xfs_agnumber_t agno, 671 struct xchk_ag *sa) 672 { 673 int error; 674 675 error = xchk_ag_read_headers(sc, agno, sa); 676 if (error) 677 return error; 678 679 xchk_ag_btcur_init(sc, sa); 680 return 0; 681 } 682 683 /* Per-scrubber setup functions */ 684 685 void 686 xchk_trans_cancel( 687 struct xfs_scrub *sc) 688 { 689 xfs_trans_cancel(sc->tp); 690 sc->tp = NULL; 691 } 692 693 int 694 xchk_trans_alloc_empty( 695 struct xfs_scrub *sc) 696 { 697 return xfs_trans_alloc_empty(sc->mp, &sc->tp); 698 } 699 700 /* 701 * Grab an empty transaction so that we can re-grab locked buffers if 702 * one of our btrees turns out to be cyclic. 703 * 704 * If we're going to repair something, we need to ask for the largest possible 705 * log reservation so that we can handle the worst case scenario for metadata 706 * updates while rebuilding a metadata item. We also need to reserve as many 707 * blocks in the head transaction as we think we're going to need to rebuild 708 * the metadata object. 709 */ 710 int 711 xchk_trans_alloc( 712 struct xfs_scrub *sc, 713 uint resblks) 714 { 715 if (sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) 716 return xfs_trans_alloc(sc->mp, &M_RES(sc->mp)->tr_itruncate, 717 resblks, 0, 0, &sc->tp); 718 719 return xchk_trans_alloc_empty(sc); 720 } 721 722 /* Set us up with a transaction and an empty context. */ 723 int 724 xchk_setup_fs( 725 struct xfs_scrub *sc) 726 { 727 uint resblks; 728 729 resblks = xrep_calc_ag_resblks(sc); 730 return xchk_trans_alloc(sc, resblks); 731 } 732 733 /* Set us up with AG headers and btree cursors. */ 734 int 735 xchk_setup_ag_btree( 736 struct xfs_scrub *sc, 737 bool force_log) 738 { 739 struct xfs_mount *mp = sc->mp; 740 int error; 741 742 /* 743 * If the caller asks us to checkpont the log, do so. This 744 * expensive operation should be performed infrequently and only 745 * as a last resort. Any caller that sets force_log should 746 * document why they need to do so. 747 */ 748 if (force_log) { 749 error = xchk_checkpoint_log(mp); 750 if (error) 751 return error; 752 } 753 754 error = xchk_setup_fs(sc); 755 if (error) 756 return error; 757 758 return xchk_ag_init(sc, sc->sm->sm_agno, &sc->sa); 759 } 760 761 /* Push everything out of the log onto disk. */ 762 int 763 xchk_checkpoint_log( 764 struct xfs_mount *mp) 765 { 766 int error; 767 768 error = xfs_log_force(mp, XFS_LOG_SYNC); 769 if (error) 770 return error; 771 xfs_ail_push_all_sync(mp->m_ail); 772 return 0; 773 } 774 775 /* Verify that an inode is allocated ondisk, then return its cached inode. */ 776 int 777 xchk_iget( 778 struct xfs_scrub *sc, 779 xfs_ino_t inum, 780 struct xfs_inode **ipp) 781 { 782 ASSERT(sc->tp != NULL); 783 784 return xfs_iget(sc->mp, sc->tp, inum, XFS_IGET_UNTRUSTED, 0, ipp); 785 } 786 787 /* 788 * Try to grab an inode in a manner that avoids races with physical inode 789 * allocation. If we can't, return the locked AGI buffer so that the caller 790 * can single-step the loading process to see where things went wrong. 791 * Callers must have a valid scrub transaction. 792 * 793 * If the iget succeeds, return 0, a NULL AGI, and the inode. 794 * 795 * If the iget fails, return the error, the locked AGI, and a NULL inode. This 796 * can include -EINVAL and -ENOENT for invalid inode numbers or inodes that are 797 * no longer allocated; or any other corruption or runtime error. 798 * 799 * If the AGI read fails, return the error, a NULL AGI, and NULL inode. 800 * 801 * If a fatal signal is pending, return -EINTR, a NULL AGI, and a NULL inode. 802 */ 803 int 804 xchk_iget_agi( 805 struct xfs_scrub *sc, 806 xfs_ino_t inum, 807 struct xfs_buf **agi_bpp, 808 struct xfs_inode **ipp) 809 { 810 struct xfs_mount *mp = sc->mp; 811 struct xfs_trans *tp = sc->tp; 812 struct xfs_perag *pag; 813 int error; 814 815 ASSERT(sc->tp != NULL); 816 817 again: 818 *agi_bpp = NULL; 819 *ipp = NULL; 820 error = 0; 821 822 if (xchk_should_terminate(sc, &error)) 823 return error; 824 825 /* 826 * Attach the AGI buffer to the scrub transaction to avoid deadlocks 827 * in the iget cache miss path. 828 */ 829 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum)); 830 error = xfs_ialloc_read_agi(pag, tp, agi_bpp); 831 xfs_perag_put(pag); 832 if (error) 833 return error; 834 835 error = xfs_iget(mp, tp, inum, 836 XFS_IGET_NORETRY | XFS_IGET_UNTRUSTED, 0, ipp); 837 if (error == -EAGAIN) { 838 /* 839 * The inode may be in core but temporarily unavailable and may 840 * require the AGI buffer before it can be returned. Drop the 841 * AGI buffer and retry the lookup. 842 * 843 * Incore lookup will fail with EAGAIN on a cache hit if the 844 * inode is queued to the inactivation list. The inactivation 845 * worker may remove the inode from the unlinked list and hence 846 * needs the AGI. 847 * 848 * Hence xchk_iget_agi() needs to drop the AGI lock on EAGAIN 849 * to allow inodegc to make progress and move the inode to 850 * IRECLAIMABLE state where xfs_iget will be able to return it 851 * again if it can lock the inode. 852 */ 853 xfs_trans_brelse(tp, *agi_bpp); 854 delay(1); 855 goto again; 856 } 857 if (error) 858 return error; 859 860 /* We got the inode, so we can release the AGI. */ 861 ASSERT(*ipp != NULL); 862 xfs_trans_brelse(tp, *agi_bpp); 863 *agi_bpp = NULL; 864 return 0; 865 } 866 867 #ifdef CONFIG_XFS_QUOTA 868 /* 869 * Try to attach dquots to this inode if we think we might want to repair it. 870 * Callers must not hold any ILOCKs. If the dquots are broken and cannot be 871 * attached, a quotacheck will be scheduled. 872 */ 873 int 874 xchk_ino_dqattach( 875 struct xfs_scrub *sc) 876 { 877 ASSERT(sc->tp != NULL); 878 ASSERT(sc->ip != NULL); 879 880 if (!xchk_could_repair(sc)) 881 return 0; 882 883 return xrep_ino_dqattach(sc); 884 } 885 #endif 886 887 /* Install an inode that we opened by handle for scrubbing. */ 888 int 889 xchk_install_handle_inode( 890 struct xfs_scrub *sc, 891 struct xfs_inode *ip) 892 { 893 if (VFS_I(ip)->i_generation != sc->sm->sm_gen) { 894 xchk_irele(sc, ip); 895 return -ENOENT; 896 } 897 898 sc->ip = ip; 899 return 0; 900 } 901 902 /* 903 * Install an already-referenced inode for scrubbing. Get our own reference to 904 * the inode to make disposal simpler. The inode must not be in I_FREEING or 905 * I_WILL_FREE state! 906 */ 907 int 908 xchk_install_live_inode( 909 struct xfs_scrub *sc, 910 struct xfs_inode *ip) 911 { 912 if (!igrab(VFS_I(ip))) { 913 xchk_ino_set_corrupt(sc, ip->i_ino); 914 return -EFSCORRUPTED; 915 } 916 917 sc->ip = ip; 918 return 0; 919 } 920 921 /* 922 * In preparation to scrub metadata structures that hang off of an inode, 923 * grab either the inode referenced in the scrub control structure or the 924 * inode passed in. If the inumber does not reference an allocated inode 925 * record, the function returns ENOENT to end the scrub early. The inode 926 * is not locked. 927 */ 928 int 929 xchk_iget_for_scrubbing( 930 struct xfs_scrub *sc) 931 { 932 struct xfs_imap imap; 933 struct xfs_mount *mp = sc->mp; 934 struct xfs_perag *pag; 935 struct xfs_buf *agi_bp; 936 struct xfs_inode *ip_in = XFS_I(file_inode(sc->file)); 937 struct xfs_inode *ip = NULL; 938 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, sc->sm->sm_ino); 939 int error; 940 941 ASSERT(sc->tp == NULL); 942 943 /* We want to scan the inode we already had opened. */ 944 if (sc->sm->sm_ino == 0 || sc->sm->sm_ino == ip_in->i_ino) 945 return xchk_install_live_inode(sc, ip_in); 946 947 /* Reject internal metadata files and obviously bad inode numbers. */ 948 if (xfs_internal_inum(mp, sc->sm->sm_ino)) 949 return -ENOENT; 950 if (!xfs_verify_ino(sc->mp, sc->sm->sm_ino)) 951 return -ENOENT; 952 953 /* Try a safe untrusted iget. */ 954 error = xchk_iget_safe(sc, sc->sm->sm_ino, &ip); 955 if (!error) 956 return xchk_install_handle_inode(sc, ip); 957 if (error == -ENOENT) 958 return error; 959 if (error != -EINVAL) 960 goto out_error; 961 962 /* 963 * EINVAL with IGET_UNTRUSTED probably means one of several things: 964 * userspace gave us an inode number that doesn't correspond to fs 965 * space; the inode btree lacks a record for this inode; or there is a 966 * record, and it says this inode is free. 967 * 968 * We want to look up this inode in the inobt to distinguish two 969 * scenarios: (1) the inobt says the inode is free, in which case 970 * there's nothing to do; and (2) the inobt says the inode is 971 * allocated, but loading it failed due to corruption. 972 * 973 * Allocate a transaction and grab the AGI to prevent inobt activity 974 * in this AG. Retry the iget in case someone allocated a new inode 975 * after the first iget failed. 976 */ 977 error = xchk_trans_alloc(sc, 0); 978 if (error) 979 goto out_error; 980 981 error = xchk_iget_agi(sc, sc->sm->sm_ino, &agi_bp, &ip); 982 if (error == 0) { 983 /* Actually got the inode, so install it. */ 984 xchk_trans_cancel(sc); 985 return xchk_install_handle_inode(sc, ip); 986 } 987 if (error == -ENOENT) 988 goto out_gone; 989 if (error != -EINVAL) 990 goto out_cancel; 991 992 /* Ensure that we have protected against inode allocation/freeing. */ 993 if (agi_bp == NULL) { 994 ASSERT(agi_bp != NULL); 995 error = -ECANCELED; 996 goto out_cancel; 997 } 998 999 /* 1000 * Untrusted iget failed a second time. Let's try an inobt lookup. 1001 * If the inobt thinks this the inode neither can exist inside the 1002 * filesystem nor is allocated, return ENOENT to signal that the check 1003 * can be skipped. 1004 * 1005 * If the lookup returns corruption, we'll mark this inode corrupt and 1006 * exit to userspace. There's little chance of fixing anything until 1007 * the inobt is straightened out, but there's nothing we can do here. 1008 * 1009 * If the lookup encounters any other error, exit to userspace. 1010 * 1011 * If the lookup succeeds, something else must be very wrong in the fs 1012 * such that setting up the incore inode failed in some strange way. 1013 * Treat those as corruptions. 1014 */ 1015 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sc->sm->sm_ino)); 1016 if (!pag) { 1017 error = -EFSCORRUPTED; 1018 goto out_cancel; 1019 } 1020 1021 error = xfs_imap(pag, sc->tp, sc->sm->sm_ino, &imap, 1022 XFS_IGET_UNTRUSTED); 1023 xfs_perag_put(pag); 1024 if (error == -EINVAL || error == -ENOENT) 1025 goto out_gone; 1026 if (!error) 1027 error = -EFSCORRUPTED; 1028 1029 out_cancel: 1030 xchk_trans_cancel(sc); 1031 out_error: 1032 trace_xchk_op_error(sc, agno, XFS_INO_TO_AGBNO(mp, sc->sm->sm_ino), 1033 error, __return_address); 1034 return error; 1035 out_gone: 1036 /* The file is gone, so there's nothing to check. */ 1037 xchk_trans_cancel(sc); 1038 return -ENOENT; 1039 } 1040 1041 /* Release an inode, possibly dropping it in the process. */ 1042 void 1043 xchk_irele( 1044 struct xfs_scrub *sc, 1045 struct xfs_inode *ip) 1046 { 1047 if (sc->tp) { 1048 /* 1049 * If we are in a transaction, we /cannot/ drop the inode 1050 * ourselves, because the VFS will trigger writeback, which 1051 * can require a transaction. Clear DONTCACHE to force the 1052 * inode to the LRU, where someone else can take care of 1053 * dropping it. 1054 * 1055 * Note that when we grabbed our reference to the inode, it 1056 * could have had an active ref and DONTCACHE set if a sysadmin 1057 * is trying to coerce a change in file access mode. icache 1058 * hits do not clear DONTCACHE, so we must do it here. 1059 */ 1060 spin_lock(&VFS_I(ip)->i_lock); 1061 VFS_I(ip)->i_state &= ~I_DONTCACHE; 1062 spin_unlock(&VFS_I(ip)->i_lock); 1063 } else if (atomic_read(&VFS_I(ip)->i_count) == 1) { 1064 /* 1065 * If this is the last reference to the inode and the caller 1066 * permits it, set DONTCACHE to avoid thrashing. 1067 */ 1068 d_mark_dontcache(VFS_I(ip)); 1069 } 1070 1071 xfs_irele(ip); 1072 } 1073 1074 /* 1075 * Set us up to scrub metadata mapped by a file's fork. Callers must not use 1076 * this to operate on user-accessible regular file data because the MMAPLOCK is 1077 * not taken. 1078 */ 1079 int 1080 xchk_setup_inode_contents( 1081 struct xfs_scrub *sc, 1082 unsigned int resblks) 1083 { 1084 int error; 1085 1086 error = xchk_iget_for_scrubbing(sc); 1087 if (error) 1088 return error; 1089 1090 /* Lock the inode so the VFS cannot touch this file. */ 1091 xchk_ilock(sc, XFS_IOLOCK_EXCL); 1092 1093 error = xchk_trans_alloc(sc, resblks); 1094 if (error) 1095 goto out; 1096 1097 error = xchk_ino_dqattach(sc); 1098 if (error) 1099 goto out; 1100 1101 xchk_ilock(sc, XFS_ILOCK_EXCL); 1102 out: 1103 /* scrub teardown will unlock and release the inode for us */ 1104 return error; 1105 } 1106 1107 void 1108 xchk_ilock( 1109 struct xfs_scrub *sc, 1110 unsigned int ilock_flags) 1111 { 1112 xfs_ilock(sc->ip, ilock_flags); 1113 sc->ilock_flags |= ilock_flags; 1114 } 1115 1116 bool 1117 xchk_ilock_nowait( 1118 struct xfs_scrub *sc, 1119 unsigned int ilock_flags) 1120 { 1121 if (xfs_ilock_nowait(sc->ip, ilock_flags)) { 1122 sc->ilock_flags |= ilock_flags; 1123 return true; 1124 } 1125 1126 return false; 1127 } 1128 1129 void 1130 xchk_iunlock( 1131 struct xfs_scrub *sc, 1132 unsigned int ilock_flags) 1133 { 1134 sc->ilock_flags &= ~ilock_flags; 1135 xfs_iunlock(sc->ip, ilock_flags); 1136 } 1137 1138 /* 1139 * Predicate that decides if we need to evaluate the cross-reference check. 1140 * If there was an error accessing the cross-reference btree, just delete 1141 * the cursor and skip the check. 1142 */ 1143 bool 1144 xchk_should_check_xref( 1145 struct xfs_scrub *sc, 1146 int *error, 1147 struct xfs_btree_cur **curpp) 1148 { 1149 /* No point in xref if we already know we're corrupt. */ 1150 if (xchk_skip_xref(sc->sm)) 1151 return false; 1152 1153 if (*error == 0) 1154 return true; 1155 1156 if (curpp) { 1157 /* If we've already given up on xref, just bail out. */ 1158 if (!*curpp) 1159 return false; 1160 1161 /* xref error, delete cursor and bail out. */ 1162 xfs_btree_del_cursor(*curpp, XFS_BTREE_ERROR); 1163 *curpp = NULL; 1164 } 1165 1166 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XFAIL; 1167 trace_xchk_xref_error(sc, *error, __return_address); 1168 1169 /* 1170 * Errors encountered during cross-referencing with another 1171 * data structure should not cause this scrubber to abort. 1172 */ 1173 *error = 0; 1174 return false; 1175 } 1176 1177 /* Run the structure verifiers on in-memory buffers to detect bad memory. */ 1178 void 1179 xchk_buffer_recheck( 1180 struct xfs_scrub *sc, 1181 struct xfs_buf *bp) 1182 { 1183 xfs_failaddr_t fa; 1184 1185 if (bp->b_ops == NULL) { 1186 xchk_block_set_corrupt(sc, bp); 1187 return; 1188 } 1189 if (bp->b_ops->verify_struct == NULL) { 1190 xchk_set_incomplete(sc); 1191 return; 1192 } 1193 fa = bp->b_ops->verify_struct(bp); 1194 if (!fa) 1195 return; 1196 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT; 1197 trace_xchk_block_error(sc, xfs_buf_daddr(bp), fa); 1198 } 1199 1200 static inline int 1201 xchk_metadata_inode_subtype( 1202 struct xfs_scrub *sc, 1203 unsigned int scrub_type) 1204 { 1205 __u32 smtype = sc->sm->sm_type; 1206 unsigned int sick_mask = sc->sick_mask; 1207 int error; 1208 1209 sc->sm->sm_type = scrub_type; 1210 1211 switch (scrub_type) { 1212 case XFS_SCRUB_TYPE_INODE: 1213 error = xchk_inode(sc); 1214 break; 1215 case XFS_SCRUB_TYPE_BMBTD: 1216 error = xchk_bmap_data(sc); 1217 break; 1218 default: 1219 ASSERT(0); 1220 error = -EFSCORRUPTED; 1221 break; 1222 } 1223 1224 sc->sick_mask = sick_mask; 1225 sc->sm->sm_type = smtype; 1226 return error; 1227 } 1228 1229 /* 1230 * Scrub the attr/data forks of a metadata inode. The metadata inode must be 1231 * pointed to by sc->ip and the ILOCK must be held. 1232 */ 1233 int 1234 xchk_metadata_inode_forks( 1235 struct xfs_scrub *sc) 1236 { 1237 bool shared; 1238 int error; 1239 1240 if (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT) 1241 return 0; 1242 1243 /* Check the inode record. */ 1244 error = xchk_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_INODE); 1245 if (error || (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT)) 1246 return error; 1247 1248 /* Metadata inodes don't live on the rt device. */ 1249 if (sc->ip->i_diflags & XFS_DIFLAG_REALTIME) { 1250 xchk_ino_set_corrupt(sc, sc->ip->i_ino); 1251 return 0; 1252 } 1253 1254 /* They should never participate in reflink. */ 1255 if (xfs_is_reflink_inode(sc->ip)) { 1256 xchk_ino_set_corrupt(sc, sc->ip->i_ino); 1257 return 0; 1258 } 1259 1260 /* They also should never have extended attributes. */ 1261 if (xfs_inode_hasattr(sc->ip)) { 1262 xchk_ino_set_corrupt(sc, sc->ip->i_ino); 1263 return 0; 1264 } 1265 1266 /* Invoke the data fork scrubber. */ 1267 error = xchk_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_BMBTD); 1268 if (error || (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT)) 1269 return error; 1270 1271 /* Look for incorrect shared blocks. */ 1272 if (xfs_has_reflink(sc->mp)) { 1273 error = xfs_reflink_inode_has_shared_extents(sc->tp, sc->ip, 1274 &shared); 1275 if (!xchk_fblock_process_error(sc, XFS_DATA_FORK, 0, 1276 &error)) 1277 return error; 1278 if (shared) 1279 xchk_ino_set_corrupt(sc, sc->ip->i_ino); 1280 } 1281 1282 return 0; 1283 } 1284 1285 /* 1286 * Enable filesystem hooks (i.e. runtime code patching) before starting a scrub 1287 * operation. Callers must not hold any locks that intersect with the CPU 1288 * hotplug lock (e.g. writeback locks) because code patching must halt the CPUs 1289 * to change kernel code. 1290 */ 1291 void 1292 xchk_fsgates_enable( 1293 struct xfs_scrub *sc, 1294 unsigned int scrub_fsgates) 1295 { 1296 ASSERT(!(scrub_fsgates & ~XCHK_FSGATES_ALL)); 1297 ASSERT(!(sc->flags & scrub_fsgates)); 1298 1299 trace_xchk_fsgates_enable(sc, scrub_fsgates); 1300 1301 if (scrub_fsgates & XCHK_FSGATES_DRAIN) 1302 xfs_drain_wait_enable(); 1303 1304 if (scrub_fsgates & XCHK_FSGATES_QUOTA) 1305 xfs_dqtrx_hook_enable(); 1306 1307 if (scrub_fsgates & XCHK_FSGATES_DIRENTS) 1308 xfs_dir_hook_enable(); 1309 1310 if (scrub_fsgates & XCHK_FSGATES_RMAP) 1311 xfs_rmap_hook_enable(); 1312 1313 sc->flags |= scrub_fsgates; 1314 } 1315 1316 /* 1317 * Decide if this is this a cached inode that's also allocated. The caller 1318 * must hold a reference to an AG and the AGI buffer lock to prevent inodes 1319 * from being allocated or freed. 1320 * 1321 * Look up an inode by number in the given file system. If the inode number 1322 * is invalid, return -EINVAL. If the inode is not in cache, return -ENODATA. 1323 * If the inode is being reclaimed, return -ENODATA because we know the inode 1324 * cache cannot be updating the ondisk metadata. 1325 * 1326 * Otherwise, the incore inode is the one we want, and it is either live, 1327 * somewhere in the inactivation machinery, or reclaimable. The inode is 1328 * allocated if i_mode is nonzero. In all three cases, the cached inode will 1329 * be more up to date than the ondisk inode buffer, so we must use the incore 1330 * i_mode. 1331 */ 1332 int 1333 xchk_inode_is_allocated( 1334 struct xfs_scrub *sc, 1335 xfs_agino_t agino, 1336 bool *inuse) 1337 { 1338 struct xfs_mount *mp = sc->mp; 1339 struct xfs_perag *pag = sc->sa.pag; 1340 xfs_ino_t ino; 1341 struct xfs_inode *ip; 1342 int error; 1343 1344 /* caller must hold perag reference */ 1345 if (pag == NULL) { 1346 ASSERT(pag != NULL); 1347 return -EINVAL; 1348 } 1349 1350 /* caller must have AGI buffer */ 1351 if (sc->sa.agi_bp == NULL) { 1352 ASSERT(sc->sa.agi_bp != NULL); 1353 return -EINVAL; 1354 } 1355 1356 /* reject inode numbers outside existing AGs */ 1357 ino = XFS_AGINO_TO_INO(sc->mp, pag->pag_agno, agino); 1358 if (!xfs_verify_ino(mp, ino)) 1359 return -EINVAL; 1360 1361 error = -ENODATA; 1362 rcu_read_lock(); 1363 ip = radix_tree_lookup(&pag->pag_ici_root, agino); 1364 if (!ip) { 1365 /* cache miss */ 1366 goto out_rcu; 1367 } 1368 1369 /* 1370 * If the inode number doesn't match, the incore inode got reused 1371 * during an RCU grace period and the radix tree hasn't been updated. 1372 * This isn't the inode we want. 1373 */ 1374 spin_lock(&ip->i_flags_lock); 1375 if (ip->i_ino != ino) 1376 goto out_skip; 1377 1378 trace_xchk_inode_is_allocated(ip); 1379 1380 /* 1381 * We have an incore inode that matches the inode we want, and the 1382 * caller holds the perag structure and the AGI buffer. Let's check 1383 * our assumptions below: 1384 */ 1385 1386 #ifdef DEBUG 1387 /* 1388 * (1) If the incore inode is live (i.e. referenced from the dcache), 1389 * it will not be INEW, nor will it be in the inactivation or reclaim 1390 * machinery. The ondisk inode had better be allocated. This is the 1391 * most trivial case. 1392 */ 1393 if (!(ip->i_flags & (XFS_NEED_INACTIVE | XFS_INEW | XFS_IRECLAIMABLE | 1394 XFS_INACTIVATING))) { 1395 /* live inode */ 1396 ASSERT(VFS_I(ip)->i_mode != 0); 1397 } 1398 1399 /* 1400 * If the incore inode is INEW, there are several possibilities: 1401 * 1402 * (2) For a file that is being created, note that we allocate the 1403 * ondisk inode before allocating, initializing, and adding the incore 1404 * inode to the radix tree. 1405 * 1406 * (3) If the incore inode is being recycled, the inode has to be 1407 * allocated because we don't allow freed inodes to be recycled. 1408 * Recycling doesn't touch i_mode. 1409 */ 1410 if (ip->i_flags & XFS_INEW) { 1411 /* created on disk already or recycling */ 1412 ASSERT(VFS_I(ip)->i_mode != 0); 1413 } 1414 1415 /* 1416 * (4) If the inode is queued for inactivation (NEED_INACTIVE) but 1417 * inactivation has not started (!INACTIVATING), it is still allocated. 1418 */ 1419 if ((ip->i_flags & XFS_NEED_INACTIVE) && 1420 !(ip->i_flags & XFS_INACTIVATING)) { 1421 /* definitely before difree */ 1422 ASSERT(VFS_I(ip)->i_mode != 0); 1423 } 1424 #endif 1425 1426 /* 1427 * If the incore inode is undergoing inactivation (INACTIVATING), there 1428 * are two possibilities: 1429 * 1430 * (5) It is before the point where it would get freed ondisk, in which 1431 * case i_mode is still nonzero. 1432 * 1433 * (6) It has already been freed, in which case i_mode is zero. 1434 * 1435 * We don't take the ILOCK here, but difree and dialloc update the AGI, 1436 * and we've taken the AGI buffer lock, which prevents that from 1437 * happening. 1438 */ 1439 1440 /* 1441 * (7) Inodes undergoing inactivation (INACTIVATING) or queued for 1442 * reclaim (IRECLAIMABLE) could be allocated or free. i_mode still 1443 * reflects the ondisk state. 1444 */ 1445 1446 /* 1447 * (8) If the inode is in IFLUSHING, it's safe to query i_mode because 1448 * the flush code uses i_mode to format the ondisk inode. 1449 */ 1450 1451 /* 1452 * (9) If the inode is in IRECLAIM and was reachable via the radix 1453 * tree, it still has the same i_mode as it did before it entered 1454 * reclaim. The inode object is still alive because we hold the RCU 1455 * read lock. 1456 */ 1457 1458 *inuse = VFS_I(ip)->i_mode != 0; 1459 error = 0; 1460 1461 out_skip: 1462 spin_unlock(&ip->i_flags_lock); 1463 out_rcu: 1464 rcu_read_unlock(); 1465 return error; 1466 } 1467