xref: /linux/fs/xfs/scrub/common.c (revision e814f3fd16acfb7f9966773953de8f740a1e3202)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2017-2023 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <djwong@kernel.org>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_mount.h"
12 #include "xfs_btree.h"
13 #include "xfs_log_format.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode.h"
16 #include "xfs_icache.h"
17 #include "xfs_alloc.h"
18 #include "xfs_alloc_btree.h"
19 #include "xfs_ialloc.h"
20 #include "xfs_ialloc_btree.h"
21 #include "xfs_refcount_btree.h"
22 #include "xfs_rmap.h"
23 #include "xfs_rmap_btree.h"
24 #include "xfs_log.h"
25 #include "xfs_trans_priv.h"
26 #include "xfs_da_format.h"
27 #include "xfs_da_btree.h"
28 #include "xfs_dir2_priv.h"
29 #include "xfs_dir2.h"
30 #include "xfs_attr.h"
31 #include "xfs_reflink.h"
32 #include "xfs_ag.h"
33 #include "xfs_error.h"
34 #include "xfs_quota.h"
35 #include "xfs_exchmaps.h"
36 #include "xfs_rtbitmap.h"
37 #include "xfs_rtgroup.h"
38 #include "xfs_rtrmap_btree.h"
39 #include "xfs_bmap_util.h"
40 #include "xfs_rtrefcount_btree.h"
41 #include "scrub/scrub.h"
42 #include "scrub/common.h"
43 #include "scrub/trace.h"
44 #include "scrub/repair.h"
45 #include "scrub/health.h"
46 #include "scrub/tempfile.h"
47 
48 /* Common code for the metadata scrubbers. */
49 
50 /*
51  * Handling operational errors.
52  *
53  * The *_process_error() family of functions are used to process error return
54  * codes from functions called as part of a scrub operation.
55  *
56  * If there's no error, we return true to tell the caller that it's ok
57  * to move on to the next check in its list.
58  *
59  * For non-verifier errors (e.g. ENOMEM) we return false to tell the
60  * caller that something bad happened, and we preserve *error so that
61  * the caller can return the *error up the stack to userspace.
62  *
63  * Verifier errors (EFSBADCRC/EFSCORRUPTED) are recorded by setting
64  * OFLAG_CORRUPT in sm_flags and the *error is cleared.  In other words,
65  * we track verifier errors (and failed scrub checks) via OFLAG_CORRUPT,
66  * not via return codes.  We return false to tell the caller that
67  * something bad happened.  Since the error has been cleared, the caller
68  * will (presumably) return that zero and scrubbing will move on to
69  * whatever's next.
70  *
71  * ftrace can be used to record the precise metadata location and the
72  * approximate code location of the failed operation.
73  */
74 
75 /* Check for operational errors. */
76 static bool
77 __xchk_process_error(
78 	struct xfs_scrub	*sc,
79 	xfs_agnumber_t		agno,
80 	xfs_agblock_t		bno,
81 	int			*error,
82 	__u32			errflag,
83 	void			*ret_ip)
84 {
85 	switch (*error) {
86 	case 0:
87 		return true;
88 	case -EDEADLOCK:
89 	case -ECHRNG:
90 		/* Used to restart an op with deadlock avoidance. */
91 		trace_xchk_deadlock_retry(
92 				sc->ip ? sc->ip : XFS_I(file_inode(sc->file)),
93 				sc->sm, *error);
94 		break;
95 	case -ECANCELED:
96 		/*
97 		 * ECANCELED here means that the caller set one of the scrub
98 		 * outcome flags (corrupt, xfail, xcorrupt) and wants to exit
99 		 * quickly.  Set error to zero and do not continue.
100 		 */
101 		trace_xchk_op_error(sc, agno, bno, *error, ret_ip);
102 		*error = 0;
103 		break;
104 	case -EFSBADCRC:
105 	case -EFSCORRUPTED:
106 		/* Note the badness but don't abort. */
107 		sc->sm->sm_flags |= errflag;
108 		*error = 0;
109 		fallthrough;
110 	default:
111 		trace_xchk_op_error(sc, agno, bno, *error, ret_ip);
112 		break;
113 	}
114 	return false;
115 }
116 
117 bool
118 xchk_process_error(
119 	struct xfs_scrub	*sc,
120 	xfs_agnumber_t		agno,
121 	xfs_agblock_t		bno,
122 	int			*error)
123 {
124 	return __xchk_process_error(sc, agno, bno, error,
125 			XFS_SCRUB_OFLAG_CORRUPT, __return_address);
126 }
127 
128 bool
129 xchk_process_rt_error(
130 	struct xfs_scrub	*sc,
131 	xfs_rgnumber_t		rgno,
132 	xfs_rgblock_t		rgbno,
133 	int			*error)
134 {
135 	return __xchk_process_error(sc, rgno, rgbno, error,
136 			XFS_SCRUB_OFLAG_CORRUPT, __return_address);
137 }
138 
139 bool
140 xchk_xref_process_error(
141 	struct xfs_scrub	*sc,
142 	xfs_agnumber_t		agno,
143 	xfs_agblock_t		bno,
144 	int			*error)
145 {
146 	return __xchk_process_error(sc, agno, bno, error,
147 			XFS_SCRUB_OFLAG_XFAIL, __return_address);
148 }
149 
150 /* Check for operational errors for a file offset. */
151 static bool
152 __xchk_fblock_process_error(
153 	struct xfs_scrub	*sc,
154 	int			whichfork,
155 	xfs_fileoff_t		offset,
156 	int			*error,
157 	__u32			errflag,
158 	void			*ret_ip)
159 {
160 	switch (*error) {
161 	case 0:
162 		return true;
163 	case -EDEADLOCK:
164 	case -ECHRNG:
165 		/* Used to restart an op with deadlock avoidance. */
166 		trace_xchk_deadlock_retry(sc->ip, sc->sm, *error);
167 		break;
168 	case -ECANCELED:
169 		/*
170 		 * ECANCELED here means that the caller set one of the scrub
171 		 * outcome flags (corrupt, xfail, xcorrupt) and wants to exit
172 		 * quickly.  Set error to zero and do not continue.
173 		 */
174 		trace_xchk_file_op_error(sc, whichfork, offset, *error,
175 				ret_ip);
176 		*error = 0;
177 		break;
178 	case -EFSBADCRC:
179 	case -EFSCORRUPTED:
180 		/* Note the badness but don't abort. */
181 		sc->sm->sm_flags |= errflag;
182 		*error = 0;
183 		fallthrough;
184 	default:
185 		trace_xchk_file_op_error(sc, whichfork, offset, *error,
186 				ret_ip);
187 		break;
188 	}
189 	return false;
190 }
191 
192 bool
193 xchk_fblock_process_error(
194 	struct xfs_scrub	*sc,
195 	int			whichfork,
196 	xfs_fileoff_t		offset,
197 	int			*error)
198 {
199 	return __xchk_fblock_process_error(sc, whichfork, offset, error,
200 			XFS_SCRUB_OFLAG_CORRUPT, __return_address);
201 }
202 
203 bool
204 xchk_fblock_xref_process_error(
205 	struct xfs_scrub	*sc,
206 	int			whichfork,
207 	xfs_fileoff_t		offset,
208 	int			*error)
209 {
210 	return __xchk_fblock_process_error(sc, whichfork, offset, error,
211 			XFS_SCRUB_OFLAG_XFAIL, __return_address);
212 }
213 
214 /*
215  * Handling scrub corruption/optimization/warning checks.
216  *
217  * The *_set_{corrupt,preen,warning}() family of functions are used to
218  * record the presence of metadata that is incorrect (corrupt), could be
219  * optimized somehow (preen), or should be flagged for administrative
220  * review but is not incorrect (warn).
221  *
222  * ftrace can be used to record the precise metadata location and
223  * approximate code location of the failed check.
224  */
225 
226 /* Record a block which could be optimized. */
227 void
228 xchk_block_set_preen(
229 	struct xfs_scrub	*sc,
230 	struct xfs_buf		*bp)
231 {
232 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_PREEN;
233 	trace_xchk_block_preen(sc, xfs_buf_daddr(bp), __return_address);
234 }
235 
236 /*
237  * Record an inode which could be optimized.  The trace data will
238  * include the block given by bp if bp is given; otherwise it will use
239  * the block location of the inode record itself.
240  */
241 void
242 xchk_ino_set_preen(
243 	struct xfs_scrub	*sc,
244 	xfs_ino_t		ino)
245 {
246 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_PREEN;
247 	trace_xchk_ino_preen(sc, ino, __return_address);
248 }
249 
250 /* Record something being wrong with the filesystem primary superblock. */
251 void
252 xchk_set_corrupt(
253 	struct xfs_scrub	*sc)
254 {
255 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
256 	trace_xchk_fs_error(sc, 0, __return_address);
257 }
258 
259 /* Record a corrupt block. */
260 void
261 xchk_block_set_corrupt(
262 	struct xfs_scrub	*sc,
263 	struct xfs_buf		*bp)
264 {
265 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
266 	trace_xchk_block_error(sc, xfs_buf_daddr(bp), __return_address);
267 }
268 
269 #ifdef CONFIG_XFS_QUOTA
270 /* Record a corrupt quota counter. */
271 void
272 xchk_qcheck_set_corrupt(
273 	struct xfs_scrub	*sc,
274 	unsigned int		dqtype,
275 	xfs_dqid_t		id)
276 {
277 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
278 	trace_xchk_qcheck_error(sc, dqtype, id, __return_address);
279 }
280 #endif
281 
282 /* Record a corruption while cross-referencing. */
283 void
284 xchk_block_xref_set_corrupt(
285 	struct xfs_scrub	*sc,
286 	struct xfs_buf		*bp)
287 {
288 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT;
289 	trace_xchk_block_error(sc, xfs_buf_daddr(bp), __return_address);
290 }
291 
292 /*
293  * Record a corrupt inode.  The trace data will include the block given
294  * by bp if bp is given; otherwise it will use the block location of the
295  * inode record itself.
296  */
297 void
298 xchk_ino_set_corrupt(
299 	struct xfs_scrub	*sc,
300 	xfs_ino_t		ino)
301 {
302 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
303 	trace_xchk_ino_error(sc, ino, __return_address);
304 }
305 
306 /* Record a corruption while cross-referencing with an inode. */
307 void
308 xchk_ino_xref_set_corrupt(
309 	struct xfs_scrub	*sc,
310 	xfs_ino_t		ino)
311 {
312 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT;
313 	trace_xchk_ino_error(sc, ino, __return_address);
314 }
315 
316 /* Record corruption in a block indexed by a file fork. */
317 void
318 xchk_fblock_set_corrupt(
319 	struct xfs_scrub	*sc,
320 	int			whichfork,
321 	xfs_fileoff_t		offset)
322 {
323 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
324 	trace_xchk_fblock_error(sc, whichfork, offset, __return_address);
325 }
326 
327 /* Record a corruption while cross-referencing a fork block. */
328 void
329 xchk_fblock_xref_set_corrupt(
330 	struct xfs_scrub	*sc,
331 	int			whichfork,
332 	xfs_fileoff_t		offset)
333 {
334 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT;
335 	trace_xchk_fblock_error(sc, whichfork, offset, __return_address);
336 }
337 
338 /*
339  * Warn about inodes that need administrative review but is not
340  * incorrect.
341  */
342 void
343 xchk_ino_set_warning(
344 	struct xfs_scrub	*sc,
345 	xfs_ino_t		ino)
346 {
347 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_WARNING;
348 	trace_xchk_ino_warning(sc, ino, __return_address);
349 }
350 
351 /* Warn about a block indexed by a file fork that needs review. */
352 void
353 xchk_fblock_set_warning(
354 	struct xfs_scrub	*sc,
355 	int			whichfork,
356 	xfs_fileoff_t		offset)
357 {
358 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_WARNING;
359 	trace_xchk_fblock_warning(sc, whichfork, offset, __return_address);
360 }
361 
362 /* Signal an incomplete scrub. */
363 void
364 xchk_set_incomplete(
365 	struct xfs_scrub	*sc)
366 {
367 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_INCOMPLETE;
368 	trace_xchk_incomplete(sc, __return_address);
369 }
370 
371 /*
372  * rmap scrubbing -- compute the number of blocks with a given owner,
373  * at least according to the reverse mapping data.
374  */
375 
376 struct xchk_rmap_ownedby_info {
377 	const struct xfs_owner_info	*oinfo;
378 	xfs_filblks_t			*blocks;
379 };
380 
381 STATIC int
382 xchk_count_rmap_ownedby_irec(
383 	struct xfs_btree_cur		*cur,
384 	const struct xfs_rmap_irec	*rec,
385 	void				*priv)
386 {
387 	struct xchk_rmap_ownedby_info	*sroi = priv;
388 	bool				irec_attr;
389 	bool				oinfo_attr;
390 
391 	irec_attr = rec->rm_flags & XFS_RMAP_ATTR_FORK;
392 	oinfo_attr = sroi->oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK;
393 
394 	if (rec->rm_owner != sroi->oinfo->oi_owner)
395 		return 0;
396 
397 	if (XFS_RMAP_NON_INODE_OWNER(rec->rm_owner) || irec_attr == oinfo_attr)
398 		(*sroi->blocks) += rec->rm_blockcount;
399 
400 	return 0;
401 }
402 
403 /*
404  * Calculate the number of blocks the rmap thinks are owned by something.
405  * The caller should pass us an rmapbt cursor.
406  */
407 int
408 xchk_count_rmap_ownedby_ag(
409 	struct xfs_scrub		*sc,
410 	struct xfs_btree_cur		*cur,
411 	const struct xfs_owner_info	*oinfo,
412 	xfs_filblks_t			*blocks)
413 {
414 	struct xchk_rmap_ownedby_info	sroi = {
415 		.oinfo			= oinfo,
416 		.blocks			= blocks,
417 	};
418 
419 	*blocks = 0;
420 	return xfs_rmap_query_all(cur, xchk_count_rmap_ownedby_irec,
421 			&sroi);
422 }
423 
424 /*
425  * AG scrubbing
426  *
427  * These helpers facilitate locking an allocation group's header
428  * buffers, setting up cursors for all btrees that are present, and
429  * cleaning everything up once we're through.
430  */
431 
432 /* Decide if we want to return an AG header read failure. */
433 static inline bool
434 want_ag_read_header_failure(
435 	struct xfs_scrub	*sc,
436 	unsigned int		type)
437 {
438 	/* Return all AG header read failures when scanning btrees. */
439 	if (sc->sm->sm_type != XFS_SCRUB_TYPE_AGF &&
440 	    sc->sm->sm_type != XFS_SCRUB_TYPE_AGFL &&
441 	    sc->sm->sm_type != XFS_SCRUB_TYPE_AGI)
442 		return true;
443 	/*
444 	 * If we're scanning a given type of AG header, we only want to
445 	 * see read failures from that specific header.  We'd like the
446 	 * other headers to cross-check them, but this isn't required.
447 	 */
448 	if (sc->sm->sm_type == type)
449 		return true;
450 	return false;
451 }
452 
453 /*
454  * Grab the AG header buffers for the attached perag structure.
455  *
456  * The headers should be released by xchk_ag_free, but as a fail safe we attach
457  * all the buffers we grab to the scrub transaction so they'll all be freed
458  * when we cancel it.
459  */
460 static inline int
461 xchk_perag_read_headers(
462 	struct xfs_scrub	*sc,
463 	struct xchk_ag		*sa)
464 {
465 	int			error;
466 
467 	error = xfs_ialloc_read_agi(sa->pag, sc->tp, 0, &sa->agi_bp);
468 	if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGI))
469 		return error;
470 
471 	error = xfs_alloc_read_agf(sa->pag, sc->tp, 0, &sa->agf_bp);
472 	if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGF))
473 		return error;
474 
475 	return 0;
476 }
477 
478 /*
479  * Grab the AG headers for the attached perag structure and wait for pending
480  * intents to drain.
481  */
482 int
483 xchk_perag_drain_and_lock(
484 	struct xfs_scrub	*sc)
485 {
486 	struct xchk_ag		*sa = &sc->sa;
487 	int			error = 0;
488 
489 	ASSERT(sa->pag != NULL);
490 	ASSERT(sa->agi_bp == NULL);
491 	ASSERT(sa->agf_bp == NULL);
492 
493 	do {
494 		if (xchk_should_terminate(sc, &error))
495 			return error;
496 
497 		error = xchk_perag_read_headers(sc, sa);
498 		if (error)
499 			return error;
500 
501 		/*
502 		 * If we've grabbed an inode for scrubbing then we assume that
503 		 * holding its ILOCK will suffice to coordinate with any intent
504 		 * chains involving this inode.
505 		 */
506 		if (sc->ip)
507 			return 0;
508 
509 		/*
510 		 * Decide if this AG is quiet enough for all metadata to be
511 		 * consistent with each other.  XFS allows the AG header buffer
512 		 * locks to cycle across transaction rolls while processing
513 		 * chains of deferred ops, which means that there could be
514 		 * other threads in the middle of processing a chain of
515 		 * deferred ops.  For regular operations we are careful about
516 		 * ordering operations to prevent collisions between threads
517 		 * (which is why we don't need a per-AG lock), but scrub and
518 		 * repair have to serialize against chained operations.
519 		 *
520 		 * We just locked all the AG headers buffers; now take a look
521 		 * to see if there are any intents in progress.  If there are,
522 		 * drop the AG headers and wait for the intents to drain.
523 		 * Since we hold all the AG header locks for the duration of
524 		 * the scrub, this is the only time we have to sample the
525 		 * intents counter; any threads increasing it after this point
526 		 * can't possibly be in the middle of a chain of AG metadata
527 		 * updates.
528 		 *
529 		 * Obviously, this should be slanted against scrub and in favor
530 		 * of runtime threads.
531 		 */
532 		if (!xfs_group_intent_busy(pag_group(sa->pag)))
533 			return 0;
534 
535 		if (sa->agf_bp) {
536 			xfs_trans_brelse(sc->tp, sa->agf_bp);
537 			sa->agf_bp = NULL;
538 		}
539 
540 		if (sa->agi_bp) {
541 			xfs_trans_brelse(sc->tp, sa->agi_bp);
542 			sa->agi_bp = NULL;
543 		}
544 
545 		if (!(sc->flags & XCHK_FSGATES_DRAIN))
546 			return -ECHRNG;
547 		error = xfs_group_intent_drain(pag_group(sa->pag));
548 		if (error == -ERESTARTSYS)
549 			error = -EINTR;
550 	} while (!error);
551 
552 	return error;
553 }
554 
555 /*
556  * Grab the per-AG structure, grab all AG header buffers, and wait until there
557  * aren't any pending intents.  Returns -ENOENT if we can't grab the perag
558  * structure.
559  */
560 int
561 xchk_ag_read_headers(
562 	struct xfs_scrub	*sc,
563 	xfs_agnumber_t		agno,
564 	struct xchk_ag		*sa)
565 {
566 	struct xfs_mount	*mp = sc->mp;
567 
568 	ASSERT(!sa->pag);
569 	sa->pag = xfs_perag_get(mp, agno);
570 	if (!sa->pag)
571 		return -ENOENT;
572 
573 	return xchk_perag_drain_and_lock(sc);
574 }
575 
576 /* Release all the AG btree cursors. */
577 void
578 xchk_ag_btcur_free(
579 	struct xchk_ag		*sa)
580 {
581 	if (sa->refc_cur)
582 		xfs_btree_del_cursor(sa->refc_cur, XFS_BTREE_ERROR);
583 	if (sa->rmap_cur)
584 		xfs_btree_del_cursor(sa->rmap_cur, XFS_BTREE_ERROR);
585 	if (sa->fino_cur)
586 		xfs_btree_del_cursor(sa->fino_cur, XFS_BTREE_ERROR);
587 	if (sa->ino_cur)
588 		xfs_btree_del_cursor(sa->ino_cur, XFS_BTREE_ERROR);
589 	if (sa->cnt_cur)
590 		xfs_btree_del_cursor(sa->cnt_cur, XFS_BTREE_ERROR);
591 	if (sa->bno_cur)
592 		xfs_btree_del_cursor(sa->bno_cur, XFS_BTREE_ERROR);
593 
594 	sa->refc_cur = NULL;
595 	sa->rmap_cur = NULL;
596 	sa->fino_cur = NULL;
597 	sa->ino_cur = NULL;
598 	sa->bno_cur = NULL;
599 	sa->cnt_cur = NULL;
600 }
601 
602 /* Initialize all the btree cursors for an AG. */
603 void
604 xchk_ag_btcur_init(
605 	struct xfs_scrub	*sc,
606 	struct xchk_ag		*sa)
607 {
608 	struct xfs_mount	*mp = sc->mp;
609 
610 	if (sa->agf_bp) {
611 		/* Set up a bnobt cursor for cross-referencing. */
612 		sa->bno_cur = xfs_bnobt_init_cursor(mp, sc->tp, sa->agf_bp,
613 				sa->pag);
614 		xchk_ag_btree_del_cursor_if_sick(sc, &sa->bno_cur,
615 				XFS_SCRUB_TYPE_BNOBT);
616 
617 		/* Set up a cntbt cursor for cross-referencing. */
618 		sa->cnt_cur = xfs_cntbt_init_cursor(mp, sc->tp, sa->agf_bp,
619 				sa->pag);
620 		xchk_ag_btree_del_cursor_if_sick(sc, &sa->cnt_cur,
621 				XFS_SCRUB_TYPE_CNTBT);
622 
623 		/* Set up a rmapbt cursor for cross-referencing. */
624 		if (xfs_has_rmapbt(mp)) {
625 			sa->rmap_cur = xfs_rmapbt_init_cursor(mp, sc->tp,
626 					sa->agf_bp, sa->pag);
627 			xchk_ag_btree_del_cursor_if_sick(sc, &sa->rmap_cur,
628 					XFS_SCRUB_TYPE_RMAPBT);
629 		}
630 
631 		/* Set up a refcountbt cursor for cross-referencing. */
632 		if (xfs_has_reflink(mp)) {
633 			sa->refc_cur = xfs_refcountbt_init_cursor(mp, sc->tp,
634 					sa->agf_bp, sa->pag);
635 			xchk_ag_btree_del_cursor_if_sick(sc, &sa->refc_cur,
636 					XFS_SCRUB_TYPE_REFCNTBT);
637 		}
638 	}
639 
640 	if (sa->agi_bp) {
641 		/* Set up a inobt cursor for cross-referencing. */
642 		sa->ino_cur = xfs_inobt_init_cursor(sa->pag, sc->tp,
643 				sa->agi_bp);
644 		xchk_ag_btree_del_cursor_if_sick(sc, &sa->ino_cur,
645 				XFS_SCRUB_TYPE_INOBT);
646 
647 		/* Set up a finobt cursor for cross-referencing. */
648 		if (xfs_has_finobt(mp)) {
649 			sa->fino_cur = xfs_finobt_init_cursor(sa->pag, sc->tp,
650 					sa->agi_bp);
651 			xchk_ag_btree_del_cursor_if_sick(sc, &sa->fino_cur,
652 					XFS_SCRUB_TYPE_FINOBT);
653 		}
654 	}
655 }
656 
657 /* Release the AG header context and btree cursors. */
658 void
659 xchk_ag_free(
660 	struct xfs_scrub	*sc,
661 	struct xchk_ag		*sa)
662 {
663 	xchk_ag_btcur_free(sa);
664 	xrep_reset_perag_resv(sc);
665 	if (sa->agf_bp) {
666 		xfs_trans_brelse(sc->tp, sa->agf_bp);
667 		sa->agf_bp = NULL;
668 	}
669 	if (sa->agi_bp) {
670 		xfs_trans_brelse(sc->tp, sa->agi_bp);
671 		sa->agi_bp = NULL;
672 	}
673 	if (sa->pag) {
674 		xfs_perag_put(sa->pag);
675 		sa->pag = NULL;
676 	}
677 }
678 
679 /*
680  * For scrub, grab the perag structure, the AGI, and the AGF headers, in that
681  * order.  Locking order requires us to get the AGI before the AGF.  We use the
682  * transaction to avoid deadlocking on crosslinked metadata buffers; either the
683  * caller passes one in (bmap scrub) or we have to create a transaction
684  * ourselves.  Returns ENOENT if the perag struct cannot be grabbed.
685  */
686 int
687 xchk_ag_init(
688 	struct xfs_scrub	*sc,
689 	xfs_agnumber_t		agno,
690 	struct xchk_ag		*sa)
691 {
692 	int			error;
693 
694 	error = xchk_ag_read_headers(sc, agno, sa);
695 	if (error)
696 		return error;
697 
698 	xchk_ag_btcur_init(sc, sa);
699 	return 0;
700 }
701 
702 #ifdef CONFIG_XFS_RT
703 /*
704  * For scrubbing a realtime group, grab all the in-core resources we'll need to
705  * check the metadata, which means taking the ILOCK of the realtime group's
706  * metadata inodes.  Callers must not join these inodes to the transaction with
707  * non-zero lockflags or concurrency problems will result.  The @rtglock_flags
708  * argument takes XFS_RTGLOCK_* flags.
709  */
710 int
711 xchk_rtgroup_init(
712 	struct xfs_scrub	*sc,
713 	xfs_rgnumber_t		rgno,
714 	struct xchk_rt		*sr)
715 {
716 	ASSERT(sr->rtg == NULL);
717 	ASSERT(sr->rtlock_flags == 0);
718 
719 	sr->rtg = xfs_rtgroup_get(sc->mp, rgno);
720 	if (!sr->rtg)
721 		return -ENOENT;
722 	return 0;
723 }
724 
725 /* Lock all the rt group metadata inode ILOCKs and wait for intents. */
726 int
727 xchk_rtgroup_lock(
728 	struct xfs_scrub	*sc,
729 	struct xchk_rt		*sr,
730 	unsigned int		rtglock_flags)
731 {
732 	int			error = 0;
733 
734 	ASSERT(sr->rtg != NULL);
735 
736 	/*
737 	 * If we're /only/ locking the rtbitmap in shared mode, then we're
738 	 * obviously not trying to compare records in two metadata inodes.
739 	 * There's no need to drain intents here because the caller (most
740 	 * likely the rgsuper scanner) doesn't need that level of consistency.
741 	 */
742 	if (rtglock_flags == XFS_RTGLOCK_BITMAP_SHARED) {
743 		xfs_rtgroup_lock(sr->rtg, rtglock_flags);
744 		sr->rtlock_flags = rtglock_flags;
745 		return 0;
746 	}
747 
748 	do {
749 		if (xchk_should_terminate(sc, &error))
750 			return error;
751 
752 		xfs_rtgroup_lock(sr->rtg, rtglock_flags);
753 
754 		/*
755 		 * If we've grabbed a non-metadata file for scrubbing, we
756 		 * assume that holding its ILOCK will suffice to coordinate
757 		 * with any rt intent chains involving this inode.
758 		 */
759 		if (sc->ip && !xfs_is_internal_inode(sc->ip))
760 			break;
761 
762 		/*
763 		 * Decide if the rt group is quiet enough for all metadata to
764 		 * be consistent with each other.  Regular file IO doesn't get
765 		 * to lock all the rt inodes at the same time, which means that
766 		 * there could be other threads in the middle of processing a
767 		 * chain of deferred ops.
768 		 *
769 		 * We just locked all the metadata inodes for this rt group;
770 		 * now take a look to see if there are any intents in progress.
771 		 * If there are, drop the rt group inode locks and wait for the
772 		 * intents to drain.  Since we hold the rt group inode locks
773 		 * for the duration of the scrub, this is the only time we have
774 		 * to sample the intents counter; any threads increasing it
775 		 * after this point can't possibly be in the middle of a chain
776 		 * of rt metadata updates.
777 		 *
778 		 * Obviously, this should be slanted against scrub and in favor
779 		 * of runtime threads.
780 		 */
781 		if (!xfs_group_intent_busy(rtg_group(sr->rtg)))
782 			break;
783 
784 		xfs_rtgroup_unlock(sr->rtg, rtglock_flags);
785 
786 		if (!(sc->flags & XCHK_FSGATES_DRAIN))
787 			return -ECHRNG;
788 		error = xfs_group_intent_drain(rtg_group(sr->rtg));
789 		if (error) {
790 			if (error == -ERESTARTSYS)
791 				error = -EINTR;
792 			return error;
793 		}
794 	} while (1);
795 
796 	sr->rtlock_flags = rtglock_flags;
797 
798 	if (xfs_has_rtrmapbt(sc->mp) && (rtglock_flags & XFS_RTGLOCK_RMAP))
799 		sr->rmap_cur = xfs_rtrmapbt_init_cursor(sc->tp, sr->rtg);
800 
801 	if (xfs_has_rtreflink(sc->mp) && (rtglock_flags & XFS_RTGLOCK_REFCOUNT))
802 		sr->refc_cur = xfs_rtrefcountbt_init_cursor(sc->tp, sr->rtg);
803 
804 	return 0;
805 }
806 
807 /*
808  * Free all the btree cursors and other incore data relating to the realtime
809  * group.  This has to be done /before/ committing (or cancelling) the scrub
810  * transaction.
811  */
812 void
813 xchk_rtgroup_btcur_free(
814 	struct xchk_rt		*sr)
815 {
816 	if (sr->rmap_cur)
817 		xfs_btree_del_cursor(sr->rmap_cur, XFS_BTREE_ERROR);
818 	if (sr->refc_cur)
819 		xfs_btree_del_cursor(sr->refc_cur, XFS_BTREE_ERROR);
820 
821 	sr->refc_cur = NULL;
822 	sr->rmap_cur = NULL;
823 }
824 
825 /*
826  * Unlock the realtime group.  This must be done /after/ committing (or
827  * cancelling) the scrub transaction.
828  */
829 void
830 xchk_rtgroup_unlock(
831 	struct xchk_rt		*sr)
832 {
833 	ASSERT(sr->rtg != NULL);
834 
835 	if (sr->rtlock_flags) {
836 		xfs_rtgroup_unlock(sr->rtg, sr->rtlock_flags);
837 		sr->rtlock_flags = 0;
838 	}
839 }
840 
841 /*
842  * Unlock the realtime group and release its resources.  This must be done
843  * /after/ committing (or cancelling) the scrub transaction.
844  */
845 void
846 xchk_rtgroup_free(
847 	struct xfs_scrub	*sc,
848 	struct xchk_rt		*sr)
849 {
850 	ASSERT(sr->rtg != NULL);
851 
852 	xchk_rtgroup_unlock(sr);
853 
854 	xfs_rtgroup_put(sr->rtg);
855 	sr->rtg = NULL;
856 }
857 #endif /* CONFIG_XFS_RT */
858 
859 /* Per-scrubber setup functions */
860 
861 void
862 xchk_trans_cancel(
863 	struct xfs_scrub	*sc)
864 {
865 	xfs_trans_cancel(sc->tp);
866 	sc->tp = NULL;
867 }
868 
869 int
870 xchk_trans_alloc_empty(
871 	struct xfs_scrub	*sc)
872 {
873 	return xfs_trans_alloc_empty(sc->mp, &sc->tp);
874 }
875 
876 /*
877  * Grab an empty transaction so that we can re-grab locked buffers if
878  * one of our btrees turns out to be cyclic.
879  *
880  * If we're going to repair something, we need to ask for the largest possible
881  * log reservation so that we can handle the worst case scenario for metadata
882  * updates while rebuilding a metadata item.  We also need to reserve as many
883  * blocks in the head transaction as we think we're going to need to rebuild
884  * the metadata object.
885  */
886 int
887 xchk_trans_alloc(
888 	struct xfs_scrub	*sc,
889 	uint			resblks)
890 {
891 	if (sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR)
892 		return xfs_trans_alloc(sc->mp, &M_RES(sc->mp)->tr_itruncate,
893 				resblks, 0, 0, &sc->tp);
894 
895 	return xchk_trans_alloc_empty(sc);
896 }
897 
898 /* Set us up with a transaction and an empty context. */
899 int
900 xchk_setup_fs(
901 	struct xfs_scrub	*sc)
902 {
903 	uint			resblks;
904 
905 	resblks = xrep_calc_ag_resblks(sc);
906 	return xchk_trans_alloc(sc, resblks);
907 }
908 
909 /* Set us up with a transaction and an empty context to repair rt metadata. */
910 int
911 xchk_setup_rt(
912 	struct xfs_scrub	*sc)
913 {
914 	return xchk_trans_alloc(sc, xrep_calc_rtgroup_resblks(sc));
915 }
916 
917 /* Set us up with AG headers and btree cursors. */
918 int
919 xchk_setup_ag_btree(
920 	struct xfs_scrub	*sc,
921 	bool			force_log)
922 {
923 	struct xfs_mount	*mp = sc->mp;
924 	int			error;
925 
926 	/*
927 	 * If the caller asks us to checkpont the log, do so.  This
928 	 * expensive operation should be performed infrequently and only
929 	 * as a last resort.  Any caller that sets force_log should
930 	 * document why they need to do so.
931 	 */
932 	if (force_log) {
933 		error = xchk_checkpoint_log(mp);
934 		if (error)
935 			return error;
936 	}
937 
938 	error = xchk_setup_fs(sc);
939 	if (error)
940 		return error;
941 
942 	return xchk_ag_init(sc, sc->sm->sm_agno, &sc->sa);
943 }
944 
945 /* Push everything out of the log onto disk. */
946 int
947 xchk_checkpoint_log(
948 	struct xfs_mount	*mp)
949 {
950 	int			error;
951 
952 	error = xfs_log_force(mp, XFS_LOG_SYNC);
953 	if (error)
954 		return error;
955 	xfs_ail_push_all_sync(mp->m_ail);
956 	return 0;
957 }
958 
959 /* Verify that an inode is allocated ondisk, then return its cached inode. */
960 int
961 xchk_iget(
962 	struct xfs_scrub	*sc,
963 	xfs_ino_t		inum,
964 	struct xfs_inode	**ipp)
965 {
966 	ASSERT(sc->tp != NULL);
967 
968 	return xfs_iget(sc->mp, sc->tp, inum, XCHK_IGET_FLAGS, 0, ipp);
969 }
970 
971 /*
972  * Try to grab an inode in a manner that avoids races with physical inode
973  * allocation.  If we can't, return the locked AGI buffer so that the caller
974  * can single-step the loading process to see where things went wrong.
975  * Callers must have a valid scrub transaction.
976  *
977  * If the iget succeeds, return 0, a NULL AGI, and the inode.
978  *
979  * If the iget fails, return the error, the locked AGI, and a NULL inode.  This
980  * can include -EINVAL and -ENOENT for invalid inode numbers or inodes that are
981  * no longer allocated; or any other corruption or runtime error.
982  *
983  * If the AGI read fails, return the error, a NULL AGI, and NULL inode.
984  *
985  * If a fatal signal is pending, return -EINTR, a NULL AGI, and a NULL inode.
986  */
987 int
988 xchk_iget_agi(
989 	struct xfs_scrub	*sc,
990 	xfs_ino_t		inum,
991 	struct xfs_buf		**agi_bpp,
992 	struct xfs_inode	**ipp)
993 {
994 	struct xfs_mount	*mp = sc->mp;
995 	struct xfs_trans	*tp = sc->tp;
996 	struct xfs_perag	*pag;
997 	int			error;
998 
999 	ASSERT(sc->tp != NULL);
1000 
1001 again:
1002 	*agi_bpp = NULL;
1003 	*ipp = NULL;
1004 	error = 0;
1005 
1006 	if (xchk_should_terminate(sc, &error))
1007 		return error;
1008 
1009 	/*
1010 	 * Attach the AGI buffer to the scrub transaction to avoid deadlocks
1011 	 * in the iget cache miss path.
1012 	 */
1013 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
1014 	error = xfs_ialloc_read_agi(pag, tp, 0, agi_bpp);
1015 	xfs_perag_put(pag);
1016 	if (error)
1017 		return error;
1018 
1019 	error = xfs_iget(mp, tp, inum, XFS_IGET_NORETRY | XCHK_IGET_FLAGS, 0,
1020 			ipp);
1021 	if (error == -EAGAIN) {
1022 		/*
1023 		 * The inode may be in core but temporarily unavailable and may
1024 		 * require the AGI buffer before it can be returned.  Drop the
1025 		 * AGI buffer and retry the lookup.
1026 		 *
1027 		 * Incore lookup will fail with EAGAIN on a cache hit if the
1028 		 * inode is queued to the inactivation list.  The inactivation
1029 		 * worker may remove the inode from the unlinked list and hence
1030 		 * needs the AGI.
1031 		 *
1032 		 * Hence xchk_iget_agi() needs to drop the AGI lock on EAGAIN
1033 		 * to allow inodegc to make progress and move the inode to
1034 		 * IRECLAIMABLE state where xfs_iget will be able to return it
1035 		 * again if it can lock the inode.
1036 		 */
1037 		xfs_trans_brelse(tp, *agi_bpp);
1038 		delay(1);
1039 		goto again;
1040 	}
1041 	if (error)
1042 		return error;
1043 
1044 	/* We got the inode, so we can release the AGI. */
1045 	ASSERT(*ipp != NULL);
1046 	xfs_trans_brelse(tp, *agi_bpp);
1047 	*agi_bpp = NULL;
1048 	return 0;
1049 }
1050 
1051 #ifdef CONFIG_XFS_QUOTA
1052 /*
1053  * Try to attach dquots to this inode if we think we might want to repair it.
1054  * Callers must not hold any ILOCKs.  If the dquots are broken and cannot be
1055  * attached, a quotacheck will be scheduled.
1056  */
1057 int
1058 xchk_ino_dqattach(
1059 	struct xfs_scrub	*sc)
1060 {
1061 	ASSERT(sc->tp != NULL);
1062 	ASSERT(sc->ip != NULL);
1063 
1064 	if (!xchk_could_repair(sc))
1065 		return 0;
1066 
1067 	return xrep_ino_dqattach(sc);
1068 }
1069 #endif
1070 
1071 /* Install an inode that we opened by handle for scrubbing. */
1072 int
1073 xchk_install_handle_inode(
1074 	struct xfs_scrub	*sc,
1075 	struct xfs_inode	*ip)
1076 {
1077 	if (VFS_I(ip)->i_generation != sc->sm->sm_gen) {
1078 		xchk_irele(sc, ip);
1079 		return -ENOENT;
1080 	}
1081 
1082 	sc->ip = ip;
1083 	return 0;
1084 }
1085 
1086 /*
1087  * Install an already-referenced inode for scrubbing.  Get our own reference to
1088  * the inode to make disposal simpler.  The inode must not be in I_FREEING or
1089  * I_WILL_FREE state!
1090  */
1091 int
1092 xchk_install_live_inode(
1093 	struct xfs_scrub	*sc,
1094 	struct xfs_inode	*ip)
1095 {
1096 	if (!igrab(VFS_I(ip))) {
1097 		xchk_ino_set_corrupt(sc, ip->i_ino);
1098 		return -EFSCORRUPTED;
1099 	}
1100 
1101 	sc->ip = ip;
1102 	return 0;
1103 }
1104 
1105 /*
1106  * In preparation to scrub metadata structures that hang off of an inode,
1107  * grab either the inode referenced in the scrub control structure or the
1108  * inode passed in.  If the inumber does not reference an allocated inode
1109  * record, the function returns ENOENT to end the scrub early.  The inode
1110  * is not locked.
1111  */
1112 int
1113 xchk_iget_for_scrubbing(
1114 	struct xfs_scrub	*sc)
1115 {
1116 	struct xfs_imap		imap;
1117 	struct xfs_mount	*mp = sc->mp;
1118 	struct xfs_perag	*pag;
1119 	struct xfs_buf		*agi_bp;
1120 	struct xfs_inode	*ip_in = XFS_I(file_inode(sc->file));
1121 	struct xfs_inode	*ip = NULL;
1122 	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, sc->sm->sm_ino);
1123 	int			error;
1124 
1125 	ASSERT(sc->tp == NULL);
1126 
1127 	/* We want to scan the inode we already had opened. */
1128 	if (sc->sm->sm_ino == 0 || sc->sm->sm_ino == ip_in->i_ino)
1129 		return xchk_install_live_inode(sc, ip_in);
1130 
1131 	/*
1132 	 * On pre-metadir filesystems, reject internal metadata files.  For
1133 	 * metadir filesystems, limited scrubbing of any file in the metadata
1134 	 * directory tree by handle is allowed, because that is the only way to
1135 	 * validate the lack of parent pointers in the sb-root metadata inodes.
1136 	 */
1137 	if (!xfs_has_metadir(mp) && xfs_is_sb_inum(mp, sc->sm->sm_ino))
1138 		return -ENOENT;
1139 	/* Reject obviously bad inode numbers. */
1140 	if (!xfs_verify_ino(sc->mp, sc->sm->sm_ino))
1141 		return -ENOENT;
1142 
1143 	/* Try a safe untrusted iget. */
1144 	error = xchk_iget_safe(sc, sc->sm->sm_ino, &ip);
1145 	if (!error)
1146 		return xchk_install_handle_inode(sc, ip);
1147 	if (error == -ENOENT)
1148 		return error;
1149 	if (error != -EINVAL)
1150 		goto out_error;
1151 
1152 	/*
1153 	 * EINVAL with IGET_UNTRUSTED probably means one of several things:
1154 	 * userspace gave us an inode number that doesn't correspond to fs
1155 	 * space; the inode btree lacks a record for this inode; or there is a
1156 	 * record, and it says this inode is free.
1157 	 *
1158 	 * We want to look up this inode in the inobt to distinguish two
1159 	 * scenarios: (1) the inobt says the inode is free, in which case
1160 	 * there's nothing to do; and (2) the inobt says the inode is
1161 	 * allocated, but loading it failed due to corruption.
1162 	 *
1163 	 * Allocate a transaction and grab the AGI to prevent inobt activity
1164 	 * in this AG.  Retry the iget in case someone allocated a new inode
1165 	 * after the first iget failed.
1166 	 */
1167 	error = xchk_trans_alloc(sc, 0);
1168 	if (error)
1169 		goto out_error;
1170 
1171 	error = xchk_iget_agi(sc, sc->sm->sm_ino, &agi_bp, &ip);
1172 	if (error == 0) {
1173 		/* Actually got the inode, so install it. */
1174 		xchk_trans_cancel(sc);
1175 		return xchk_install_handle_inode(sc, ip);
1176 	}
1177 	if (error == -ENOENT)
1178 		goto out_gone;
1179 	if (error != -EINVAL)
1180 		goto out_cancel;
1181 
1182 	/* Ensure that we have protected against inode allocation/freeing. */
1183 	if (agi_bp == NULL) {
1184 		ASSERT(agi_bp != NULL);
1185 		error = -ECANCELED;
1186 		goto out_cancel;
1187 	}
1188 
1189 	/*
1190 	 * Untrusted iget failed a second time.  Let's try an inobt lookup.
1191 	 * If the inobt thinks this the inode neither can exist inside the
1192 	 * filesystem nor is allocated, return ENOENT to signal that the check
1193 	 * can be skipped.
1194 	 *
1195 	 * If the lookup returns corruption, we'll mark this inode corrupt and
1196 	 * exit to userspace.  There's little chance of fixing anything until
1197 	 * the inobt is straightened out, but there's nothing we can do here.
1198 	 *
1199 	 * If the lookup encounters any other error, exit to userspace.
1200 	 *
1201 	 * If the lookup succeeds, something else must be very wrong in the fs
1202 	 * such that setting up the incore inode failed in some strange way.
1203 	 * Treat those as corruptions.
1204 	 */
1205 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sc->sm->sm_ino));
1206 	if (!pag) {
1207 		error = -EFSCORRUPTED;
1208 		goto out_cancel;
1209 	}
1210 
1211 	error = xfs_imap(pag, sc->tp, sc->sm->sm_ino, &imap,
1212 			XFS_IGET_UNTRUSTED);
1213 	xfs_perag_put(pag);
1214 	if (error == -EINVAL || error == -ENOENT)
1215 		goto out_gone;
1216 	if (!error)
1217 		error = -EFSCORRUPTED;
1218 
1219 out_cancel:
1220 	xchk_trans_cancel(sc);
1221 out_error:
1222 	trace_xchk_op_error(sc, agno, XFS_INO_TO_AGBNO(mp, sc->sm->sm_ino),
1223 			error, __return_address);
1224 	return error;
1225 out_gone:
1226 	/* The file is gone, so there's nothing to check. */
1227 	xchk_trans_cancel(sc);
1228 	return -ENOENT;
1229 }
1230 
1231 /* Release an inode, possibly dropping it in the process. */
1232 void
1233 xchk_irele(
1234 	struct xfs_scrub	*sc,
1235 	struct xfs_inode	*ip)
1236 {
1237 	if (sc->tp) {
1238 		/*
1239 		 * If we are in a transaction, we /cannot/ drop the inode
1240 		 * ourselves, because the VFS will trigger writeback, which
1241 		 * can require a transaction.  Clear DONTCACHE to force the
1242 		 * inode to the LRU, where someone else can take care of
1243 		 * dropping it.
1244 		 *
1245 		 * Note that when we grabbed our reference to the inode, it
1246 		 * could have had an active ref and DONTCACHE set if a sysadmin
1247 		 * is trying to coerce a change in file access mode.  icache
1248 		 * hits do not clear DONTCACHE, so we must do it here.
1249 		 */
1250 		spin_lock(&VFS_I(ip)->i_lock);
1251 		VFS_I(ip)->i_state &= ~I_DONTCACHE;
1252 		spin_unlock(&VFS_I(ip)->i_lock);
1253 	}
1254 
1255 	xfs_irele(ip);
1256 }
1257 
1258 /*
1259  * Set us up to scrub metadata mapped by a file's fork.  Callers must not use
1260  * this to operate on user-accessible regular file data because the MMAPLOCK is
1261  * not taken.
1262  */
1263 int
1264 xchk_setup_inode_contents(
1265 	struct xfs_scrub	*sc,
1266 	unsigned int		resblks)
1267 {
1268 	int			error;
1269 
1270 	error = xchk_iget_for_scrubbing(sc);
1271 	if (error)
1272 		return error;
1273 
1274 	error = xrep_tempfile_adjust_directory_tree(sc);
1275 	if (error)
1276 		return error;
1277 
1278 	/* Lock the inode so the VFS cannot touch this file. */
1279 	xchk_ilock(sc, XFS_IOLOCK_EXCL);
1280 
1281 	error = xchk_trans_alloc(sc, resblks);
1282 	if (error)
1283 		goto out;
1284 
1285 	error = xchk_ino_dqattach(sc);
1286 	if (error)
1287 		goto out;
1288 
1289 	xchk_ilock(sc, XFS_ILOCK_EXCL);
1290 out:
1291 	/* scrub teardown will unlock and release the inode for us */
1292 	return error;
1293 }
1294 
1295 void
1296 xchk_ilock(
1297 	struct xfs_scrub	*sc,
1298 	unsigned int		ilock_flags)
1299 {
1300 	xfs_ilock(sc->ip, ilock_flags);
1301 	sc->ilock_flags |= ilock_flags;
1302 }
1303 
1304 bool
1305 xchk_ilock_nowait(
1306 	struct xfs_scrub	*sc,
1307 	unsigned int		ilock_flags)
1308 {
1309 	if (xfs_ilock_nowait(sc->ip, ilock_flags)) {
1310 		sc->ilock_flags |= ilock_flags;
1311 		return true;
1312 	}
1313 
1314 	return false;
1315 }
1316 
1317 void
1318 xchk_iunlock(
1319 	struct xfs_scrub	*sc,
1320 	unsigned int		ilock_flags)
1321 {
1322 	sc->ilock_flags &= ~ilock_flags;
1323 	xfs_iunlock(sc->ip, ilock_flags);
1324 }
1325 
1326 /*
1327  * Predicate that decides if we need to evaluate the cross-reference check.
1328  * If there was an error accessing the cross-reference btree, just delete
1329  * the cursor and skip the check.
1330  */
1331 bool
1332 xchk_should_check_xref(
1333 	struct xfs_scrub	*sc,
1334 	int			*error,
1335 	struct xfs_btree_cur	**curpp)
1336 {
1337 	/* No point in xref if we already know we're corrupt. */
1338 	if (xchk_skip_xref(sc->sm))
1339 		return false;
1340 
1341 	if (*error == 0)
1342 		return true;
1343 
1344 	if (curpp) {
1345 		/* If we've already given up on xref, just bail out. */
1346 		if (!*curpp)
1347 			return false;
1348 
1349 		/* xref error, delete cursor and bail out. */
1350 		xfs_btree_del_cursor(*curpp, XFS_BTREE_ERROR);
1351 		*curpp = NULL;
1352 	}
1353 
1354 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XFAIL;
1355 	trace_xchk_xref_error(sc, *error, __return_address);
1356 
1357 	/*
1358 	 * Errors encountered during cross-referencing with another
1359 	 * data structure should not cause this scrubber to abort.
1360 	 */
1361 	*error = 0;
1362 	return false;
1363 }
1364 
1365 /* Run the structure verifiers on in-memory buffers to detect bad memory. */
1366 void
1367 xchk_buffer_recheck(
1368 	struct xfs_scrub	*sc,
1369 	struct xfs_buf		*bp)
1370 {
1371 	xfs_failaddr_t		fa;
1372 
1373 	if (bp->b_ops == NULL) {
1374 		xchk_block_set_corrupt(sc, bp);
1375 		return;
1376 	}
1377 	if (bp->b_ops->verify_struct == NULL) {
1378 		xchk_set_incomplete(sc);
1379 		return;
1380 	}
1381 	fa = bp->b_ops->verify_struct(bp);
1382 	if (!fa)
1383 		return;
1384 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
1385 	trace_xchk_block_error(sc, xfs_buf_daddr(bp), fa);
1386 }
1387 
1388 static inline int
1389 xchk_metadata_inode_subtype(
1390 	struct xfs_scrub	*sc,
1391 	unsigned int		scrub_type)
1392 {
1393 	struct xfs_scrub_subord	*sub;
1394 	int			error;
1395 
1396 	sub = xchk_scrub_create_subord(sc, scrub_type);
1397 	error = sub->sc.ops->scrub(&sub->sc);
1398 	xchk_scrub_free_subord(sub);
1399 	return error;
1400 }
1401 
1402 /*
1403  * Scrub the attr/data forks of a metadata inode.  The metadata inode must be
1404  * pointed to by sc->ip and the ILOCK must be held.
1405  */
1406 int
1407 xchk_metadata_inode_forks(
1408 	struct xfs_scrub	*sc)
1409 {
1410 	bool			shared;
1411 	int			error;
1412 
1413 	if (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT)
1414 		return 0;
1415 
1416 	/* Check the inode record. */
1417 	error = xchk_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_INODE);
1418 	if (error || (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT))
1419 		return error;
1420 
1421 	/* Metadata inodes don't live on the rt device. */
1422 	if (sc->ip->i_diflags & XFS_DIFLAG_REALTIME) {
1423 		xchk_ino_set_corrupt(sc, sc->ip->i_ino);
1424 		return 0;
1425 	}
1426 
1427 	/* They should never participate in reflink. */
1428 	if (xfs_is_reflink_inode(sc->ip)) {
1429 		xchk_ino_set_corrupt(sc, sc->ip->i_ino);
1430 		return 0;
1431 	}
1432 
1433 	/* Invoke the data fork scrubber. */
1434 	error = xchk_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_BMBTD);
1435 	if (error || (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT))
1436 		return error;
1437 
1438 	/* Look for incorrect shared blocks. */
1439 	if (xfs_has_reflink(sc->mp)) {
1440 		error = xfs_reflink_inode_has_shared_extents(sc->tp, sc->ip,
1441 				&shared);
1442 		if (!xchk_fblock_process_error(sc, XFS_DATA_FORK, 0,
1443 				&error))
1444 			return error;
1445 		if (shared)
1446 			xchk_ino_set_corrupt(sc, sc->ip->i_ino);
1447 	}
1448 
1449 	/*
1450 	 * Metadata files can only have extended attributes on metadir
1451 	 * filesystems, either for parent pointers or for actual xattr data.
1452 	 */
1453 	if (xfs_inode_hasattr(sc->ip)) {
1454 		if (!xfs_has_metadir(sc->mp)) {
1455 			xchk_ino_set_corrupt(sc, sc->ip->i_ino);
1456 			return 0;
1457 		}
1458 
1459 		error = xchk_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_BMBTA);
1460 		if (error || (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT))
1461 			return error;
1462 	}
1463 
1464 	return 0;
1465 }
1466 
1467 /*
1468  * Enable filesystem hooks (i.e. runtime code patching) before starting a scrub
1469  * operation.  Callers must not hold any locks that intersect with the CPU
1470  * hotplug lock (e.g. writeback locks) because code patching must halt the CPUs
1471  * to change kernel code.
1472  */
1473 void
1474 xchk_fsgates_enable(
1475 	struct xfs_scrub	*sc,
1476 	unsigned int		scrub_fsgates)
1477 {
1478 	ASSERT(!(scrub_fsgates & ~XCHK_FSGATES_ALL));
1479 	ASSERT(!(sc->flags & scrub_fsgates));
1480 
1481 	trace_xchk_fsgates_enable(sc, scrub_fsgates);
1482 
1483 	if (scrub_fsgates & XCHK_FSGATES_DRAIN)
1484 		xfs_defer_drain_wait_enable();
1485 
1486 	if (scrub_fsgates & XCHK_FSGATES_QUOTA)
1487 		xfs_dqtrx_hook_enable();
1488 
1489 	if (scrub_fsgates & XCHK_FSGATES_DIRENTS)
1490 		xfs_dir_hook_enable();
1491 
1492 	if (scrub_fsgates & XCHK_FSGATES_RMAP)
1493 		xfs_rmap_hook_enable();
1494 
1495 	sc->flags |= scrub_fsgates;
1496 }
1497 
1498 /*
1499  * Decide if this is this a cached inode that's also allocated.  The caller
1500  * must hold a reference to an AG and the AGI buffer lock to prevent inodes
1501  * from being allocated or freed.
1502  *
1503  * Look up an inode by number in the given file system.  If the inode number
1504  * is invalid, return -EINVAL.  If the inode is not in cache, return -ENODATA.
1505  * If the inode is being reclaimed, return -ENODATA because we know the inode
1506  * cache cannot be updating the ondisk metadata.
1507  *
1508  * Otherwise, the incore inode is the one we want, and it is either live,
1509  * somewhere in the inactivation machinery, or reclaimable.  The inode is
1510  * allocated if i_mode is nonzero.  In all three cases, the cached inode will
1511  * be more up to date than the ondisk inode buffer, so we must use the incore
1512  * i_mode.
1513  */
1514 int
1515 xchk_inode_is_allocated(
1516 	struct xfs_scrub	*sc,
1517 	xfs_agino_t		agino,
1518 	bool			*inuse)
1519 {
1520 	struct xfs_mount	*mp = sc->mp;
1521 	struct xfs_perag	*pag = sc->sa.pag;
1522 	xfs_ino_t		ino;
1523 	struct xfs_inode	*ip;
1524 	int			error;
1525 
1526 	/* caller must hold perag reference */
1527 	if (pag == NULL) {
1528 		ASSERT(pag != NULL);
1529 		return -EINVAL;
1530 	}
1531 
1532 	/* caller must have AGI buffer */
1533 	if (sc->sa.agi_bp == NULL) {
1534 		ASSERT(sc->sa.agi_bp != NULL);
1535 		return -EINVAL;
1536 	}
1537 
1538 	/* reject inode numbers outside existing AGs */
1539 	ino = xfs_agino_to_ino(pag, agino);
1540 	if (!xfs_verify_ino(mp, ino))
1541 		return -EINVAL;
1542 
1543 	error = -ENODATA;
1544 	rcu_read_lock();
1545 	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
1546 	if (!ip) {
1547 		/* cache miss */
1548 		goto out_rcu;
1549 	}
1550 
1551 	/*
1552 	 * If the inode number doesn't match, the incore inode got reused
1553 	 * during an RCU grace period and the radix tree hasn't been updated.
1554 	 * This isn't the inode we want.
1555 	 */
1556 	spin_lock(&ip->i_flags_lock);
1557 	if (ip->i_ino != ino)
1558 		goto out_skip;
1559 
1560 	trace_xchk_inode_is_allocated(ip);
1561 
1562 	/*
1563 	 * We have an incore inode that matches the inode we want, and the
1564 	 * caller holds the perag structure and the AGI buffer.  Let's check
1565 	 * our assumptions below:
1566 	 */
1567 
1568 #ifdef DEBUG
1569 	/*
1570 	 * (1) If the incore inode is live (i.e. referenced from the dcache),
1571 	 * it will not be INEW, nor will it be in the inactivation or reclaim
1572 	 * machinery.  The ondisk inode had better be allocated.  This is the
1573 	 * most trivial case.
1574 	 */
1575 	if (!(ip->i_flags & (XFS_NEED_INACTIVE | XFS_INEW | XFS_IRECLAIMABLE |
1576 			     XFS_INACTIVATING))) {
1577 		/* live inode */
1578 		ASSERT(VFS_I(ip)->i_mode != 0);
1579 	}
1580 
1581 	/*
1582 	 * If the incore inode is INEW, there are several possibilities:
1583 	 *
1584 	 * (2) For a file that is being created, note that we allocate the
1585 	 * ondisk inode before allocating, initializing, and adding the incore
1586 	 * inode to the radix tree.
1587 	 *
1588 	 * (3) If the incore inode is being recycled, the inode has to be
1589 	 * allocated because we don't allow freed inodes to be recycled.
1590 	 * Recycling doesn't touch i_mode.
1591 	 */
1592 	if (ip->i_flags & XFS_INEW) {
1593 		/* created on disk already or recycling */
1594 		ASSERT(VFS_I(ip)->i_mode != 0);
1595 	}
1596 
1597 	/*
1598 	 * (4) If the inode is queued for inactivation (NEED_INACTIVE) but
1599 	 * inactivation has not started (!INACTIVATING), it is still allocated.
1600 	 */
1601 	if ((ip->i_flags & XFS_NEED_INACTIVE) &&
1602 	    !(ip->i_flags & XFS_INACTIVATING)) {
1603 		/* definitely before difree */
1604 		ASSERT(VFS_I(ip)->i_mode != 0);
1605 	}
1606 #endif
1607 
1608 	/*
1609 	 * If the incore inode is undergoing inactivation (INACTIVATING), there
1610 	 * are two possibilities:
1611 	 *
1612 	 * (5) It is before the point where it would get freed ondisk, in which
1613 	 * case i_mode is still nonzero.
1614 	 *
1615 	 * (6) It has already been freed, in which case i_mode is zero.
1616 	 *
1617 	 * We don't take the ILOCK here, but difree and dialloc update the AGI,
1618 	 * and we've taken the AGI buffer lock, which prevents that from
1619 	 * happening.
1620 	 */
1621 
1622 	/*
1623 	 * (7) Inodes undergoing inactivation (INACTIVATING) or queued for
1624 	 * reclaim (IRECLAIMABLE) could be allocated or free.  i_mode still
1625 	 * reflects the ondisk state.
1626 	 */
1627 
1628 	/*
1629 	 * (8) If the inode is in IFLUSHING, it's safe to query i_mode because
1630 	 * the flush code uses i_mode to format the ondisk inode.
1631 	 */
1632 
1633 	/*
1634 	 * (9) If the inode is in IRECLAIM and was reachable via the radix
1635 	 * tree, it still has the same i_mode as it did before it entered
1636 	 * reclaim.  The inode object is still alive because we hold the RCU
1637 	 * read lock.
1638 	 */
1639 
1640 	*inuse = VFS_I(ip)->i_mode != 0;
1641 	error = 0;
1642 
1643 out_skip:
1644 	spin_unlock(&ip->i_flags_lock);
1645 out_rcu:
1646 	rcu_read_unlock();
1647 	return error;
1648 }
1649 
1650 /* Is this inode a root directory for either tree? */
1651 bool
1652 xchk_inode_is_dirtree_root(const struct xfs_inode *ip)
1653 {
1654 	struct xfs_mount	*mp = ip->i_mount;
1655 
1656 	return ip == mp->m_rootip ||
1657 		(xfs_has_metadir(mp) && ip == mp->m_metadirip);
1658 }
1659 
1660 /* Does the superblock point down to this inode? */
1661 bool
1662 xchk_inode_is_sb_rooted(const struct xfs_inode *ip)
1663 {
1664 	return xchk_inode_is_dirtree_root(ip) ||
1665 	       xfs_is_sb_inum(ip->i_mount, ip->i_ino);
1666 }
1667 
1668 /* What is the root directory inumber for this inode? */
1669 xfs_ino_t
1670 xchk_inode_rootdir_inum(const struct xfs_inode *ip)
1671 {
1672 	struct xfs_mount	*mp = ip->i_mount;
1673 
1674 	if (xfs_is_metadir_inode(ip))
1675 		return mp->m_metadirip->i_ino;
1676 	return mp->m_rootip->i_ino;
1677 }
1678 
1679 static int
1680 xchk_meta_btree_count_blocks(
1681 	struct xfs_scrub	*sc,
1682 	xfs_extnum_t		*nextents,
1683 	xfs_filblks_t		*count)
1684 {
1685 	struct xfs_btree_cur	*cur;
1686 	int			error;
1687 
1688 	if (!sc->sr.rtg) {
1689 		ASSERT(0);
1690 		return -EFSCORRUPTED;
1691 	}
1692 
1693 	switch (sc->ip->i_metatype) {
1694 	case XFS_METAFILE_RTRMAP:
1695 		cur = xfs_rtrmapbt_init_cursor(sc->tp, sc->sr.rtg);
1696 		break;
1697 	case XFS_METAFILE_RTREFCOUNT:
1698 		cur = xfs_rtrefcountbt_init_cursor(sc->tp, sc->sr.rtg);
1699 		break;
1700 	default:
1701 		ASSERT(0);
1702 		return -EFSCORRUPTED;
1703 	}
1704 
1705 	error = xfs_btree_count_blocks(cur, count);
1706 	xfs_btree_del_cursor(cur, error);
1707 	if (!error) {
1708 		*nextents = 0;
1709 		(*count)--;	/* don't count the btree iroot */
1710 	}
1711 	return error;
1712 }
1713 
1714 /* Count the blocks used by a file, even if it's a metadata inode. */
1715 int
1716 xchk_inode_count_blocks(
1717 	struct xfs_scrub	*sc,
1718 	int			whichfork,
1719 	xfs_extnum_t		*nextents,
1720 	xfs_filblks_t		*count)
1721 {
1722 	struct xfs_ifork	*ifp = xfs_ifork_ptr(sc->ip, whichfork);
1723 
1724 	if (!ifp) {
1725 		*nextents = 0;
1726 		*count = 0;
1727 		return 0;
1728 	}
1729 
1730 	if (ifp->if_format == XFS_DINODE_FMT_META_BTREE) {
1731 		ASSERT(whichfork == XFS_DATA_FORK);
1732 		return xchk_meta_btree_count_blocks(sc, nextents, count);
1733 	}
1734 
1735 	return xfs_bmap_count_blocks(sc->tp, sc->ip, whichfork, nextents,
1736 			count);
1737 }
1738