xref: /linux/fs/xfs/scrub/common.c (revision e96fddb32931d007db12b1fce9b5e8e4c080401b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2017-2023 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <djwong@kernel.org>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_mount.h"
12 #include "xfs_btree.h"
13 #include "xfs_log_format.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode.h"
16 #include "xfs_icache.h"
17 #include "xfs_alloc.h"
18 #include "xfs_alloc_btree.h"
19 #include "xfs_ialloc.h"
20 #include "xfs_ialloc_btree.h"
21 #include "xfs_refcount_btree.h"
22 #include "xfs_rmap.h"
23 #include "xfs_rmap_btree.h"
24 #include "xfs_log.h"
25 #include "xfs_trans_priv.h"
26 #include "xfs_da_format.h"
27 #include "xfs_da_btree.h"
28 #include "xfs_dir2_priv.h"
29 #include "xfs_attr.h"
30 #include "xfs_reflink.h"
31 #include "xfs_ag.h"
32 #include "scrub/scrub.h"
33 #include "scrub/common.h"
34 #include "scrub/trace.h"
35 #include "scrub/repair.h"
36 #include "scrub/health.h"
37 
38 /* Common code for the metadata scrubbers. */
39 
40 /*
41  * Handling operational errors.
42  *
43  * The *_process_error() family of functions are used to process error return
44  * codes from functions called as part of a scrub operation.
45  *
46  * If there's no error, we return true to tell the caller that it's ok
47  * to move on to the next check in its list.
48  *
49  * For non-verifier errors (e.g. ENOMEM) we return false to tell the
50  * caller that something bad happened, and we preserve *error so that
51  * the caller can return the *error up the stack to userspace.
52  *
53  * Verifier errors (EFSBADCRC/EFSCORRUPTED) are recorded by setting
54  * OFLAG_CORRUPT in sm_flags and the *error is cleared.  In other words,
55  * we track verifier errors (and failed scrub checks) via OFLAG_CORRUPT,
56  * not via return codes.  We return false to tell the caller that
57  * something bad happened.  Since the error has been cleared, the caller
58  * will (presumably) return that zero and scrubbing will move on to
59  * whatever's next.
60  *
61  * ftrace can be used to record the precise metadata location and the
62  * approximate code location of the failed operation.
63  */
64 
65 /* Check for operational errors. */
66 static bool
67 __xchk_process_error(
68 	struct xfs_scrub	*sc,
69 	xfs_agnumber_t		agno,
70 	xfs_agblock_t		bno,
71 	int			*error,
72 	__u32			errflag,
73 	void			*ret_ip)
74 {
75 	switch (*error) {
76 	case 0:
77 		return true;
78 	case -EDEADLOCK:
79 	case -ECHRNG:
80 		/* Used to restart an op with deadlock avoidance. */
81 		trace_xchk_deadlock_retry(
82 				sc->ip ? sc->ip : XFS_I(file_inode(sc->file)),
83 				sc->sm, *error);
84 		break;
85 	case -EFSBADCRC:
86 	case -EFSCORRUPTED:
87 		/* Note the badness but don't abort. */
88 		sc->sm->sm_flags |= errflag;
89 		*error = 0;
90 		fallthrough;
91 	default:
92 		trace_xchk_op_error(sc, agno, bno, *error,
93 				ret_ip);
94 		break;
95 	}
96 	return false;
97 }
98 
99 bool
100 xchk_process_error(
101 	struct xfs_scrub	*sc,
102 	xfs_agnumber_t		agno,
103 	xfs_agblock_t		bno,
104 	int			*error)
105 {
106 	return __xchk_process_error(sc, agno, bno, error,
107 			XFS_SCRUB_OFLAG_CORRUPT, __return_address);
108 }
109 
110 bool
111 xchk_xref_process_error(
112 	struct xfs_scrub	*sc,
113 	xfs_agnumber_t		agno,
114 	xfs_agblock_t		bno,
115 	int			*error)
116 {
117 	return __xchk_process_error(sc, agno, bno, error,
118 			XFS_SCRUB_OFLAG_XFAIL, __return_address);
119 }
120 
121 /* Check for operational errors for a file offset. */
122 static bool
123 __xchk_fblock_process_error(
124 	struct xfs_scrub	*sc,
125 	int			whichfork,
126 	xfs_fileoff_t		offset,
127 	int			*error,
128 	__u32			errflag,
129 	void			*ret_ip)
130 {
131 	switch (*error) {
132 	case 0:
133 		return true;
134 	case -EDEADLOCK:
135 	case -ECHRNG:
136 		/* Used to restart an op with deadlock avoidance. */
137 		trace_xchk_deadlock_retry(sc->ip, sc->sm, *error);
138 		break;
139 	case -EFSBADCRC:
140 	case -EFSCORRUPTED:
141 		/* Note the badness but don't abort. */
142 		sc->sm->sm_flags |= errflag;
143 		*error = 0;
144 		fallthrough;
145 	default:
146 		trace_xchk_file_op_error(sc, whichfork, offset, *error,
147 				ret_ip);
148 		break;
149 	}
150 	return false;
151 }
152 
153 bool
154 xchk_fblock_process_error(
155 	struct xfs_scrub	*sc,
156 	int			whichfork,
157 	xfs_fileoff_t		offset,
158 	int			*error)
159 {
160 	return __xchk_fblock_process_error(sc, whichfork, offset, error,
161 			XFS_SCRUB_OFLAG_CORRUPT, __return_address);
162 }
163 
164 bool
165 xchk_fblock_xref_process_error(
166 	struct xfs_scrub	*sc,
167 	int			whichfork,
168 	xfs_fileoff_t		offset,
169 	int			*error)
170 {
171 	return __xchk_fblock_process_error(sc, whichfork, offset, error,
172 			XFS_SCRUB_OFLAG_XFAIL, __return_address);
173 }
174 
175 /*
176  * Handling scrub corruption/optimization/warning checks.
177  *
178  * The *_set_{corrupt,preen,warning}() family of functions are used to
179  * record the presence of metadata that is incorrect (corrupt), could be
180  * optimized somehow (preen), or should be flagged for administrative
181  * review but is not incorrect (warn).
182  *
183  * ftrace can be used to record the precise metadata location and
184  * approximate code location of the failed check.
185  */
186 
187 /* Record a block which could be optimized. */
188 void
189 xchk_block_set_preen(
190 	struct xfs_scrub	*sc,
191 	struct xfs_buf		*bp)
192 {
193 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_PREEN;
194 	trace_xchk_block_preen(sc, xfs_buf_daddr(bp), __return_address);
195 }
196 
197 /*
198  * Record an inode which could be optimized.  The trace data will
199  * include the block given by bp if bp is given; otherwise it will use
200  * the block location of the inode record itself.
201  */
202 void
203 xchk_ino_set_preen(
204 	struct xfs_scrub	*sc,
205 	xfs_ino_t		ino)
206 {
207 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_PREEN;
208 	trace_xchk_ino_preen(sc, ino, __return_address);
209 }
210 
211 /* Record something being wrong with the filesystem primary superblock. */
212 void
213 xchk_set_corrupt(
214 	struct xfs_scrub	*sc)
215 {
216 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
217 	trace_xchk_fs_error(sc, 0, __return_address);
218 }
219 
220 /* Record a corrupt block. */
221 void
222 xchk_block_set_corrupt(
223 	struct xfs_scrub	*sc,
224 	struct xfs_buf		*bp)
225 {
226 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
227 	trace_xchk_block_error(sc, xfs_buf_daddr(bp), __return_address);
228 }
229 
230 /* Record a corruption while cross-referencing. */
231 void
232 xchk_block_xref_set_corrupt(
233 	struct xfs_scrub	*sc,
234 	struct xfs_buf		*bp)
235 {
236 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT;
237 	trace_xchk_block_error(sc, xfs_buf_daddr(bp), __return_address);
238 }
239 
240 /*
241  * Record a corrupt inode.  The trace data will include the block given
242  * by bp if bp is given; otherwise it will use the block location of the
243  * inode record itself.
244  */
245 void
246 xchk_ino_set_corrupt(
247 	struct xfs_scrub	*sc,
248 	xfs_ino_t		ino)
249 {
250 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
251 	trace_xchk_ino_error(sc, ino, __return_address);
252 }
253 
254 /* Record a corruption while cross-referencing with an inode. */
255 void
256 xchk_ino_xref_set_corrupt(
257 	struct xfs_scrub	*sc,
258 	xfs_ino_t		ino)
259 {
260 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT;
261 	trace_xchk_ino_error(sc, ino, __return_address);
262 }
263 
264 /* Record corruption in a block indexed by a file fork. */
265 void
266 xchk_fblock_set_corrupt(
267 	struct xfs_scrub	*sc,
268 	int			whichfork,
269 	xfs_fileoff_t		offset)
270 {
271 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
272 	trace_xchk_fblock_error(sc, whichfork, offset, __return_address);
273 }
274 
275 /* Record a corruption while cross-referencing a fork block. */
276 void
277 xchk_fblock_xref_set_corrupt(
278 	struct xfs_scrub	*sc,
279 	int			whichfork,
280 	xfs_fileoff_t		offset)
281 {
282 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT;
283 	trace_xchk_fblock_error(sc, whichfork, offset, __return_address);
284 }
285 
286 /*
287  * Warn about inodes that need administrative review but is not
288  * incorrect.
289  */
290 void
291 xchk_ino_set_warning(
292 	struct xfs_scrub	*sc,
293 	xfs_ino_t		ino)
294 {
295 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_WARNING;
296 	trace_xchk_ino_warning(sc, ino, __return_address);
297 }
298 
299 /* Warn about a block indexed by a file fork that needs review. */
300 void
301 xchk_fblock_set_warning(
302 	struct xfs_scrub	*sc,
303 	int			whichfork,
304 	xfs_fileoff_t		offset)
305 {
306 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_WARNING;
307 	trace_xchk_fblock_warning(sc, whichfork, offset, __return_address);
308 }
309 
310 /* Signal an incomplete scrub. */
311 void
312 xchk_set_incomplete(
313 	struct xfs_scrub	*sc)
314 {
315 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_INCOMPLETE;
316 	trace_xchk_incomplete(sc, __return_address);
317 }
318 
319 /*
320  * rmap scrubbing -- compute the number of blocks with a given owner,
321  * at least according to the reverse mapping data.
322  */
323 
324 struct xchk_rmap_ownedby_info {
325 	const struct xfs_owner_info	*oinfo;
326 	xfs_filblks_t			*blocks;
327 };
328 
329 STATIC int
330 xchk_count_rmap_ownedby_irec(
331 	struct xfs_btree_cur		*cur,
332 	const struct xfs_rmap_irec	*rec,
333 	void				*priv)
334 {
335 	struct xchk_rmap_ownedby_info	*sroi = priv;
336 	bool				irec_attr;
337 	bool				oinfo_attr;
338 
339 	irec_attr = rec->rm_flags & XFS_RMAP_ATTR_FORK;
340 	oinfo_attr = sroi->oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK;
341 
342 	if (rec->rm_owner != sroi->oinfo->oi_owner)
343 		return 0;
344 
345 	if (XFS_RMAP_NON_INODE_OWNER(rec->rm_owner) || irec_attr == oinfo_attr)
346 		(*sroi->blocks) += rec->rm_blockcount;
347 
348 	return 0;
349 }
350 
351 /*
352  * Calculate the number of blocks the rmap thinks are owned by something.
353  * The caller should pass us an rmapbt cursor.
354  */
355 int
356 xchk_count_rmap_ownedby_ag(
357 	struct xfs_scrub		*sc,
358 	struct xfs_btree_cur		*cur,
359 	const struct xfs_owner_info	*oinfo,
360 	xfs_filblks_t			*blocks)
361 {
362 	struct xchk_rmap_ownedby_info	sroi = {
363 		.oinfo			= oinfo,
364 		.blocks			= blocks,
365 	};
366 
367 	*blocks = 0;
368 	return xfs_rmap_query_all(cur, xchk_count_rmap_ownedby_irec,
369 			&sroi);
370 }
371 
372 /*
373  * AG scrubbing
374  *
375  * These helpers facilitate locking an allocation group's header
376  * buffers, setting up cursors for all btrees that are present, and
377  * cleaning everything up once we're through.
378  */
379 
380 /* Decide if we want to return an AG header read failure. */
381 static inline bool
382 want_ag_read_header_failure(
383 	struct xfs_scrub	*sc,
384 	unsigned int		type)
385 {
386 	/* Return all AG header read failures when scanning btrees. */
387 	if (sc->sm->sm_type != XFS_SCRUB_TYPE_AGF &&
388 	    sc->sm->sm_type != XFS_SCRUB_TYPE_AGFL &&
389 	    sc->sm->sm_type != XFS_SCRUB_TYPE_AGI)
390 		return true;
391 	/*
392 	 * If we're scanning a given type of AG header, we only want to
393 	 * see read failures from that specific header.  We'd like the
394 	 * other headers to cross-check them, but this isn't required.
395 	 */
396 	if (sc->sm->sm_type == type)
397 		return true;
398 	return false;
399 }
400 
401 /*
402  * Grab the AG header buffers for the attached perag structure.
403  *
404  * The headers should be released by xchk_ag_free, but as a fail safe we attach
405  * all the buffers we grab to the scrub transaction so they'll all be freed
406  * when we cancel it.
407  */
408 static inline int
409 xchk_perag_read_headers(
410 	struct xfs_scrub	*sc,
411 	struct xchk_ag		*sa)
412 {
413 	int			error;
414 
415 	error = xfs_ialloc_read_agi(sa->pag, sc->tp, &sa->agi_bp);
416 	if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGI))
417 		return error;
418 
419 	error = xfs_alloc_read_agf(sa->pag, sc->tp, 0, &sa->agf_bp);
420 	if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGF))
421 		return error;
422 
423 	return 0;
424 }
425 
426 /*
427  * Grab the AG headers for the attached perag structure and wait for pending
428  * intents to drain.
429  */
430 static int
431 xchk_perag_drain_and_lock(
432 	struct xfs_scrub	*sc)
433 {
434 	struct xchk_ag		*sa = &sc->sa;
435 	int			error = 0;
436 
437 	ASSERT(sa->pag != NULL);
438 	ASSERT(sa->agi_bp == NULL);
439 	ASSERT(sa->agf_bp == NULL);
440 
441 	do {
442 		if (xchk_should_terminate(sc, &error))
443 			return error;
444 
445 		error = xchk_perag_read_headers(sc, sa);
446 		if (error)
447 			return error;
448 
449 		/*
450 		 * If we've grabbed an inode for scrubbing then we assume that
451 		 * holding its ILOCK will suffice to coordinate with any intent
452 		 * chains involving this inode.
453 		 */
454 		if (sc->ip)
455 			return 0;
456 
457 		/*
458 		 * Decide if this AG is quiet enough for all metadata to be
459 		 * consistent with each other.  XFS allows the AG header buffer
460 		 * locks to cycle across transaction rolls while processing
461 		 * chains of deferred ops, which means that there could be
462 		 * other threads in the middle of processing a chain of
463 		 * deferred ops.  For regular operations we are careful about
464 		 * ordering operations to prevent collisions between threads
465 		 * (which is why we don't need a per-AG lock), but scrub and
466 		 * repair have to serialize against chained operations.
467 		 *
468 		 * We just locked all the AG headers buffers; now take a look
469 		 * to see if there are any intents in progress.  If there are,
470 		 * drop the AG headers and wait for the intents to drain.
471 		 * Since we hold all the AG header locks for the duration of
472 		 * the scrub, this is the only time we have to sample the
473 		 * intents counter; any threads increasing it after this point
474 		 * can't possibly be in the middle of a chain of AG metadata
475 		 * updates.
476 		 *
477 		 * Obviously, this should be slanted against scrub and in favor
478 		 * of runtime threads.
479 		 */
480 		if (!xfs_perag_intent_busy(sa->pag))
481 			return 0;
482 
483 		if (sa->agf_bp) {
484 			xfs_trans_brelse(sc->tp, sa->agf_bp);
485 			sa->agf_bp = NULL;
486 		}
487 
488 		if (sa->agi_bp) {
489 			xfs_trans_brelse(sc->tp, sa->agi_bp);
490 			sa->agi_bp = NULL;
491 		}
492 
493 		if (!(sc->flags & XCHK_FSGATES_DRAIN))
494 			return -ECHRNG;
495 		error = xfs_perag_intent_drain(sa->pag);
496 		if (error == -ERESTARTSYS)
497 			error = -EINTR;
498 	} while (!error);
499 
500 	return error;
501 }
502 
503 /*
504  * Grab the per-AG structure, grab all AG header buffers, and wait until there
505  * aren't any pending intents.  Returns -ENOENT if we can't grab the perag
506  * structure.
507  */
508 int
509 xchk_ag_read_headers(
510 	struct xfs_scrub	*sc,
511 	xfs_agnumber_t		agno,
512 	struct xchk_ag		*sa)
513 {
514 	struct xfs_mount	*mp = sc->mp;
515 
516 	ASSERT(!sa->pag);
517 	sa->pag = xfs_perag_get(mp, agno);
518 	if (!sa->pag)
519 		return -ENOENT;
520 
521 	return xchk_perag_drain_and_lock(sc);
522 }
523 
524 /* Release all the AG btree cursors. */
525 void
526 xchk_ag_btcur_free(
527 	struct xchk_ag		*sa)
528 {
529 	if (sa->refc_cur)
530 		xfs_btree_del_cursor(sa->refc_cur, XFS_BTREE_ERROR);
531 	if (sa->rmap_cur)
532 		xfs_btree_del_cursor(sa->rmap_cur, XFS_BTREE_ERROR);
533 	if (sa->fino_cur)
534 		xfs_btree_del_cursor(sa->fino_cur, XFS_BTREE_ERROR);
535 	if (sa->ino_cur)
536 		xfs_btree_del_cursor(sa->ino_cur, XFS_BTREE_ERROR);
537 	if (sa->cnt_cur)
538 		xfs_btree_del_cursor(sa->cnt_cur, XFS_BTREE_ERROR);
539 	if (sa->bno_cur)
540 		xfs_btree_del_cursor(sa->bno_cur, XFS_BTREE_ERROR);
541 
542 	sa->refc_cur = NULL;
543 	sa->rmap_cur = NULL;
544 	sa->fino_cur = NULL;
545 	sa->ino_cur = NULL;
546 	sa->bno_cur = NULL;
547 	sa->cnt_cur = NULL;
548 }
549 
550 /* Initialize all the btree cursors for an AG. */
551 void
552 xchk_ag_btcur_init(
553 	struct xfs_scrub	*sc,
554 	struct xchk_ag		*sa)
555 {
556 	struct xfs_mount	*mp = sc->mp;
557 
558 	if (sa->agf_bp &&
559 	    xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_BNO)) {
560 		/* Set up a bnobt cursor for cross-referencing. */
561 		sa->bno_cur = xfs_allocbt_init_cursor(mp, sc->tp, sa->agf_bp,
562 				sa->pag, XFS_BTNUM_BNO);
563 	}
564 
565 	if (sa->agf_bp &&
566 	    xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_CNT)) {
567 		/* Set up a cntbt cursor for cross-referencing. */
568 		sa->cnt_cur = xfs_allocbt_init_cursor(mp, sc->tp, sa->agf_bp,
569 				sa->pag, XFS_BTNUM_CNT);
570 	}
571 
572 	/* Set up a inobt cursor for cross-referencing. */
573 	if (sa->agi_bp &&
574 	    xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_INO)) {
575 		sa->ino_cur = xfs_inobt_init_cursor(sa->pag, sc->tp, sa->agi_bp,
576 				XFS_BTNUM_INO);
577 	}
578 
579 	/* Set up a finobt cursor for cross-referencing. */
580 	if (sa->agi_bp && xfs_has_finobt(mp) &&
581 	    xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_FINO)) {
582 		sa->fino_cur = xfs_inobt_init_cursor(sa->pag, sc->tp, sa->agi_bp,
583 				XFS_BTNUM_FINO);
584 	}
585 
586 	/* Set up a rmapbt cursor for cross-referencing. */
587 	if (sa->agf_bp && xfs_has_rmapbt(mp) &&
588 	    xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_RMAP)) {
589 		sa->rmap_cur = xfs_rmapbt_init_cursor(mp, sc->tp, sa->agf_bp,
590 				sa->pag);
591 	}
592 
593 	/* Set up a refcountbt cursor for cross-referencing. */
594 	if (sa->agf_bp && xfs_has_reflink(mp) &&
595 	    xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_REFC)) {
596 		sa->refc_cur = xfs_refcountbt_init_cursor(mp, sc->tp,
597 				sa->agf_bp, sa->pag);
598 	}
599 }
600 
601 /* Release the AG header context and btree cursors. */
602 void
603 xchk_ag_free(
604 	struct xfs_scrub	*sc,
605 	struct xchk_ag		*sa)
606 {
607 	xchk_ag_btcur_free(sa);
608 	xrep_reset_perag_resv(sc);
609 	if (sa->agf_bp) {
610 		xfs_trans_brelse(sc->tp, sa->agf_bp);
611 		sa->agf_bp = NULL;
612 	}
613 	if (sa->agi_bp) {
614 		xfs_trans_brelse(sc->tp, sa->agi_bp);
615 		sa->agi_bp = NULL;
616 	}
617 	if (sa->pag) {
618 		xfs_perag_put(sa->pag);
619 		sa->pag = NULL;
620 	}
621 }
622 
623 /*
624  * For scrub, grab the perag structure, the AGI, and the AGF headers, in that
625  * order.  Locking order requires us to get the AGI before the AGF.  We use the
626  * transaction to avoid deadlocking on crosslinked metadata buffers; either the
627  * caller passes one in (bmap scrub) or we have to create a transaction
628  * ourselves.  Returns ENOENT if the perag struct cannot be grabbed.
629  */
630 int
631 xchk_ag_init(
632 	struct xfs_scrub	*sc,
633 	xfs_agnumber_t		agno,
634 	struct xchk_ag		*sa)
635 {
636 	int			error;
637 
638 	error = xchk_ag_read_headers(sc, agno, sa);
639 	if (error)
640 		return error;
641 
642 	xchk_ag_btcur_init(sc, sa);
643 	return 0;
644 }
645 
646 /* Per-scrubber setup functions */
647 
648 void
649 xchk_trans_cancel(
650 	struct xfs_scrub	*sc)
651 {
652 	xfs_trans_cancel(sc->tp);
653 	sc->tp = NULL;
654 }
655 
656 /*
657  * Grab an empty transaction so that we can re-grab locked buffers if
658  * one of our btrees turns out to be cyclic.
659  *
660  * If we're going to repair something, we need to ask for the largest possible
661  * log reservation so that we can handle the worst case scenario for metadata
662  * updates while rebuilding a metadata item.  We also need to reserve as many
663  * blocks in the head transaction as we think we're going to need to rebuild
664  * the metadata object.
665  */
666 int
667 xchk_trans_alloc(
668 	struct xfs_scrub	*sc,
669 	uint			resblks)
670 {
671 	if (sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR)
672 		return xfs_trans_alloc(sc->mp, &M_RES(sc->mp)->tr_itruncate,
673 				resblks, 0, 0, &sc->tp);
674 
675 	return xfs_trans_alloc_empty(sc->mp, &sc->tp);
676 }
677 
678 /* Set us up with a transaction and an empty context. */
679 int
680 xchk_setup_fs(
681 	struct xfs_scrub	*sc)
682 {
683 	uint			resblks;
684 
685 	resblks = xrep_calc_ag_resblks(sc);
686 	return xchk_trans_alloc(sc, resblks);
687 }
688 
689 /* Set us up with AG headers and btree cursors. */
690 int
691 xchk_setup_ag_btree(
692 	struct xfs_scrub	*sc,
693 	bool			force_log)
694 {
695 	struct xfs_mount	*mp = sc->mp;
696 	int			error;
697 
698 	/*
699 	 * If the caller asks us to checkpont the log, do so.  This
700 	 * expensive operation should be performed infrequently and only
701 	 * as a last resort.  Any caller that sets force_log should
702 	 * document why they need to do so.
703 	 */
704 	if (force_log) {
705 		error = xchk_checkpoint_log(mp);
706 		if (error)
707 			return error;
708 	}
709 
710 	error = xchk_setup_fs(sc);
711 	if (error)
712 		return error;
713 
714 	return xchk_ag_init(sc, sc->sm->sm_agno, &sc->sa);
715 }
716 
717 /* Push everything out of the log onto disk. */
718 int
719 xchk_checkpoint_log(
720 	struct xfs_mount	*mp)
721 {
722 	int			error;
723 
724 	error = xfs_log_force(mp, XFS_LOG_SYNC);
725 	if (error)
726 		return error;
727 	xfs_ail_push_all_sync(mp->m_ail);
728 	return 0;
729 }
730 
731 /* Verify that an inode is allocated ondisk, then return its cached inode. */
732 int
733 xchk_iget(
734 	struct xfs_scrub	*sc,
735 	xfs_ino_t		inum,
736 	struct xfs_inode	**ipp)
737 {
738 	ASSERT(sc->tp != NULL);
739 
740 	return xfs_iget(sc->mp, sc->tp, inum, XFS_IGET_UNTRUSTED, 0, ipp);
741 }
742 
743 /*
744  * Try to grab an inode in a manner that avoids races with physical inode
745  * allocation.  If we can't, return the locked AGI buffer so that the caller
746  * can single-step the loading process to see where things went wrong.
747  * Callers must have a valid scrub transaction.
748  *
749  * If the iget succeeds, return 0, a NULL AGI, and the inode.
750  *
751  * If the iget fails, return the error, the locked AGI, and a NULL inode.  This
752  * can include -EINVAL and -ENOENT for invalid inode numbers or inodes that are
753  * no longer allocated; or any other corruption or runtime error.
754  *
755  * If the AGI read fails, return the error, a NULL AGI, and NULL inode.
756  *
757  * If a fatal signal is pending, return -EINTR, a NULL AGI, and a NULL inode.
758  */
759 int
760 xchk_iget_agi(
761 	struct xfs_scrub	*sc,
762 	xfs_ino_t		inum,
763 	struct xfs_buf		**agi_bpp,
764 	struct xfs_inode	**ipp)
765 {
766 	struct xfs_mount	*mp = sc->mp;
767 	struct xfs_trans	*tp = sc->tp;
768 	struct xfs_perag	*pag;
769 	int			error;
770 
771 	ASSERT(sc->tp != NULL);
772 
773 again:
774 	*agi_bpp = NULL;
775 	*ipp = NULL;
776 	error = 0;
777 
778 	if (xchk_should_terminate(sc, &error))
779 		return error;
780 
781 	/*
782 	 * Attach the AGI buffer to the scrub transaction to avoid deadlocks
783 	 * in the iget cache miss path.
784 	 */
785 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
786 	error = xfs_ialloc_read_agi(pag, tp, agi_bpp);
787 	xfs_perag_put(pag);
788 	if (error)
789 		return error;
790 
791 	error = xfs_iget(mp, tp, inum,
792 			XFS_IGET_NORETRY | XFS_IGET_UNTRUSTED, 0, ipp);
793 	if (error == -EAGAIN) {
794 		/*
795 		 * The inode may be in core but temporarily unavailable and may
796 		 * require the AGI buffer before it can be returned.  Drop the
797 		 * AGI buffer and retry the lookup.
798 		 *
799 		 * Incore lookup will fail with EAGAIN on a cache hit if the
800 		 * inode is queued to the inactivation list.  The inactivation
801 		 * worker may remove the inode from the unlinked list and hence
802 		 * needs the AGI.
803 		 *
804 		 * Hence xchk_iget_agi() needs to drop the AGI lock on EAGAIN
805 		 * to allow inodegc to make progress and move the inode to
806 		 * IRECLAIMABLE state where xfs_iget will be able to return it
807 		 * again if it can lock the inode.
808 		 */
809 		xfs_trans_brelse(tp, *agi_bpp);
810 		delay(1);
811 		goto again;
812 	}
813 	if (error)
814 		return error;
815 
816 	/* We got the inode, so we can release the AGI. */
817 	ASSERT(*ipp != NULL);
818 	xfs_trans_brelse(tp, *agi_bpp);
819 	*agi_bpp = NULL;
820 	return 0;
821 }
822 
823 #ifdef CONFIG_XFS_QUOTA
824 /*
825  * Try to attach dquots to this inode if we think we might want to repair it.
826  * Callers must not hold any ILOCKs.  If the dquots are broken and cannot be
827  * attached, a quotacheck will be scheduled.
828  */
829 int
830 xchk_ino_dqattach(
831 	struct xfs_scrub	*sc)
832 {
833 	ASSERT(sc->tp != NULL);
834 	ASSERT(sc->ip != NULL);
835 
836 	if (!xchk_could_repair(sc))
837 		return 0;
838 
839 	return xrep_ino_dqattach(sc);
840 }
841 #endif
842 
843 /* Install an inode that we opened by handle for scrubbing. */
844 int
845 xchk_install_handle_inode(
846 	struct xfs_scrub	*sc,
847 	struct xfs_inode	*ip)
848 {
849 	if (VFS_I(ip)->i_generation != sc->sm->sm_gen) {
850 		xchk_irele(sc, ip);
851 		return -ENOENT;
852 	}
853 
854 	sc->ip = ip;
855 	return 0;
856 }
857 
858 /*
859  * Install an already-referenced inode for scrubbing.  Get our own reference to
860  * the inode to make disposal simpler.  The inode must not be in I_FREEING or
861  * I_WILL_FREE state!
862  */
863 int
864 xchk_install_live_inode(
865 	struct xfs_scrub	*sc,
866 	struct xfs_inode	*ip)
867 {
868 	if (!igrab(VFS_I(ip))) {
869 		xchk_ino_set_corrupt(sc, ip->i_ino);
870 		return -EFSCORRUPTED;
871 	}
872 
873 	sc->ip = ip;
874 	return 0;
875 }
876 
877 /*
878  * In preparation to scrub metadata structures that hang off of an inode,
879  * grab either the inode referenced in the scrub control structure or the
880  * inode passed in.  If the inumber does not reference an allocated inode
881  * record, the function returns ENOENT to end the scrub early.  The inode
882  * is not locked.
883  */
884 int
885 xchk_iget_for_scrubbing(
886 	struct xfs_scrub	*sc)
887 {
888 	struct xfs_imap		imap;
889 	struct xfs_mount	*mp = sc->mp;
890 	struct xfs_perag	*pag;
891 	struct xfs_buf		*agi_bp;
892 	struct xfs_inode	*ip_in = XFS_I(file_inode(sc->file));
893 	struct xfs_inode	*ip = NULL;
894 	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, sc->sm->sm_ino);
895 	int			error;
896 
897 	ASSERT(sc->tp == NULL);
898 
899 	/* We want to scan the inode we already had opened. */
900 	if (sc->sm->sm_ino == 0 || sc->sm->sm_ino == ip_in->i_ino)
901 		return xchk_install_live_inode(sc, ip_in);
902 
903 	/* Reject internal metadata files and obviously bad inode numbers. */
904 	if (xfs_internal_inum(mp, sc->sm->sm_ino))
905 		return -ENOENT;
906 	if (!xfs_verify_ino(sc->mp, sc->sm->sm_ino))
907 		return -ENOENT;
908 
909 	/* Try a safe untrusted iget. */
910 	error = xchk_iget_safe(sc, sc->sm->sm_ino, &ip);
911 	if (!error)
912 		return xchk_install_handle_inode(sc, ip);
913 	if (error == -ENOENT)
914 		return error;
915 	if (error != -EINVAL)
916 		goto out_error;
917 
918 	/*
919 	 * EINVAL with IGET_UNTRUSTED probably means one of several things:
920 	 * userspace gave us an inode number that doesn't correspond to fs
921 	 * space; the inode btree lacks a record for this inode; or there is a
922 	 * record, and it says this inode is free.
923 	 *
924 	 * We want to look up this inode in the inobt to distinguish two
925 	 * scenarios: (1) the inobt says the inode is free, in which case
926 	 * there's nothing to do; and (2) the inobt says the inode is
927 	 * allocated, but loading it failed due to corruption.
928 	 *
929 	 * Allocate a transaction and grab the AGI to prevent inobt activity
930 	 * in this AG.  Retry the iget in case someone allocated a new inode
931 	 * after the first iget failed.
932 	 */
933 	error = xchk_trans_alloc(sc, 0);
934 	if (error)
935 		goto out_error;
936 
937 	error = xchk_iget_agi(sc, sc->sm->sm_ino, &agi_bp, &ip);
938 	if (error == 0) {
939 		/* Actually got the inode, so install it. */
940 		xchk_trans_cancel(sc);
941 		return xchk_install_handle_inode(sc, ip);
942 	}
943 	if (error == -ENOENT)
944 		goto out_gone;
945 	if (error != -EINVAL)
946 		goto out_cancel;
947 
948 	/* Ensure that we have protected against inode allocation/freeing. */
949 	if (agi_bp == NULL) {
950 		ASSERT(agi_bp != NULL);
951 		error = -ECANCELED;
952 		goto out_cancel;
953 	}
954 
955 	/*
956 	 * Untrusted iget failed a second time.  Let's try an inobt lookup.
957 	 * If the inobt thinks this the inode neither can exist inside the
958 	 * filesystem nor is allocated, return ENOENT to signal that the check
959 	 * can be skipped.
960 	 *
961 	 * If the lookup returns corruption, we'll mark this inode corrupt and
962 	 * exit to userspace.  There's little chance of fixing anything until
963 	 * the inobt is straightened out, but there's nothing we can do here.
964 	 *
965 	 * If the lookup encounters any other error, exit to userspace.
966 	 *
967 	 * If the lookup succeeds, something else must be very wrong in the fs
968 	 * such that setting up the incore inode failed in some strange way.
969 	 * Treat those as corruptions.
970 	 */
971 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sc->sm->sm_ino));
972 	if (!pag) {
973 		error = -EFSCORRUPTED;
974 		goto out_cancel;
975 	}
976 
977 	error = xfs_imap(pag, sc->tp, sc->sm->sm_ino, &imap,
978 			XFS_IGET_UNTRUSTED);
979 	xfs_perag_put(pag);
980 	if (error == -EINVAL || error == -ENOENT)
981 		goto out_gone;
982 	if (!error)
983 		error = -EFSCORRUPTED;
984 
985 out_cancel:
986 	xchk_trans_cancel(sc);
987 out_error:
988 	trace_xchk_op_error(sc, agno, XFS_INO_TO_AGBNO(mp, sc->sm->sm_ino),
989 			error, __return_address);
990 	return error;
991 out_gone:
992 	/* The file is gone, so there's nothing to check. */
993 	xchk_trans_cancel(sc);
994 	return -ENOENT;
995 }
996 
997 /* Release an inode, possibly dropping it in the process. */
998 void
999 xchk_irele(
1000 	struct xfs_scrub	*sc,
1001 	struct xfs_inode	*ip)
1002 {
1003 	if (current->journal_info != NULL) {
1004 		ASSERT(current->journal_info == sc->tp);
1005 
1006 		/*
1007 		 * If we are in a transaction, we /cannot/ drop the inode
1008 		 * ourselves, because the VFS will trigger writeback, which
1009 		 * can require a transaction.  Clear DONTCACHE to force the
1010 		 * inode to the LRU, where someone else can take care of
1011 		 * dropping it.
1012 		 *
1013 		 * Note that when we grabbed our reference to the inode, it
1014 		 * could have had an active ref and DONTCACHE set if a sysadmin
1015 		 * is trying to coerce a change in file access mode.  icache
1016 		 * hits do not clear DONTCACHE, so we must do it here.
1017 		 */
1018 		spin_lock(&VFS_I(ip)->i_lock);
1019 		VFS_I(ip)->i_state &= ~I_DONTCACHE;
1020 		spin_unlock(&VFS_I(ip)->i_lock);
1021 	} else if (atomic_read(&VFS_I(ip)->i_count) == 1) {
1022 		/*
1023 		 * If this is the last reference to the inode and the caller
1024 		 * permits it, set DONTCACHE to avoid thrashing.
1025 		 */
1026 		d_mark_dontcache(VFS_I(ip));
1027 	}
1028 
1029 	xfs_irele(ip);
1030 }
1031 
1032 /*
1033  * Set us up to scrub metadata mapped by a file's fork.  Callers must not use
1034  * this to operate on user-accessible regular file data because the MMAPLOCK is
1035  * not taken.
1036  */
1037 int
1038 xchk_setup_inode_contents(
1039 	struct xfs_scrub	*sc,
1040 	unsigned int		resblks)
1041 {
1042 	int			error;
1043 
1044 	error = xchk_iget_for_scrubbing(sc);
1045 	if (error)
1046 		return error;
1047 
1048 	/* Lock the inode so the VFS cannot touch this file. */
1049 	xchk_ilock(sc, XFS_IOLOCK_EXCL);
1050 
1051 	error = xchk_trans_alloc(sc, resblks);
1052 	if (error)
1053 		goto out;
1054 
1055 	error = xchk_ino_dqattach(sc);
1056 	if (error)
1057 		goto out;
1058 
1059 	xchk_ilock(sc, XFS_ILOCK_EXCL);
1060 out:
1061 	/* scrub teardown will unlock and release the inode for us */
1062 	return error;
1063 }
1064 
1065 void
1066 xchk_ilock(
1067 	struct xfs_scrub	*sc,
1068 	unsigned int		ilock_flags)
1069 {
1070 	xfs_ilock(sc->ip, ilock_flags);
1071 	sc->ilock_flags |= ilock_flags;
1072 }
1073 
1074 bool
1075 xchk_ilock_nowait(
1076 	struct xfs_scrub	*sc,
1077 	unsigned int		ilock_flags)
1078 {
1079 	if (xfs_ilock_nowait(sc->ip, ilock_flags)) {
1080 		sc->ilock_flags |= ilock_flags;
1081 		return true;
1082 	}
1083 
1084 	return false;
1085 }
1086 
1087 void
1088 xchk_iunlock(
1089 	struct xfs_scrub	*sc,
1090 	unsigned int		ilock_flags)
1091 {
1092 	sc->ilock_flags &= ~ilock_flags;
1093 	xfs_iunlock(sc->ip, ilock_flags);
1094 }
1095 
1096 /*
1097  * Predicate that decides if we need to evaluate the cross-reference check.
1098  * If there was an error accessing the cross-reference btree, just delete
1099  * the cursor and skip the check.
1100  */
1101 bool
1102 xchk_should_check_xref(
1103 	struct xfs_scrub	*sc,
1104 	int			*error,
1105 	struct xfs_btree_cur	**curpp)
1106 {
1107 	/* No point in xref if we already know we're corrupt. */
1108 	if (xchk_skip_xref(sc->sm))
1109 		return false;
1110 
1111 	if (*error == 0)
1112 		return true;
1113 
1114 	if (curpp) {
1115 		/* If we've already given up on xref, just bail out. */
1116 		if (!*curpp)
1117 			return false;
1118 
1119 		/* xref error, delete cursor and bail out. */
1120 		xfs_btree_del_cursor(*curpp, XFS_BTREE_ERROR);
1121 		*curpp = NULL;
1122 	}
1123 
1124 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XFAIL;
1125 	trace_xchk_xref_error(sc, *error, __return_address);
1126 
1127 	/*
1128 	 * Errors encountered during cross-referencing with another
1129 	 * data structure should not cause this scrubber to abort.
1130 	 */
1131 	*error = 0;
1132 	return false;
1133 }
1134 
1135 /* Run the structure verifiers on in-memory buffers to detect bad memory. */
1136 void
1137 xchk_buffer_recheck(
1138 	struct xfs_scrub	*sc,
1139 	struct xfs_buf		*bp)
1140 {
1141 	xfs_failaddr_t		fa;
1142 
1143 	if (bp->b_ops == NULL) {
1144 		xchk_block_set_corrupt(sc, bp);
1145 		return;
1146 	}
1147 	if (bp->b_ops->verify_struct == NULL) {
1148 		xchk_set_incomplete(sc);
1149 		return;
1150 	}
1151 	fa = bp->b_ops->verify_struct(bp);
1152 	if (!fa)
1153 		return;
1154 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
1155 	trace_xchk_block_error(sc, xfs_buf_daddr(bp), fa);
1156 }
1157 
1158 static inline int
1159 xchk_metadata_inode_subtype(
1160 	struct xfs_scrub	*sc,
1161 	unsigned int		scrub_type)
1162 {
1163 	__u32			smtype = sc->sm->sm_type;
1164 	unsigned int		sick_mask = sc->sick_mask;
1165 	int			error;
1166 
1167 	sc->sm->sm_type = scrub_type;
1168 
1169 	switch (scrub_type) {
1170 	case XFS_SCRUB_TYPE_INODE:
1171 		error = xchk_inode(sc);
1172 		break;
1173 	case XFS_SCRUB_TYPE_BMBTD:
1174 		error = xchk_bmap_data(sc);
1175 		break;
1176 	default:
1177 		ASSERT(0);
1178 		error = -EFSCORRUPTED;
1179 		break;
1180 	}
1181 
1182 	sc->sick_mask = sick_mask;
1183 	sc->sm->sm_type = smtype;
1184 	return error;
1185 }
1186 
1187 /*
1188  * Scrub the attr/data forks of a metadata inode.  The metadata inode must be
1189  * pointed to by sc->ip and the ILOCK must be held.
1190  */
1191 int
1192 xchk_metadata_inode_forks(
1193 	struct xfs_scrub	*sc)
1194 {
1195 	bool			shared;
1196 	int			error;
1197 
1198 	if (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT)
1199 		return 0;
1200 
1201 	/* Check the inode record. */
1202 	error = xchk_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_INODE);
1203 	if (error || (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT))
1204 		return error;
1205 
1206 	/* Metadata inodes don't live on the rt device. */
1207 	if (sc->ip->i_diflags & XFS_DIFLAG_REALTIME) {
1208 		xchk_ino_set_corrupt(sc, sc->ip->i_ino);
1209 		return 0;
1210 	}
1211 
1212 	/* They should never participate in reflink. */
1213 	if (xfs_is_reflink_inode(sc->ip)) {
1214 		xchk_ino_set_corrupt(sc, sc->ip->i_ino);
1215 		return 0;
1216 	}
1217 
1218 	/* They also should never have extended attributes. */
1219 	if (xfs_inode_hasattr(sc->ip)) {
1220 		xchk_ino_set_corrupt(sc, sc->ip->i_ino);
1221 		return 0;
1222 	}
1223 
1224 	/* Invoke the data fork scrubber. */
1225 	error = xchk_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_BMBTD);
1226 	if (error || (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT))
1227 		return error;
1228 
1229 	/* Look for incorrect shared blocks. */
1230 	if (xfs_has_reflink(sc->mp)) {
1231 		error = xfs_reflink_inode_has_shared_extents(sc->tp, sc->ip,
1232 				&shared);
1233 		if (!xchk_fblock_process_error(sc, XFS_DATA_FORK, 0,
1234 				&error))
1235 			return error;
1236 		if (shared)
1237 			xchk_ino_set_corrupt(sc, sc->ip->i_ino);
1238 	}
1239 
1240 	return 0;
1241 }
1242 
1243 /*
1244  * Enable filesystem hooks (i.e. runtime code patching) before starting a scrub
1245  * operation.  Callers must not hold any locks that intersect with the CPU
1246  * hotplug lock (e.g. writeback locks) because code patching must halt the CPUs
1247  * to change kernel code.
1248  */
1249 void
1250 xchk_fsgates_enable(
1251 	struct xfs_scrub	*sc,
1252 	unsigned int		scrub_fsgates)
1253 {
1254 	ASSERT(!(scrub_fsgates & ~XCHK_FSGATES_ALL));
1255 	ASSERT(!(sc->flags & scrub_fsgates));
1256 
1257 	trace_xchk_fsgates_enable(sc, scrub_fsgates);
1258 
1259 	if (scrub_fsgates & XCHK_FSGATES_DRAIN)
1260 		xfs_drain_wait_enable();
1261 
1262 	sc->flags |= scrub_fsgates;
1263 }
1264 
1265 /*
1266  * Decide if this is this a cached inode that's also allocated.  The caller
1267  * must hold a reference to an AG and the AGI buffer lock to prevent inodes
1268  * from being allocated or freed.
1269  *
1270  * Look up an inode by number in the given file system.  If the inode number
1271  * is invalid, return -EINVAL.  If the inode is not in cache, return -ENODATA.
1272  * If the inode is being reclaimed, return -ENODATA because we know the inode
1273  * cache cannot be updating the ondisk metadata.
1274  *
1275  * Otherwise, the incore inode is the one we want, and it is either live,
1276  * somewhere in the inactivation machinery, or reclaimable.  The inode is
1277  * allocated if i_mode is nonzero.  In all three cases, the cached inode will
1278  * be more up to date than the ondisk inode buffer, so we must use the incore
1279  * i_mode.
1280  */
1281 int
1282 xchk_inode_is_allocated(
1283 	struct xfs_scrub	*sc,
1284 	xfs_agino_t		agino,
1285 	bool			*inuse)
1286 {
1287 	struct xfs_mount	*mp = sc->mp;
1288 	struct xfs_perag	*pag = sc->sa.pag;
1289 	xfs_ino_t		ino;
1290 	struct xfs_inode	*ip;
1291 	int			error;
1292 
1293 	/* caller must hold perag reference */
1294 	if (pag == NULL) {
1295 		ASSERT(pag != NULL);
1296 		return -EINVAL;
1297 	}
1298 
1299 	/* caller must have AGI buffer */
1300 	if (sc->sa.agi_bp == NULL) {
1301 		ASSERT(sc->sa.agi_bp != NULL);
1302 		return -EINVAL;
1303 	}
1304 
1305 	/* reject inode numbers outside existing AGs */
1306 	ino = XFS_AGINO_TO_INO(sc->mp, pag->pag_agno, agino);
1307 	if (!xfs_verify_ino(mp, ino))
1308 		return -EINVAL;
1309 
1310 	error = -ENODATA;
1311 	rcu_read_lock();
1312 	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
1313 	if (!ip) {
1314 		/* cache miss */
1315 		goto out_rcu;
1316 	}
1317 
1318 	/*
1319 	 * If the inode number doesn't match, the incore inode got reused
1320 	 * during an RCU grace period and the radix tree hasn't been updated.
1321 	 * This isn't the inode we want.
1322 	 */
1323 	spin_lock(&ip->i_flags_lock);
1324 	if (ip->i_ino != ino)
1325 		goto out_skip;
1326 
1327 	trace_xchk_inode_is_allocated(ip);
1328 
1329 	/*
1330 	 * We have an incore inode that matches the inode we want, and the
1331 	 * caller holds the perag structure and the AGI buffer.  Let's check
1332 	 * our assumptions below:
1333 	 */
1334 
1335 #ifdef DEBUG
1336 	/*
1337 	 * (1) If the incore inode is live (i.e. referenced from the dcache),
1338 	 * it will not be INEW, nor will it be in the inactivation or reclaim
1339 	 * machinery.  The ondisk inode had better be allocated.  This is the
1340 	 * most trivial case.
1341 	 */
1342 	if (!(ip->i_flags & (XFS_NEED_INACTIVE | XFS_INEW | XFS_IRECLAIMABLE |
1343 			     XFS_INACTIVATING))) {
1344 		/* live inode */
1345 		ASSERT(VFS_I(ip)->i_mode != 0);
1346 	}
1347 
1348 	/*
1349 	 * If the incore inode is INEW, there are several possibilities:
1350 	 *
1351 	 * (2) For a file that is being created, note that we allocate the
1352 	 * ondisk inode before allocating, initializing, and adding the incore
1353 	 * inode to the radix tree.
1354 	 *
1355 	 * (3) If the incore inode is being recycled, the inode has to be
1356 	 * allocated because we don't allow freed inodes to be recycled.
1357 	 * Recycling doesn't touch i_mode.
1358 	 */
1359 	if (ip->i_flags & XFS_INEW) {
1360 		/* created on disk already or recycling */
1361 		ASSERT(VFS_I(ip)->i_mode != 0);
1362 	}
1363 
1364 	/*
1365 	 * (4) If the inode is queued for inactivation (NEED_INACTIVE) but
1366 	 * inactivation has not started (!INACTIVATING), it is still allocated.
1367 	 */
1368 	if ((ip->i_flags & XFS_NEED_INACTIVE) &&
1369 	    !(ip->i_flags & XFS_INACTIVATING)) {
1370 		/* definitely before difree */
1371 		ASSERT(VFS_I(ip)->i_mode != 0);
1372 	}
1373 #endif
1374 
1375 	/*
1376 	 * If the incore inode is undergoing inactivation (INACTIVATING), there
1377 	 * are two possibilities:
1378 	 *
1379 	 * (5) It is before the point where it would get freed ondisk, in which
1380 	 * case i_mode is still nonzero.
1381 	 *
1382 	 * (6) It has already been freed, in which case i_mode is zero.
1383 	 *
1384 	 * We don't take the ILOCK here, but difree and dialloc update the AGI,
1385 	 * and we've taken the AGI buffer lock, which prevents that from
1386 	 * happening.
1387 	 */
1388 
1389 	/*
1390 	 * (7) Inodes undergoing inactivation (INACTIVATING) or queued for
1391 	 * reclaim (IRECLAIMABLE) could be allocated or free.  i_mode still
1392 	 * reflects the ondisk state.
1393 	 */
1394 
1395 	/*
1396 	 * (8) If the inode is in IFLUSHING, it's safe to query i_mode because
1397 	 * the flush code uses i_mode to format the ondisk inode.
1398 	 */
1399 
1400 	/*
1401 	 * (9) If the inode is in IRECLAIM and was reachable via the radix
1402 	 * tree, it still has the same i_mode as it did before it entered
1403 	 * reclaim.  The inode object is still alive because we hold the RCU
1404 	 * read lock.
1405 	 */
1406 
1407 	*inuse = VFS_I(ip)->i_mode != 0;
1408 	error = 0;
1409 
1410 out_skip:
1411 	spin_unlock(&ip->i_flags_lock);
1412 out_rcu:
1413 	rcu_read_unlock();
1414 	return error;
1415 }
1416